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Abstract 

Background: The climate mitigation target of limiting the temperature increase below 2 °C above the pre-industrial 
levels requires the efforts from all countries. Tracking the trajectory of the land carbon sink efficiency is thus crucial to 
evaluate the nationally determined contributions (NDCs). Here, we define the instantaneous land sink efficiency as 
the ratio of natural land carbon sinks to emissions from fossil fuel and land-use and land-cover change with a value of 
1 indicating carbon neutrality to track its temporal dynamics in the past decades.

Results: Land sink efficiency has been decreasing during 1957–1990 because of the increased emissions from fossil 
fuel. After the effect of the Mt. Pinatubo eruption diminished (after 1994), the land sink efficiency firstly increased 
before 2009 and then began to decrease again after 2009. This reversal around 2009 is mostly attributed to changes in 
land sinks in tropical regions in response to climate variations.

Conclusions: The decreasing trend of land sink efficiency in recent years reveals greater challenges in climate 
change mitigation, and that climate impacts on land carbon sinks must be accurately quantified to assess the effec-
tiveness of regional scale climate mitigation policies.
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Background
The Paris Agreement, aiming at limiting the tempera-
ture increase below 2 °C above pre-industrial levels, 
also aims at a greenhouse gas (GHG) balance between 
anthropogenic emissions and sinks in the second half of 
this century [1]. Although the Paris agreement focuses 
on anthropogenic fluxes, in reality it is hard to sepa-
rate the anthropogenic contribution from global sinks 
[2]. Therefore, IPCC introduced the managed lands as a 
proxy for the place where anthropogenic emissions and 
removals occur [3]. But countries have a discretionary 
option to declare parts of their territory as being under 
management or not [4, 5], when evaluating or setting the 

mitigation targets e.g. in the national determined contri-
butions (NDCs). Despite various possible interpretations 
of the exact GHG balance in the Paris Agreement [2], 
understanding trends and variations in the global balance 
between carbon sources and sinks is important for the 
evaluation of the NDCs to climate mitigation.

In the global carbon budget, the carbon source to the 
atmosphere includes emissions from fossil fuel (F) and 
land-use and land-cover change (L). These carbon emis-
sions will be partly absorbed by land (‘natural’ carbon 
flux excluding land-use disturbed areas, B) and ocean 
(O), and the remaining part stays in the atmosphere. 
Enhanced B or O is thus needed to increase the carbon 
sink and to achieve the carbon neutrality. During the past 
10 years (2009–2018), the land sink (B) has removed 33% 
of the anthropogenic emissions (F + L), and many future 
climate mitigation options rely on terrestrial ecosystems, 
such as afforestation, bioenergy with carbon capture and 
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storage and enhanced soil carbon sequestration [4, 6–8]. 
The land sink thus plays a key role in meeting the target 
of carbon neutrality.

To integrate the information of anthropogenic emis-
sions and land sinks, the instantaneous land carbon sink 
efficiency (E) is defined here as the ratio of B to the sum 
of F and L, i.e. E = B/(F + L). A higher value of E means 
more carbon emission absorbed by land, contributing to 
a slower growth rate of atmospheric  CO2 concentration. 
E = 1 indicates a carbon neutral region where natural 
sinks fully offset land use emissions and fossil fuel emis-
sions (a positive sign of carbon fluxes being adopted for 
carbon emissions to the atmosphere for F and L, and for 
carbon uptake from the atmosphere for B). E integrates 
trends from both emissions and sinks and thus is relevant 
for assessing regional trajectories with respect to carbon 
neutrality. The concept of E is the same as the fraction of 
the total emissions (F + L) absorbed by land [9]. However, 
previous studies did not report the trend of E in the past 
decade and analyze the regional E, which can be used as 
an integrated measure of the carbon neutrality account-
ing for both territorial emissions and sinks [5].

