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FOREWORD

The principal aim of health care research at IIASA has
been to develop a family of submodels of national health care
systems for use by health service planners. The modeling work
is proceeding along the lines proposed in the Institute's cur-
rent Research Plan. It involves the construction of linked
submodels dealing with population, disease prevalence, resource
need, resource allocation, and resource supply.

The work presented in this paper brings together two
resource allocation models (RAMOS and DRAM), which deal
respectively with allocation problems in space and between
patient categories and resource types, to produce a new
model DRAMOS (Disaggregated Resource Allocation Model Over
Space). This new model has not only a similar mathematical
basis but also a substantially enhanced range of potential
applications. The limitations of the parent models are first
reviewed before the new model is developed and tested in detail.

Related publications in the Health Care Systems Task are
listed at the end of the paper.

Andrei Rogers
Chairman

Human Settlements
and Services Area
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ABSTRACT

This paper combines the main mathematical features and
underlying theory of two IIASA health care resource allocation
models, DRAM (Disaggregated resource allocation model) and
RAMOS (Resource allocation model over space), to produce a more
general model with an enhanced range of possible applications.
Although these models were developed independently, and for
entirely separate reasons, the fact that the amalgamation
can be achieved so simply implies an encouraging consistency
in their respective formulations. The paper starts with a
short critique of the current limitations of both models, in
particular in those applications in which serious errors may
arise. For each limitation described a remedy is proposed be-
fore the new model, DRAMOS, is developed in detail. It is
shown in what way the new model departs from the parent models,
how it can be calibrated to glve it operational potential, and
finally, how it may be applied in practice. For the latter,
three elementary planning scenarios are developed to illustrate
the potential of the model when it is applied in a region,London,
that is known to have highly complex planning problems. The
paper concludes with some proposals for further development.
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DRAMOS: A MULTI-CATEGORY SPATIAL RESOURCE ALLOCATION
MODEL FOR HEALTH SERVICE MANAGEMENT AND PLANNING

1. INTRODUCTION

The extent of the contribution of health care services to
the health and well-being of the human population is not known
with certainty, but it is certain that we would be much worse
off without it. Our lack of knowledge concerning the impact
of such services is nevertheless a cause for concern. For a
variety of reasons, the amounts of resources allocated to
health care provision is increasing yearly in most countries
(WHO, 1978 p.18). Almost nothing is known, however, regarding
the changes, if any, these increases are having on the health
stétus of the population. Indeed, it is not even clear how
the health status of people should be measured in relation to

the resources spent.

In spite of our partial ignorance and the imperfections
in our judgements, decisions still have to be taken by the
principal providers of health care - at the treatment level
by doctors, nurses, and others; at the administrative level
by managers and planners; and at the government level by poli-
ticians. 1In carrying out their duties, the variety of questions

posed by each of these groups collectively affect the type and



operational characteristics of the resultant health care system
(HCS). Many of these questions turn out to be allocative in
kind: that is they address the problem of who gets what, where
and how much of it they receive. For doctors and nurses the
answers to such questions are often subjective or implicit,
having been guided mainly by a mixture of medical judgement,
scientific knowledge, and ethical considerations. At the
administrative level, however, there is a better defined set
of decision-making criteria. In a rationally organized sys-
tem this set normally takes into account the size and charac-
teristics of the population served (age, sex, and socio-economic
characteristics), the mix and availability of resources (types
and sizes of hospitals, clinics, emergency facilities, beds,
and other medical equipment), the quality and availability of
manpower (doctors, nurses, and auxiliaries) and, of course,
the sources of income (government finance, insurance, chari-
table donations, and personal payments). At the government
level the problem of resource allocation may be addressed
directly or indirectly. An example of a direct allocation
would be a proposal to transfer resources from education to
health care. An indirect example would be the institutional
framework, which fixes through legislation the operational
parameters of the health care system, but does not control
either the detailed allocations of individual agents or a

large proportion of the revenue.

1.1. Models of Health Care Resource Allocation

At all these levels in the HCS it seems desirable to
formulate criteria of resource allocation that in some sense
are judged rational (e.g. RAWP, 1974), to evolve methods that
can anticipate the effects of distributional change (as, say,
in the demand characteristics of the population or the resource
mix over time and space), and generally to develop data-based
models that provide decision makers with high quality informa-

tion that will enable a more efficient use of scarce resources



(Feldstein, 1967). It is in the allocation aspects of health
service management and planning at the administrative level
described above that most advances have been made in recent
years, and to which the model presented in this paper is

addressed.

1.2. Allocation Modeling at IIASA

The two main groups of resource allocation models being
developed at IIASA are DRAM (Disaggregated resource allocation
model) and RAMOS (Resource allocation model over space). The
first of these, DRAM, is a set of behavioral models that simu-
lates what happens in the HCS when resource levels change
to the number of patients admitted to a hospital or related
institution in each treatment category (diagnosis, specialty
group), to the gquality of care the patients receive (amounts
of each resource consumed), and to the modes of care in which
they are treated (out-patient, in-patient, home care, etc.).
The theoretical basis and the model have been formulated and
discussed in Gibbs (1978) and developed further in Hughes and
Wierzbicki (1980). DRAM assumes two things: firstly, that
there are not enough resources to satisfy all the demands made
on the HCS; and secondly, that the HCS behaves as if it were
maximising an aggregate utility function whose parameters are

consistent with past allocative behavior or some other criteria.