Changes in individual carbon fluxes contribute to the 
variations of E. For example, global annual F emissions 
have been increasing from an average of 3.04 ± 0.41 Pg C 
 year−1 in the 1960s to 9.5 ± 0.4 Pg C  year−1 in the past 
decade (2009−2018), largely driven by an increase in 
China [6, 10]. Global annual L emissions ranged from 
1.0 to 1.8 Pg C  year−1 since 1959, mainly contributed 
by tropical regions (South and Southeast Asia, Latin 
America and Sub-Saharan Africa) [6, 11]. However, emis-
sions from L that are already reported under the United 
Nations Framework Convention on Climate Change 
(UNFCCC) are generally much lower than L based on 
the scientific definitions of Global Carbon Project (GCP), 
because they incompletely account for land degradation 
emissions, do not account for changes in cropland and 
grassland management intensity, ignore some conver-
sions of carbon rich biomes like tropical forests becom-
ing plantations (e.g. oil palm, rubber). B increased from 
1.86 ± 0.53 Pg C  year−1 in 1980–1984 to 2.82 ± 0.50 Pg C 
 year−1 in 2010–2014 [12].

The components of the land sink efficiency (i.e. F, L 
and B) are influenced by both anthropogenic activities 
and natural factors. F is directly contributed by fossil fuel 
emissions caused by anthropogenic activities, while L 
could be increased by deforestation which results in car-
bon emissions. Secondary regrowth of forests (e.g., affor-
estation and reforestation) has the potential to reduce 
L [13–15]. The rising atmospheric  CO2 concentrations 
can enhance plant photosynthesis (“CO2 fertilization”) 
and thus may increase B [15–18], although the  CO2 
response of carbon sequestration in mature forests may 

be insignificant [19]. Volcanic eruption and large-scale 
fire events are also important components that regulate 
B, both locally and globally [20–24]. Climate conditions 
like temperature and precipitation have multiple effects 
on the land carbon uptake. Although global warming has 
extended the growing season length and thus enhanced 
vegetation productivity in the northern temperate and 
boreal regions [25], this may be offset by autumn warm-
ing having led to carbon losses from northern ecosystems 
due to respiration increase [26]. ENSO-induced tempera-
ture and precipitation variations also strongly impact the 
carbon cycles in the tropics and play a dominant role in 
the variability of land sinks [27].

The objective of this study is to characterize the global 
and regional trajectories of land carbon sink efficiencies 
over the past decades. Considering the differences among 
various estimates of carbon fluxes, we use multiple data-
sets (mostly from the global carbon budget [6]) to vali-
date our findings. We firstly analyze the trend of E on the 
global scale and identify critical regions that dominate it. 
We further analyze the trend of each individual carbon 
flux and the potential driving factors. Finally, we do a set 
of sensitivity tests (e.g., using multiple data sources) and 
discuss the implication of the land sink efficiency. Our 
analyses focus on the period covered by atmospheric 
inversion estimates, especially after 1990s when expan-
sion of the atmospheric station network allowed for lati-
tudinal resolution of surface fluxes.

Methods
Net land sink and fossil fuel emissions from atmospheric 
Inversion
We used annual net land sink (BL = B-L) and F data from 
two atmospheric inversions: the Copernicus Atmosphere 
Monitoring Service inversion (CAMS) [28] and the Jena 
CarboScope inversion (available at http:// www. bgc- jena. 
mpg. de/ Carbo Scope/) [29, 30]. CarboScope inversions 
combine fixed fossil fuel emission and ocean flux priors, 
and adjust land flux with its prescribed uncertainties to 
match atmospheric  CO2 observations, while CAMS 
inversion has fixed fossil fuel emission priors and adjusts 
land and ocean fluxes. Fluxes and atmospheric  CO2 mole 
fractions are linked to each other by a transport model. 
Although F is fixed, BL is estimated based on the atmos-
pheric data, including the spatial distribution of carbon 
sinks across different regions.

The temporal coverage and spatial resolution of CAMS 
(v18.3) are 1979–2018 and 1.875° latitude × 3.75° lon-
gitude. The number of stations used in the CAMS 
increased over time as they became available, and a 
total of 129 stations were used in 2018. From the Jena 
CarboScope inversion (v4.3) we analyze five products 
using different station networks, including a network of 

http://www.bgc-jena.mpg.de/CarboScope/
http://www.bgc-jena.mpg.de/CarboScope/
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stations having measurements from at least 1976 (here-
after Jena_s76, 9 stations), from 1981 (Jena_s81, 14 sta-
tions), from 1985 (Jena_s85, 21 stations) or from 1993 
(Jena_s93, 35 stations), respectively. Moreover, we used 
the Jena CarboScope run sEXTocNEET_v4.3 (hereaf-
ter Jena_sNEET) using a growing network of 89 stations 
starting from 1957, but with year-independent degrees of 
freedom regressing interannual BL variations against var-
iations in air temperature. The spatial resolution is 3.75° 
latitude × 5° longitude. Because the prior fixed fossil fuel 
emissions (F) are different in these two inversions (Addi-
tional file  1: Figure S1b), directly impacting posterior 
BL estimates, the BL data from the Jena inversions were 
adjusted to a common F value, as done in Peylin et al. [31] 
and Thompson et al. [32]. For global F, we used the values 
from global carbon budget [33], and for regional distribu-
tion of F we used the values from CAMS. All bunker fuels 
are considered as a surface fossil  CO2 source distributed 
proportionally to national emissions shares of the global 
total [10, 33].

We also compare the results from the inversions with 
estimates of BL at the scale of both hemispheres over 
1994–2013, using a two-box inversion and data from the 
two longest  CO2 monitoring stations from South Pole 
and Mauna Loa, with ocean sinks from an ensemble of 
ocean biogeochemical models [34].

Natural land sink as residual of GCP’s annual global carbon 
budget
We calculated annual global B over 1959–2018 from 
the global carbon budget [32] as a residual of F, L from 
bookkeeping models, global atmospheric  CO2 growth, 
and ocean sinks from an ensemble of ocean biogeo-
chemical models as well. Deriving B as a residual term 
has recently been replaced by explicit simulations with 
dynamic global vegetation models (DGVMs) in recent 
versions of the annual global carbon budget [35]. Never-
theless, here we stay with the residual approach because 
the land sink from DGVMs added to ocean sinks and F 
emissions do not match the  CO2 growth rate, with an 
imbalance ranging from − 1.75 to 1.96 PgC  year−1 during 
1959–2018, so that B from this approach is not consistent 
with atmospheric data [33, 36]. We considered B from 
the TRENDY-V8 DGVMs used in Friedlingstein et al [33] 
as a sensitivity test, considering that potential error terms 
in the other fluxes will be attributed to B with residual 
approach.

Land‑use and land‑cover change flux from bookkeeping 
models and DGVMs
We mainly used L from the Bookkeeping of Land Use 
Emissions model [BLUE, 37] because this dataset is grid-
based and updated to the latest year. The BLUE model 

used gridded LUC data from the Land Use Harmoniza-
tion dataset [38]. In addition, we used L from three other 
sources as sensitivity tests: (1) L from the bookkeeping 
model by Houghton and Nassikas [10, hereafter H&N], 
(2) L from DGVMs in Friedlingstein et al [33], and (3) L 
from the OSCAR compact Earth system model that emu-
lates the carbon cycle of TRENDY-V7 DGVMs [OSCAR, 
39]. L from H&N is estimated based on country-level 
response curves of carbon pools for different LUC types 
and FAO/FRA forest data [11]. It should be noted that 
although H&N and BLUE are used as equally likely in the 
GCP, H&N is not used here for the prime analysis due 
to its ending in 2015 and lack of spatially explicit values 
after that year (GCP extended the results of H&N to 2018 
only on global scale). In the GCP, DGVMs performed 
two simulations using different settings: S2 with varying 
 CO2 and climate but time-invariant preindustrial land 
use maps, and S3 with annually updated  CO2, climate 
and land use maps. L is thus the net biome productiv-
ity (NBP) difference between S2 and S3, which includes 
a foregone land sink in S2, leading to a component of L 
known as “loss of additional sink capacity” (LASC) which 
does not exist in observation-based estimates and in 
bookkeeping models [40, 41]. OSCAR embeds processes 
and parameters calibrated using outputs from DGVMs 
and calculates L using a bookkeeping method [39]. While 
L from DGVMs include LASC, L from OSCAR does not 
and can be compared with other bookkeeping models 
based on observations of carbon densities [39].