RAMOS, by contrast, is based on a type of gravity model
(Wilson, 1974) that explores what happens in a region to ser-
vice levels (numbers of patients treated) as a result of one
or more of the following: hospital building programs, treat-
ment trends in in-patient care, population changes, or trans-
port developments affecting the accessibility of the population
to health care supply. RAMOS takes as inputs an index of the
projected potential demand in each area of the region, a 'test'
configuration of health care facilities aggregated into treat-
ment districts, and data on patient accessibility. It then

gives as outputs the anticipated hospitalization rates by area



of residence as well as further information that is of potential
value to the decision maker. The basis for the model shows a
similarity with DRAM in that it is behavioral and it usually
assumes that there are insufficient resources in the HCS to

meet all the demands placed upon it. Additional details of
RAMOS and its range of possible applications in a planning
context are contained in Mayhew and Taket (1980) and are

developed further in Mayhew (1980).

1.3. Scope of the Paper

As with all models neither DRAM nor RAMOS can answer all
the questions decision makers may want to pose. There is the
danger, too, that they may be applied in situations for which,
strictly speaking, they were not designed. The purpose of
this paper is to present a short critique outlining the limi-
tations of the two models. It will be argued that these weak-
nesses may be overcome by combining the basic features and
assumptions of both to produce a hybrid model that, it is
hoped, will enhance their range of application and appeal to
a larger number of potential users. This hybrid model is
called DRAMOS (gisaggregated resource allocation model over
space). It can be regarded either as DRAM with space introduced
or as RAMOS with different patient categories and standards of
treatment incorporated. The behavioral bases of the former
models are, therefore, unchanged by this marriage of ideas.

In addition, the previous scopes of the models are retained,

while the outputs are potentially more detailed.

Following a short critique of DRAM and RAMOS, the new
model is developed in detail and preliminary tests are carried
out on data from London in south east England. It is shown
how to calibrate the model for this example, by giving values
to the main parameters, and how it performs when applied to
three hypothetical planning scenarios for this particular
region. The results are preliminary in that experiments

must yet be carried out to see how the model performs when it



is stretched for particular parameter sets. Also, the marriage
of the models is not fully accomplished in this paper. The
full integration must be postponed until more data are avail-
able on the different resources used in each mode of care.
Nevertheless, these extensions would seem possible on the basis

of previous theoretical research (Hughes and Wierzbicki, 1980).

2. DRAM, RAMOS: A SHORT CRITIQUE

Critiques of models tend to address one of two things:
either the basic assumptions and theoretical underpinnings or the
relevance and accuracy of the results. For current purposes,
attention focuses here only on the latter as each model is

taken in turn.

2.1. DRAM

For DRAM there are essentially four types of limitation
that stem directly from the exclusion of space. These con-
strain its applicability and, in circumstances to be described,
may influence the validity of the predictions. These are now
discussed below, and specific proposals that correct for them

are made.

2.1.1. Aggregate versus disaggregate utility

DRAM assumes an aggregate utility function to describe
the allocative behavior of agents in the HCS in a region
or country. Sub-regions in this system make resource allo-
cations that are hypothesized as being consistent with this
function; Indeed, data on these allocations are used to esti-
mate the parameters of the model so that it can be used in a

predictive way (Hughes, 1978; Aspden, 1980a,b).



The difficulty with this reasoning is that many regions
are really collections of heterogeneous sub-regions with
different sets of allocative priorities and hence utilities.
Furthermore, the extent of the heterogeneity increases with
a decreasing size of sub-region. It seems wrong to compare,
for example, the allocative behavior of a highly prestigious
teaching hospital in health district A with that of a small
community hospital in health district B. The roles in the
HCS fulfilled by each are substantially different.

At a more macro level (as in past applications of DRAM),
these differences may even out, so that the assumption of an
aggregate utility function seems more valid. The difficulty
with this formulation, however, is that decision makers are
often more interested in what happens at the local scale -
at, say, the health district level described above. 1In this
case the use of an aggregate utility function is flawed. The
solution offered here to this problem is to argue that, while
all places of treatment have the same utility function, the
parameter set and hence their allocative priorities are
different. The first modification introduced, therefore,
is to say that <f there are J treatment districts then there
are also J different sets of utilities, each district striving

to maximize its own utility.

2.1.2. Ideal levels

Essential in the model for each patient category and
resource type are a set of Zdeal admission levels (measured
in numbers treated per head of population) and standards
(resources supplied per patient). Necessarily, because of
the model's assumptions, the satisfied demands - the actual
levels and standards achieved - fall short of these ideals
since there are insufficient resources in the HCS to go round.
At issue here are not the concepts of ideal levels, standards
or demand insatiability, but the way in which one set of these

parameters, the ideal levels, are introduced in the model.