All carbon flux datasets used in this study are summa-
rized in Additional file 1: Table S1.

Other data
Atmospheric  CO2 concentrations [42], temperature and 
precipitation from CRUJRA2.0 [43, 44], Multivariate 
ENSO Index (MEI) [45] and the Pacific Decadal Oscilla-
tion index (PDO) [46] were used to analyze the influenc-
ing factors of land sink efficiency. MEI and PDO index 
are widely used to describe the varying ocean and atmos-
phere conditions. We also used forest area gain derived 
from ESA CCI (European Space Agency Climate Change 
Initiative) yearly land cover maps from 1993–2018 to 
investigate the legacy land sink from forest gain.

Data analysis
Gridded datasets with different spatial resolutions were 
resampled to 1° × 1°. We only focused on the period 
covered by inversion data (1957–2018) and used annual 
mean values of the carbon fluxes and climate variables. 
Because of the strong interannual variability (Addi-
tional file  1: Figure S1), we applied a 5-year moving 
window to carbon fluxes to better detect trends. In the 
atmospheric inversion output, however, it is impossible 
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to distinguish B and L separately because the inversions 
do not include an explicit representation of L. We thus 
used L simulated by BLUE to calculate B. We also cal-
culated trends of each individual flux on the regional 
scale for 11 regions (see region division in Additional 
file  1: Figure S2) to elucidate which region dominates 
the trend of E. Piecewise regression (“Segmented” 
package in R) was applied on global and regional trends 
to detect breakpoints. In addition, a linear least-square 
regression was used to calculate the trends during 
1957–1990 and the trends before and after a detected 
breakpoint for each individual flux.

Because the global trend in B/(F + L) is not equal 
to the sum of regional trends, we used a method of 
removing-one-region at a time to analyze the regional 
contributions to the breakpoint of global land sink 
efficiency. Specifically, assume there is a breakpoint 
detected in the global signal, and the slopes before and 
after the breakpoint are  s1 and  s2. After removing B, F 
and L fluxes from one region, we assume that B/(F + L) 
from the sum of the other regions still shows a similar 
breakpoint, but the slopes before and after the break-
point change to  s1′ and  s2′. We define the contribution 
of a region as a ratio of slope change  (Rsc):

A positive value of  Rsc indicates that this region 
strengthens the slope reversal, i.e., making the contri-
bution to the global breakpoint more significant. Con-
versely, a negative value indicates the region weakens the 
slope reversal.

Results
Global trends
Global land sink efficiencies (E) calculated from differ-
ent datasets during 1957–2018 with 5-year moving aver-
age are shown in Fig. 1a. Note that the analysis period is 
shown as 1959–2016 because of the 5-year moving aver-
age. Higher E values are found during 1991–1993 because 
of the Mt. Pinatubo eruption that enhanced the land 
sink and the value of E peaked at around 0.5. Before this 
exceptional period, E shows a monotonically decreas-
ing trend from the residual sink of GCP (1961–1988, 
p < 0.01) and from Jena_sNEET (1959–1988, p < 0.01, 
Fig. 1b). The results from CAMS (1981–1988), Jena_s76 
(1978–1988) and Jena_s81 (1983–1988) start too late to 
detect a significant trend before the Mt. Pinatobo period. 

Rsc = 1−
s
′

2
− s

′

1

s2 − s1
× 100%

Fig. 1 Land sink efficiencies based on 5-yr moving averages from different datasets during 1959–2016: a annual values, b annual values (dot) with 
linear regression (line) from 1959 to 1988 and piecewise regression (line) from 1996–2016. B in the inversion datasets (CAMS and Jena) is calculated 
by BL−L where L from BLUE is used. The diamonds and error bars in (b) indicate the detected breakpoints with 95% confidence interval. The 
Pinatubo eruption period is marked in light yellow shade. Note that we used 5-yr moving average fluxes, and thus the analysis period is shown as 
1959–2016 instead of 1957–2018 (the original annual values)
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It is also possible that the decreasing trend was weak-
ened or disappeared in the 1980s. The decreasing trend 
during 1959–1988 is mainly caused by the increasing 
trend of F during this period considering little changes in 
B and smaller absolute values of L and its trend (Addi-
tional file 1: Figure S1). After the Mt. Pinatubo eruption 
period, E increases until around 2009 and then decreases 
afterward (i.e., the trend reversal, Fig.  1b). This trend 
is present in all considered datasets, and the detected 
breakpoints range from 2008 to 2010 (p < 0.01). In the fol-
lowing, we focus mainly on E after the eruption of Mt. 
Pinatubo (i.e., from 1994–2018) because more datasets 
with better observation constraints are available during 
this period.

The original flux B and F are generally increasing dur-
ing 1957–2018 (Additional file 1: Figure S1). B from dif-
ferent datasets is roughly consistent, but L from different 
dataset shows large variations over 1957–2018 owing to 
the various methods and input datasets (Additional file 1: 
Figure S1) [39].

Regional contributions
In general, the global breakpoint around 2009 remains 
detectable after removing contributions from any one 
individual region in both inversions and is all signifi-
cant (p < 0.1) except when removing Latin America in 
Jena_s93 (Additional file  1: Figure S3–S8). The regional 
contributions could be clearly reflected by their  Rsc val-
ues (Fig.  2a). The mean values of  Rsc show that Latin 
America contributes most to the trend reversal in the 

Jena inversions with the largest positive  Rsc values (i.e., 
enhancing effect on the trend reversal) while East Asia 
shows largest opposite effects with the most negative  Rsc 
values. The negative contributions from North America, 
Europe and Middle-East are also consistent in all data-
sets  (Rsc < 0 for all). However, Former Soviet Union shows 
more positive contributions than Africa in Jena_s81, 
Jena_s85 and Jena_s93 (Fig.  2a) but opposite contribu-
tions are found in CAMS (Fig.  2a). East Asia, North 
America and Europe all have high F and the most nega-
tive  Rsc values, which proved that the trend reversal was 
not due to a change of F in any of these large F emitting 
regions.

Given the robustness of the global breakpoint after 
removing each individual region (Additional file 1: Figure 
S3–S8), we further removed 2 regions each time to exam-
ine whether the breakpoint would disappear. We find that 
several 2-regions combinations can make the breakpoint 
insignificant (p > 0.1) or disappear (Fig. 2b). Among these 
combinations, Latin America is the most frequently iden-
tified region in the Jena inversions and Former Soviet 
Union ranks second. However, these two regions are 
not sensitive regions in CAMS. In CAMS, only remov-
ing the combination of Africa and Southeast Asia can 
change the breakpoint. After removing any combination 
without Latin America, Africa, Former Soviet Union and 
Southeast Asia, the breakpoint still exists, confirming 
the minor or even opposite contributions of these four 
regions.

Fig. 2 Regional contributions to the trend reversal after 2009. a Slope change ratio in different regions from various datasets. The short vertical 
black line is the mean value of the 6 datasets (colored dots). A positive (negative) value of  Rsc indicates that this region strengthens (weakens) the 
trend reversal after the breakpoint. b Removal of pairs of regions that leads to the insignificance (p > 0.1) or disappearance of the trend reversal. 
Squares with the same hatch are one removal of 2-region combination
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Although the two-box inversion cannot detect the 
breakpoint due to the short time series after 2009, it con-
firms that the increasing trend before 2009 is contributed 
by the Southern Hemisphere (Additional file  1: Figure 
S9).