Although several methods have been proposed (Gibbs, 1978},
it has been more common practice to date to infer the ideal
levels endogenously from past resource allocations using a compu-
ter algorithm (Aspden,1980a,b). The problem with this approach
is that past allocations in a region are partially a response
to the demand potential, which in turn is a function of the
age, sex, and morbidity structure of the population at a parti-
cular time. If potential demand is changing rapidly in time
and space - as is the case, say, in large urban regions - then
the ideal levels, and hence predictive capabilities of the model,
will be seriously impaired unless some allowance is made (Pauly
1981, p.4). The second modification we make to DRAM is designed
to avoid this problem: it is to Znelude specific information on
the population structure, in particular the potential demand for

medical care in the region at risk.

2.1.3. The measurement of reference populations

Inputs and outputs to the model are estimates and pre-
dictions of the ideal admission levels and the numbers treated
in each category of care per head of population. The problem
here is what is meant by the measure "population". 1Is it the
administered population or the catchment population (i.e. the
population in places of residence from which patients are
actually attracted)? 1In a densely populated urban region,
for example, patient cross-flows between administered health
districts are frequently observed (Mayhew and Taket, 1980).
Aspden (1980a, p.6)recognized this problem noting that patient
categories should be chosen that are locally self-sufficient.
This excluded for consideration many important regional special-
ties and, in this application, limited the scope of the model.
When catchment populations are chosen as a basis, the results
may still be in error because these populations themselves
are products of a particular resource configuration (Mayhew
1980, p.38). The third modification introduced here, there-
fore, is to base the reference populations on catchment popu-

lations corrected for changes in the geographical pattern of



resource allocation and population.

2.1.4. The measurement of accessibility

Currently, the accessibility costs for patients to health
care supply are not a variable in DRAM. These costs, however,
can sharply influence the uptake in services in a region.

This is one reason why there can be large variations in the
numbers of patients generated in different areas, despite
similarities in potential demand (Mayhew and Taket, 1980).

The exclusion of accessibility costs also influences the deter-
mination of the ideal admission levels. The perception of
what the admissions should be in a district’'s HCS are higher
in the immediate locality of that HCS than in neighboring dis-
tricts where demands are satisfied by adjoining facilities.
The fourth modification made to the model, therefore, is to
say that the number of ideal admissions from a place of resi-
dence i to a place of treatment j are positively related to
the stze of the patiént demand potential in © but are negatively

related to the accessibility costs of getting from i to .

2.2. RAMOS

In the second model, RAMOS, there are essentially two

features that potentially benefit from the merger with DRAM.

2.2.1. Interactions between patient categories

In RAMOS specialty groups are modeled separately. The
choice of parameters is determined by the patterns of patient
flow existing in a region between places of residence and
places of treatment. This separation of specialty groups
or patient categories into independently modeled streams,
however, may be too rigid for the levels of detail required

in some planning applications. For example the HCS can



transfer resources from one specialty group to another depend-
ing on the type of resource and the possibilities for substi-
tution. The first modification made to RAMOS, therefore, is

to allow for interaction between patient categories and their

demands for resources.

2.2.2. Inclusion of treatment standards

Treatment standards are the average amounts of resources
(e.g., length of stay in hospital) supplied in each patient
category. Currently, these are modeled exogenously by RAMOS
(Mayhew, 1980) using a mixture of information that is based
mostly on time-series analyses but also on expert medical
opinion. There is, however, a case for making treatment
standards endogenous in the model to observe more realis-
tically the balance that is struck in the HCS between treating
fewer patients with more resources per patient or more patients
with less. The second proposed modification in RAMOS is,hence,

to make treatment standards endogenous in the model.

3. DRAMOS: THE MODEL

The model description begins with a definition of the
model subscripts: these characterize the potential demand
for health care by where patients live (places of residence),
where they are treated (health districts), and the patient
categories in which they fall. The first part of the subse-
guent analysis follows very closely the previous theoretical

developments in DRAM.
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3.1. Basic Definitions
i = place of residence (origin zone), i=1,1
j = place of treatment (destination zone), j=1,J
k = patient category (e.g. specialty, diagnosis), k = 1,K

We want DRAMOS to predict the following two variables

Tijk = the number of hospital admissions from origin zone i
treated in zone j in patient category k
ljk = the average length of stay in days in zone j for each

patient category k (i.e. treatment standards)

There are three sets of contraints observed in the model
governing the values of T and 1*. The first is the resources
available in each place of treatment. Suppose there are a total
of Rj bed-days available in the hospitals located in j. The
model finds the values of T and 1 that satisfy the following
identity:

D., 1.. = R, V. (M
E jk T3k J J
Djk in equation (1) is the number of hospital admissions in the
place of treatment in patient cateogry k. D., and Tiﬂ(are re-

jk
lated thus
Dy = g Tk ¥, (2)
There are J identities of the kind shown in equation (1) and

JK in (2); the first set simply states therefore that all the

resources in every place of treatment j are used.