Individual fluxes in each region
Because it is partly ambiguous to simply decompose the 
trends in global E = B/(F + L) into trends in regional E, we 
calculate the global and regional trends in each individual 
flux before and after 2009 from 1996 to 2016 in different 
datasets (Fig. 3). Globally, F and L are increasing before 
and after 2009 while B is increasing only before 2009. 
After 2009, the growing trend of F weakens while the 
growing trend of L strengthened, albeit with considerable 
variability among estimates (Additional file 1: Figure S1c). 
The trend in B changes from positive to negative after 
2009. Therefore, the reversal of trends in E are driven 
predominantly by the trend in B and, to a lesser extent, by 
the trend in L. The trend in F, on the other hand, shows a 
more slowly increasing rate after 2009 than before 2009, 
making the E value more positive after 2009. Thus, the 
trend in E is primarily driven by land sink variability (i.e., 
B), and F emissions have an opposite effect but with small 
magnitude.

The global trend in each carbon flux is the sum of 
regional trends. The global trend in F is mostly driven by 
trends in East Asia where the growth of fossil fuel emis-
sions slows down after 2009 compared to that before 
2009 (Fig.  3). A slow-down in F growth also appears in 
Africa, Middle East, Oceania and Southeast Asia with a 

smaller magnitude. In North America, however, F shows 
a small magnitude of decreasing trend after 2009.

Trends in B vary across different datasets in most 
regions (Fig. 3). In Africa, Southeast Asia and South Asia, 
B is increasing before 2009 but decreasing after 2009 in 
CAMS, which is not evident in most Jena datasets. How-
ever, the increasing trends in B are smaller in the Jena 
datasets in Africa and Southeast Asia after 2009. In the 
Former Soviet Union, Europe and North America, trends 
in B even show large variations across different data-
sets. A strong decreasing trend in B in the Former Soviet 
Union is found in Jena_s81, Jena_s85 and Jena_s93 after 
2009.

In Latin America and Oceania, however, all datasets 
show a high consistency (Fig. 3). The sign of trends in B 
is positive before 2009 and negative after 2009. Although 
the trends in B are robust in Oceania, the values of the 
trends are very small and thus have limited contributions 
to the global trends. On the contrary, the strong reversed 
trends in B in Latin America largely explain the reversed 
trends in global B.

The increased positive trends in global L after 2009 are 
mainly contributed by Africa and East Asia. North Amer-
ica, South Asia and Oceania also contribute to these 
increasing positive trends but with a small magnitude. 
However, the large increasing trend of L in Latin America 
slows down after 2009 with stabilizing deforestation rates 
at low levels (Additional file 1: Figure S10, [47]).

Fig. 3 Global and regional trends in carbon fluxes before and after 2009 from 1996 to 2016 based on 5-year moving average. The left and right 
stacks of bars in each dataset represent trends before and after 2009, respectively. Note that data from GCP are only shown on the global scale. 
Categorical variables on the x-axis are consistent among bar plots for each region, with reference being given for Latin America. Y axes have 
different scales in different regions for legibility
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Discussion
We found a decreasing trend of E from 1957–1990 which 
is in line with the previous finding that the proportion 
of carbon emissions remaining in the atmosphere (air-
borne fraction) was increasing during this period [9]. 
After the Mt. Pinatubo eruption period (after 1994), E 
increased again and then decreased after 2009. To ver-
ify the robustness of this breakpoint, we did the follow-
ing sensitivity tests: (1) using L from other three data 
sources (H&N, DGVMs and OSCAR), B from DGVMs 
and B from the residual of different ocean flux estimates; 
(2) removing adjustment of fossil fuel emissions on Jena 
data; (3) applying different moving average methods; and 
((4) masking the latest El Niño event.