When variables are used without subscripts, it is implicit

that they refer to a matrix or vector with dimensions of

their subscripted counterparts, e.g. {T = Tijk' i=1,1,
j=1,3,
k = T,K}
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The second and third sets of constraints are

0 < 1. < L. (4)

Equations (3) and (4) define the bounds of the model variables
T and 1 in relation to ¢ and L, the ideal admission levels and

treatment standards. More precisely

¢ijk = the ideal number of patients in patient category k
in place i perceived to require treatment in j
ij = the ideal treatment standard measured in length of

hospital stay in patient cateqgory k for each indi-
vidual treated in j

Furthermore, it is hypothesized that

b,

igk = f(wik' C..p W.y) (5)

ij jk

where the terms on the right-hand side of (5) are defined as

follows:

wik — an index of the relative demand potential for

medical care in i for patient category k. It

is normally given by ) P.1 Uik 1 is
1

the population in i in age-sex category 1 and U

, where Pi

1k
is the national rate in terms of hospital admissions.
W.. 1s analogous in sense (and use) to the patient

ik
generating factor (p.g.f.) defined in Mayhew (1980)
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cij — expresses the difficulty of someone in i obtaining
treatment in j. It is an accessibility measure
based usually on travel time, distance or some
other surrogate

wjk — a scaling factor, to be estimated, positively

related to the importance of the treatment

facilities in j in category k

A suitable form of equation (5) is given below.

3.2. Model Solution

The utility function that the various agents in the HCS

seek to maximize in each place of treatment is taken to be

U.(T,1) =j § g(T,..) + ) } T.., h(l..) (6)
b x5 ijk ki ijk jk
where
_ %54%C304k Toap | 3K
% 55k
-Y.
L. 1. jk
h(l'k) - _Jk 1 - _Jk (8)

and where

djk'ij are strictly positive constants dependent on
both the place of treatment and the patient
category

Cj is the marginal cost of a bed-day in each place
of treatment



-13-

In these equations, o is a parameter measuring the relative
importance of treating the ideal number of individuals ¢,
while Yy is a parameter measuring the relative importance of
achieving the ideal length of stay L. The utility function
in (6) depicts the behavior of the HCS in which the agents
are striving to attain the ideal levels of service (¢) and
standards of care (L), but where the desire to increase the
actual levels (T,l) decreases according to the parameters o
and y. Exactly as in DRAM, the utilities in each place of
treatment for treating more patients and for treating each
patient with more resources are considered to be monotonically

increasing, and additive across patient categories.

The costs of treatment, Cj’ can also be introduced, so
that the marginal increases in U when ideal levels are achieved
(T = ¢, 1 = L) equal the marginal resource costs. For the
empirical example given later, however, we assume that Cj is
everywhere the same, and so it is dropped from the remaining
analysis. Although it is not discussed here, the utility
function may also be given a strong economic interpretation
(Gibbs, 1978); this helps reduce any potential unease concerning

this particular functional form for the model.

The maximization problem solved below is now almost the
same as that considered in earlier versions of DRAM. It is to
maximize the utility function on (6) subject to the resource
constraint in equation (1). Attaching the Lagrange multiplier,
Aj’ in the usual way, we obtain an expression for the Lagrangian

in j, Hj, which is

H.(T,1l,») = U.(T,1) + A.(R.-)D..1. (9
j 3 JJE]ka) :
where X is a vector of Lagrange multipliers {Aj,j =1,J}. 1In
order to find the values of T and 1 that maximize Hj, it is
necessary to solve the J{K(I + 1)+1} equations
JdH.
=90 ¥. . 10
o ik (10)

ijk
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321_ (11)
=0 ¥, .
ik k3

| <@
> o
il
o
<«
J

(12)

From egquations (6), (9) and (11) we have

A. = h'(1. (13)
] (133)
where h' is the derivative of h. By rearranging terms, we can

obtain from equation (8)

1

T (Y ¥ 1)
= L., AL X (14)
ik = Byx Ay 0D

From equations (6), (9), and (10), we arrive at

g' (Ty4p) = Ayl = hlly) (15)

and from equations (7) and (8), it is seen on substitution in

(15) that
1

T(aL +1)
_ jk
ik = %14k M3k (16)
where

ik

T+
1 (ij ) ,
M = 7 | (Byrt; - 1 (17)

jk
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Substitution of (14) and (15) in the constraint equation gives

an expression for xj. This must be solved for A, in the case

) = . (18
f(AJ) 0 vj )

This expression is

1 1
(a.k+1) (ij+1)

= - . L. . J 1
f(Aj) Rj+ ¢leij(qu) “‘j) (19)

rZ
k i

Because it is impossible to make A.

the subject of this equation,
AL
J

must be determined by a numerical technique such as the
Newton-Raphson method. 1In this method,

Aj is found by the rule.

an improved value of

MNmen) T Mm) T Egkg(n)) (20)
] ] j (n)

where n is the iteration number axif'(kj) is the derivative of

(19). In equation (20), solutions are being sought in the

range

since only these will satisfy

0 <T.. < ¢

ijk ijk
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Within this specified range, it can be shown (for example,
Hughes, 1978), that function (19), and its first derivative,

are analytic and that it has only one real solution. For a large
kj it means that, ceteris paribus, the available resources in j are

further from satisfying the ideal levels than if Aj were small.