In general, our breakpoint is robust regardless of dif-
ferent choices of datasets and methods. Although there 
are large differences in L among different datasets (Addi-
tional file 1: Figure S1c), the absolute values of L are rela-
tively small compared with F and B, and the breakpoint 
detection in E is robust regardless of different L choices 
(p < 0.01, Additional file  1: Figure S11). This breakpoint 
is, however, not reflected using B from DGVMs, mainly 
due to the non-significant increase of B before 2009 
(Additional file 1: Figure S12). DGVMs likely underesti-
mated the increase of B in the 2000s [34]. On the other 
hand, the decreasing trend of E after 2009 in DGVMs 
(Additional file 1: Figure S12) is consistent with the trend 
detected by inversion data. A previous study also found 
that the global difference in land sink between DGVMs 
and inversion datasets agreed well with the budget imbal-
ance in the global carbon budget [36], indicating a pos-
sible bias in the land sink simulated by DGVMs. We also 
tested the ocean sink from each individual ocean model 
estimate and  pCO2-based product of the global ocean 
sink reported in the global carbon budget, instead of the 
ensemble mean, to calculate the residual B in the global 
carbon budget, and the breakpoint of global E still exists 
(p < 0.01, Additional file  1: Figure S13). Without the 
adjustment of fossil fuel emissions on the Jena data (see 
"Net land sink and fossil fuel emissions from atmospheric 
Inversion" section), the global pattern remains consist-
ent (p < 0.01, Additional file  1: Figure S14). To evaluate 
the influence of moving average methods, we applied 
3-year moving average on the time series, and signifi-
cant global breakpoint around 2009 in E is found in each 
dataset (p < 0.1, Additional file  1: Table  S2). Even using 
the original annual values without moving averages, the 
breakpoint around 2009 is still detectable although not 
significant (Additional file  1: Table  S2). After replacing 
the B in the strong El Niño years (2015 and 2016) with the 
averaged B of 2014 and 2017, the breakpoint detection is 
still significant after 5-yr moving average in CAMS and 
three Jena datasets (p < 0.1, Additional file  1: Table  S2), 

indicating that this reversal is not completely caused by 
the latest strong El Niño event during 2015–2016.

To estimate the uncertainty of E, we estimated the 
uncertainty of each carbon flux after Mt. Pinatubo erup-
tion, which is our focused period. Following GCP, F has a 
fixed uncertainty of 5% for all years, mainly contributed 
by the amounts of fuel consumed, the carbon and heat 
contents of fuels, and the combustion efficiency [6, 48]. 
The uncertainties of L and BL were estimated by calculat-
ing the standard deviation of all available fluxes (4 L esti-
mates and 7 BL estimates in Additional file 1: Table S1) 
respectively. Finally, we used a Monte Carlo method to 
estimate the uncertainty of E. Specifically, we randomly 
selected F, BL and L from their distributions for 10,000 
times and calculated the corresponding E. The standard 
deviation of E was taken as the uncertainty range (Addi-
tional file 1: Figure S15). We found that the uncertainty 
range of E is smaller than the interannual variability, indi-
cating that the trend reversal can be robustly detected 
given the uncertainty in E (Additional file  1: Table  S3, 
Figure S15).

These sensitivity tests and uncertainty analysis further 
confirm the robustness of the breakpoint and support 
that the smaller increasing trend of B is the dominant 
factor determining the reversed trend in land sink effi-
ciency after 2009.

Compared to the period before 2009, the acceleration 
of the L growth in Africa and East Asia together with the 
weakening or relatively stable trend in B in the tropics, 
especially in Latin America, result in the weakening of E 
after 2009 (Fig. 3). This is consistent with the dominant 
role of tropical regions in the interannual variability of 
the global carbon cycle [49–52].

Climate variations play an important role in the 
reversed trend in land sink efficiency after 2009. In fact, 
5-yr moving averages of MEI and PDO index both show 
a strong increasing trend since 2009 (Additional file  1: 
Figure S16a), which influences the land carbon sink. 
However, the impacts of ENSO and PDO on E seem to 
be small (Fig.  1) during the increasing phase of ENSO 
and PDO in the previous cycle (2000–2004), probably 
because of reduced intensity and shorter duration (Addi-
tional file  1: Figure S16b). In fact, if we apply multiple 
linear regression using annual precipitation, temperature 
and  CO2 concentration to predict B in tropics and use the 
predicted B to calculate tropical E, the same breakpoint 
in the predicted E trend around 2009 is still significant 
(Additional file 1: Figure S17a), indicating that these fac-
tors can largely explain the trend reversal. Note that MEI 
is strongly correlated with temperature and precipitation 
in the tropics (Additional file  1: Figure S17b). It is well 
known that climate variations caused by e.g. El Niño may 
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influence the tropical carbon cycle through different pro-
cesses in different regions [27].