3.3. DRAM, RAMOS: The Linkage

Consider the case when there is only one patient category

(i.e. K = 1). Dropping the subscript k from equation (1), we
find

R, =) T,. L. (21)
i

Substituting from (16) and rearranging terms, we get

1

oL+ 1) R.
(n,) 3 = —d (22)
’ 1y 1455
i
from which it is seen
R. ¢i.
i = _J 13 (23)
1T ey
J3 J
Noting that. by definition
B
1. ]
J

where Dj is the number of cases treated annually in j, and
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letting

¢.. = w. W, e - (25)

where the right-hand side combines mj, the scaling factor,
potential demand, and B, a gravity parameter measuring the
discounting effects of accessibility, we find, on substitution
in (23),

T.. = B. D. W, e (26)
J 3 1

an attraction constrained gravity model (Wilson, 1974} that

is analogous to RAMOS, where

-Bc. . -1
B, = J W, e 1) , (27)
i

which is a balancing factor that ensures ) Tij = Dj'
i

Equations (21) to (26) link RAMOS and DRAM for one patient
category. For K categories, there are K interlinked gravity
models. From (1)

(28)
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where m is a particular category. Repeating steps (22) and
(23), we obtain the same type of gravity model, but for a

particular patient category m.

(Ri~ } JT...1..)
ijm 1 Z‘b
jm >71jm
i
R. ¢..
= _Jmijm (30)
ljm§¢ijm
“BnCij
=B, D. W. e (31)

In (30), ij are the resources in bed-days allocated to a
particular category, m(=k). They in turn are dependent on
the resources available to the other k#¥m patient categories

in the gravity model through the mechanism
: : T,., 1. ‘ 32
jm j . k;m g ijk Tjk (32)

Except, however, in the special case when K=1, it is necessary

to base calculations of T..
i1jk

variable occurs both on the left and right side of equation (29).

on equation (16) above, as this
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4. A PARAMETER ESTIMATION PROCEDURE

A set of equations has been derived linking the numbers
of patients admitted from each place of residence i to each
place of treatment j and in different patient categories k to
the actual resources received (measured by length of hospital
stay in j) and to the total resources available in j (total
bed-days). These equations provide a powerful tool for simu-
lating the behavior of the HCS when potential demand and re-

source availability are changing in time and space.

To give the model practical meaning and operational poten-
tial, however, values must be given to the variables and model
parameters. Fortunately, the problems of estimating these
values have already been mostly solved, but in separate con-
texts and using different methods during the development phases
of DRAM and RAMOS. The main difficulty is to link the proce-
dures in a logical sequence. The model parameters for which
values are required are w (not ¢), L, a, B, and y. The exo-
genous variables for which data are required comprise ﬁj (re-
sources), c

(accessibility costs), and Wi (demand potentials).

ij k
In addition, the parameter estimation process requires that
observations be available on Tijk (the observed matrix counter-

and I.. (lengths of stay)m

part of Tijk)’ 5k

4.1. Estimation of the discount parameter, Bk

It is logical to start with the estimation of Bk’ the spa-
tial discount parameter, which allocates patients to different
destinations. In fact, since Bk is outside the control of the
HCS, mainly reflecting the characteristics of the regional trans-
port system that connects patients with their places of treatment,
it can be estimated independently of the other parameters using
one of the methods detailed in Mayhew and Taket (1980) or else-
where (e.g., Hyman, 1969). These methods — usually based

TWhere a bar appears over a variable, it indicates that actual

observations are being discussed.
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on maximum likelihood or a type of regression analysis - try
to find a value of Bk such that the model most accurately re-
creates an origin-destination matrix of observed patient flows
{Tijk}' Since these methods are not relevant to what follows,
their application has been assumed, and for the empirical
example presented later a trial value of Bk is used that was

first derived in the above reference.

4.2. Other Estimations

For estimating the remaining parameters, there are several
choices depending on the amount of information available to the
user. In some instances, the estimates may be decided on the
basis of expert medical opinion and other factors; in others,
they may reflect previous patterns of allocative behavior with-
in the same region. In the present application, the second
possibility is considered; that is, no a,pr7ori knowledge of
the parameters is assumed. The method that is now described
as an example follows very closely the one developed by Gibbs
(1978, case 2). The first step in this method is to carry out
a series of longitudinal regressions in each place of treatment
j of the following form, based on past observations on patient

admissions and lengths of stay in the region of interest

log 1jkt = a” + bjklog RJt + u]t (33)
log D, = aP + 8P, log R., + z. (34)
jkt jk jt jt
where ujt and zjt are stochastic error terms in time t.
21 ~D - — —
a~ and a are constants, and ljkt’ Djkt and Rjt are actual
observations. We are interested in Bl.k and B?k' the slope

coefficients or elasticities of the lengths of stay and the
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hospital admissions in each patient category. As Gibbs (1978)
shows, these coefficients can be related to the elasticity

parameters ajk and ij, as follows:

For ij
V.
Yik = g%— -1 (35)
jk
-R.
where V. = — 1 (36)
ALET(XL)
J J
and £'()\) is the derivative of (19);
for ajk
V. .
= J Y]k -1
Jk T
Y. (37)
~D Jk+1
bIi\yv., . +1-X.
i Vik
Next, it is necessary to find expressions for ij, the ideal
lengths of stay, and wjk’ the scaling factor in the ideal
levels, ¢ijk'
From (14), rearranging terms
_1
(y.,.+1)
- k
L., = 1., x, 3 38
jk Jk 73 (38)

and from (16), and (25)

1

(ajk+1)

%19k = Tigx ik (39)
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whence

1

T. . (a.,+1)
Wiy = ijk () 3" (40)
3 8. c.. 3
Wike k7ij

Examining the right-hand side of (40), we can substitute Tijk

with (31) and obtain

1
_ (ajk+1)

an equation that is no longer dependent on i and that uses the
gravity model variables Bjk and B}k directly. Here Bjk' the
balancing factor, has been derived as an output from the pro-

cedure in section 4.1. above.

4.3. Restriction on Empirical Elasticities

A restriction on the input coefficients in these steps
concerns the values of b%k and b?k’ the empirically determined

elasticities. Suppose that estimates of these coefficients
have been obtained in the manner described in section 4.2. The

derivatives of the expected values of ljk and Djk with respect

to Rj are given by

~ Al A
dl. bo. 1.
Jk - _Jk7jk : (42)
dR. R.
J J
and
dp 52 b
__Jk o _Jk7jk (43)
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From the constraint equation in (1), we know

= R. (1)

Differentiating this with respect to Rj’ we obtain

al,, an.,
IPsk ave * Lk a—) ! (44)
k J J

Substituting (42) and (43), the empirical estimates of the

derivatives, the condition arises that

~1 “D B
E <bjk + bjk> = 1 (45)

This states that the empirical elasticities in every j summed
over k equal 1.0. 1In the event that this fails to occur (because
of statistical reasons in the regression analysis, or through
errors in the data), certain consistency problems may arise

in subsequent procedures used by the model. A simple correction

factor to remedy for this is therefore given by

- . J
p. - ~ ey (Ll6)
j = 1 D
E Djkljk(bjk+ bjk)

This factor, pj, is used to scale the empirical elasticities
on input into the calibration procedure and ensures that the

condition in (45) holds true.
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4.4, Additional Considerations

From equations (35) to (41), expressions have been de-
rived for each of the parameters in terms of the empirical
elasticities, g%k and g?k' Unfortunately, this is an equation
system for which in every j there are three more unknowns.
Vj’ Aj f’(kj), than there are available equations ( = 4K, the
number of patient categories); thus, there are an infinite
number of solutions and, hence, possible parameter sets.
Nevertheless, in applying this method of parameter estimation
the experience of Gibbs (1978) has been borne out. That is,
for a reasonably wide range of arbitrary initial values of
Vj and kj(G and X), the model outputs, T and 1, are not
affected to any important degree. Some additional comments
on this step, including suitable starting values, for these

constants are given in section 5.7 below.

4.5, Summary of Main Steps

The whole parameter estimation process for the model can
now be summarized in the following five steps:

1. .
Estimate Bk, Bjk,and Tijk

strained gravity model with input data on T
and Eij as in Mayhew and Taket (1980)

from an attraction con-

15k’ Wik’

2. Estimate using log-linear regression, with obser-

vat?onsAon ljkt'Agjkt and Rjt’ the empirical elasti-
cities b jk and bjk
3. Assume initial values for Vj(=§)and Aj (=i).

4. Determ}ne~the parameter vaiues ijL ajk’ ij, and wjk

j V, A, , W,
using ', A Bk Wlk, BJk DJk and clj in the sequence
shown in section 4.2



5.

-25-

With these parameter values predict ljk and Tijk
solving f(A.) = 0 for different combinations of

potential demand, Wik and resources, Rj

After step 5 a variety of additional outputs can be calculated

that are of value in condensing the results and in interpreting

the outputs. They include

b)

c)

Hospitalization rates by place of residence (and patient

category if desired)

/P.) x 10 (47)

where P is the population of i and units are cases

per thousand resident population

Catchment populations for each j (see also Mayhew and
Taket 1980, p.22)

Cp, = ) E,. P, (48)
j § i) i
where
.. = )T.. T.. (49)
ij E ljk/ é § ijk

3
50
Tijk/cpj) x 10 (30)

where T..(=§:Djk)are the number of cases admitted

k i kY k
to j annually and units are in cases per thousand catch-

ment population
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5. MODEL APPLICATION

Preliminary tests using the above model have been carried
out on in-patient hospital data from the London region in the
United Kingdom using a purpose-written set of computer programs.
These tests are presented in the form of three planning scenarios
that have been designed to test the response of the HCS to re-

gional variations in resource availability and demand potential.