Climate impacts on the land sink may need to be 
accurately quantified in the future. Extreme El Niño 
events that strongly reduce tropical land carbon sinks 
are expected to be more frequent due to future green-
house warming [53], but the trend of El Niño/La Niña 
intensity still remains unclear. While El Niño/La Niña 
cycles affect E, El Niño impacts are probably compen-
sated by recovery fluxes in the subsequent years [54]. 
If they can fully offset each other, ENSO impacts on E 
may be negligible in the long term. On the other hand, 
if there is an anthropogenic fingerprint in trends in El 
Niño/La Niña intensity [55], climate change impact on 
the natural land sink needs to be considered to define 
mitigation goals compatible with the Paris agreement, 
for example, using a buffer pool approach [56]. In addi-
tion, PDO and other low frequency variability patterns 
might affect climate at the time scales these mitigation 
policies should be acting (the next few decades). They 
could either result in additional  CO2 in the atmosphere 
(e.g. by imposing more drought/higher temperatures) 
amplifying the impacts or reduce it temporarily (if they 
would lead to some cooling and wetter conditions). 
Their impacts on the natural sink thus need to be accu-
rately quantified to avoid a false sense of implementa-
tion progress or failure when assessing the collective 
result of climate mitigation policies. Currently, there is 
not enough evidence to identify the most likely of these 
two possibilities. Nevertheless, it is necessary to track 
the efficiency of natural sink dynamics.

Saturation of land carbon sinks could also contrib-
ute to the reversal of trends in land sink efficiency after 
2009. Processes that regulate the land sink via atmos-
pheric composition change (e.g.  CO2 fertilization, nitro-
gen deposition), climate change (e.g. rising temperature) 
and LUC (e.g. forest regrowth, woody encroachment) are 
unlikely to be sustained permanently. Land carbon sinks 
are thus likely to decrease as the terrestrial carbon stor-
age saturates. The saturation of the tropical land sink is 
already indicated by a network of Amazonian forest plots 
[52] and modelling studies [57]. However, some of this 
potential saturation may be offset by secondary forest 
regrowth in the tropics [13, 58]. Forest area gain in the 
tropics during 2009–2013 is lower than over the period 
before 2009 but became higher in the recent period after 
2013 (Additional file  1: Figure S18). Linking forest area 
gain to the net land sink, however, remains challenging 
due to the uncertainties in the forest gain detection from 
remote sensing, biomass growth and soil carbon dynam-
ics. Therefore, the contribution of legacy land sink from 
forest gain needs to be further investigated with emerg-
ing evidence.

Some countries have recently made commitments 
to achieve carbon neutrality in the future. For example, 
European Union proposed the ‘European Green Deal’ 
in 2019 which aimed at net zero emissions of GHGs by 
2050 [59], and China also promised to be carbon neutral-
ity before 2060 in the 75th session of the United Nations 
General Assembly. However, the decreasing land sink 
efficiency in recent years may make these ambitious aims 
more challenging. In future, we should keep tracing the 
trend of land sink efficiency and call for more efforts to 
progress towards the global carbon neutrality objective.

Conclusions
Our study defined the land sink efficiency and explored 
its trends from 1957 to 2018 using multiple datasets. We 
found that before the Pinatubo eruption, the land sink 
efficiency was generally decreasing due to the increase in 
fossil fuel emissions. After the Mt. Pinatubo eruption, a 
trend reversal around 2009 was observed because of the 
changed land sink in tropical regions. Our results high-
light the importance of the variations of the natural land 
sink, which are not the focus of the Paris agreement. 
The decreasing trend of land sink efficiency in the recent 
years reveals greater challenges in the mitigation of cli-
mate change and reinforces the need for more efforts to 
reduce anthropogenic emissions from fossil fuel burn-
ing and LUC to achieve the ambitious goals of the Paris 
Agreement.
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