5.1. The London Problem

London forms a particularly interesting case-study for
the application of this model for three reasons: Firstly,
there are a large number of complicated cross flows between
districts in the city that would create problems in a conven-
tional application of DRAM. These are caused partly by an over-
concentration of hospitals in the city center, and partly by
the ready availability of transport services that facilitate
travel between different areas (Mayhew,1979). Secondly, because
of a relatively rapid changing demographic structure, London
(and many other cities like it) undergo frequent shifts in
their potential demand for health care services, thereby
making it difficult to keep track of the relative level of
resources needed for each part of the city. Thirdly, the
London hospital system is a national and international center
for medical training and research with many long-term obli-
gations in these activities (LHPC, 1979) that also have to be
taken into account.

The three chosen scenarios, which have been kept purposely

simple for illustrative reasons, are as follows:
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1. A 10% reduction in available bed-days (Rj) in each
place of treatment

2. An increase of 10% in available bed-days in each place
of treatment

3. An increase of 10% in bed-days in each place of
treatment, 10% loss in demand potential in central
areas of residence, and a 10% increase in peripheral

areas

5.2. The Regional Dimensions

' We require the model to tell us what the consequences will
be of these changes on the admissions to hospitals and the

treatment standards in all parts of the city.

For these scenarios, the same set of origins and desti-
nations is used as that in Mayhew (1980). This set is shown
in the map in Figure 1; a key to the numbering system that
appears is provided in Table 1. The zones depicted corresponds
to the region covered by the Greater London Council (GLC), an
area containing approximately seven million residents where
nearly one million acute in-patient hospital cases were treated
in 1977 (the year for which the data-set applies). In all,
there are 33 origin zones and 36 destination zones, plus one

external zone to "close" the system.

There are two limitations in this data-set that have
prevented a full investigation of the model's potential, and
these must be borne in mind in the interpretation of the re-
sults. They are the absence of detailed information on dif-
ferent patient categories and the unavailability of estimates
for the empirical elasticities at each location. It is hoped
to remedy these deficiencies at an early date, as soon as the
data become available. Instead, a one-category (K=1) model
(based on an aggregation of 23 acute patient specialties) is
developed using an assumed set of empirical elasticities. For
this reason the k subscript is no longer required and is thus



B) Destination zones (places of treatment)
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Table 1. Key to Figure 1.

Origin Destination

1 Barnet 24 Bromley 1 Barnet 24 West Roding
2 Brent 25 Lambeth 2 Edgware 25 Bexley

3 BEHarrow 26 Lewisham 3 Brent 26 Greenwich
4 Ealing 27 Southwark 4 Harrow 27 Bromley

5 Hammersmith 28 Croydon 5 Hounslow 28 st.Thomast
6 Hounslow 29 Kingston 6 South Hammersmith 29 Kings

7 Hillingdon 30 Richmond 7 North Hammersmith 30 Guys

B Kens & Chelsea 31 Merton B8 Ealing 31 Lewisham

9 Westminster 32 sutton 9 Hillingdon 32 Croydon

10 Barking 33 Wandsworth 10 KCW Northwest* 33 Kingston

11 Havering 34 oOther 11 KCW Northeast 34 Roehampton
12 Camden 12 KCw South 35 Wandsworth/East Merton
13 Islington 13 3arking 36 Sutton

14 City 14 Havering 37 oOther

15 Hackney 15 North Camden

16 Newham 16 South Camden

17 Tower Hamlets 17 Islington

18 Enfield 18 City

19 Haringey 19 Newham

20 Redgridge 20 Tower Hamlets

21 Waltham Forest 21 Enfield

22 Bexley 22 Haringey

23 Greenwich 23 East Roding
*

K/C/W = Kensington, Chelsea, and Westminster

Destinations 28, 29, 30 are named after teaching hospitals within the districts.
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dropped form the remaining analysis. Clearly, a one-category
model is the simplest of all cases, and a potential user may

prefer to use other, simpler methods of dealing with it. 1Its
presentation here is simply for illustrative purposes - to indi-

cate the potential power of this approach.

A partial justification for the relative magnitudes of the
values used for the elasticity set (S%, and 8?) is provided in
two scattergrams, based on cross-sectional data, for the same
places of treatment in 1977 (Figures 2 and 3). They show plots
of length of stay and patient admissions on bed-days in each
location. It is plain from these scatters that the average
resources received (lengths of stay) are substantially less
elastic than the patient admissions. This actual behavior
has thus influenced (but not determined) the choice of these
parameters. In addition, however, some further variability
has been allowed for, since each location is known to exhibit

a slightly different behavior with respect to these variables.

5.3. Model cCalibration

The model functions in two modes: a calibration mode in
which values are given the parameters, and a predictive mode
in which the consequences of resource reallocations are tested.
Table 2 shows the results obtained during a calibration run
for the particular set of observations on resources (ﬁj) and
lengths of stay (Tj). The large variation in parameter values
shown is itself a justification for making the hypothesized
utility function [equation (6)] dependent on location, pro-
viding the assumed elasticities are a fair representation

of (actual) behavior.

One of the most interesting features in these results
is the wide variation in the value of mj. This parameter
acts as a scale on the patient generating factor and accessi-
bility (Wi and cij) in the calculation of ¢ij’ the ideal

number of admissions from i. When wj is large it can be
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Figure 2. A plot of average length of hospital stay on
available bed-days by place of treatment in Greater
London area, 1977. Shows length of stay is generally

inelastic to bed supply.
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Figure 3. A plot of hospital admissions on available
bed-days by place of treatment in Greater London area,
1977. As is seen hospital admissions are very elastic
to bed supply.
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Table 2. Resource availability, elast

parameter estimates by place

icity, and
of treatment.

°p 1

Name R, 1, L. w, a, . b, b,

zZone am 3 3 5 5 j YJ i 3
1 barnet+ 136547. 10.30 12.10 2.78 2.19 12.64 0.88 0.22
2 edgware 264024, 12.90 16.92 2.92 3.25 7.11 0.63 0.37
3 brent 194494. 10.20 12.99 1.56 3.05 8.09 0.67 0.33
4 harrow 189703. 8.90 8.97 2.62 2.02 299.00 9.99 0.01
S hounslow 237147. 10.30 13.81 1.91 3.42 6.50 90.60 0.40
6 s hamm 248602. 10.60 14.42 3.31 3.54 6.14 0.58 0.42
7 n hamm 174461 . 11.30 14.39 3.18 3.05 8.09 0.67 0.33
8 ealing 65056. 9.10 10.08 0.51 2.34 20.43 0.86 0.14
9 hilligdn 363752. 10.50 10.65 15.31 2.04 149.00 0.98 0.92
10 kew nw 330120. 10.00 14.01 6.95 3.82 5.52 0.54 0.46
11 kew ne 290902. 8.70 12.10 24.28 3.75 5.67 0.55 0.45
12 kew s 482381 . 10.59 12.61 28.13 2.71 11.00 a.75 0.25
13 barking 248117. 10.10 19.63 S5.13 2.16 41.86 0.93 90.97
14 havering 192831. 17.00 19.285 11.64 2.43 16.65 0.83 0.17
1S n camden 243479. 11.10 14.03 4.35 3.00 8.37 0.68 0.32
16 s camden 450216. 9.70 14.30 21.69 4.41 4.66 0.47 0.53
17 islingtn 346269. 11.00 15.98 4.06 4.23 4.88 0.49 .51
18 city + 477333. 11.90 15.26 8.81 3.10 7.82 0.66 0.34
19 newham 250925. 13.59 14.63 1.56 2.26 26.27 0.89 0.11
20 t hamlet 467492, 11.90 19.44 5.79 6.36 3.48 0.33 0.67
21 enfield 185636. 11.00 11.84 2.29 2.24 29.00 0.90 9.10
22 haringey 29853S. 11.90 14.19 3.10 2.67 11.50 0.76 0.24
23 e roding 12731S. 9.60 12.14 2.89 3.00 8.38 0.68 0.32
24 w roding 312638. 10.80 12.97 2.80 2.71 11.00 90.75 90.25
25 bexley 144782. 11.00 18.91 3.09 8.12 3.05 0.26 0.74
26 greenwch 373929. 9.80 14.86 5.81 6.09 4.28 0.38 0.61
27 bromley 282073. 10.70 14.45 6.25 3.48 6.32 9.59 9.41
28 st thoms 282452, 10.80 18.43 16.88 7.81 3.11 90.27 0.73
29 kKings 324341. 9.80 12.48 9.89 3.05 8.09 0.67 0.33
30 guys 323534. 11.20 14.90 22.06 3.36 6.69 0.61 0.39
3] lewisham = 222761. 10.80 13.75 2.10 3.05 8.09 0.67 0.33
32 croydon 195580. 10.060 11.66 1.64 2.56 13.29 90.79 0.21
33 kingston 192666 . 10.60 14.31 3.29 3.48 6.32 0.59 0.41
34 roehamtn 132077. 9.60 10.18 4.66 2.18 36.50 0.92 0.08
35 wands+em 427015. 9.80 9.94 10.11 2.04 149.00 0.98 0.92
36 sutton + 336719. 9.90 14.28 8.19 4,14 5.00 0.50 9.50
37 others 29422450. 9.00 13.46 8.90 4,62 4.45 0.45 0.55

V= 3.0 A=09.0
B =0.367 (derived from "RAMOS: A Resource Allocation Model over

Space", Mayhew and Taket, 1980)
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taken as a sign of the relative importance of the treatment
facilities in j in that they expect to attractuﬁ times more
than their demand potential would suggest. Looking at the
results we see the largest values are concentrated mostly in
treatment districts in central parts of the city where the
large teaching hospitals are located. In effect this means
that these hospitals have a much greater patient attracting
power than would be normally expected from a consideration

of their demand potential alone. 1In contrast, many peripheral
districts have small values of wj, and hence the hospitals
here have only local significance. It must also be stressed
that the magnitudes of the parameters are strongly dependent
on the starting values for 6 and A, but the model outputs are
not. Suitable starting values for G and A are discussed in
a sensitivity analysis below (section 5). First, however,

predictions made under each scenario are discussed in turn.

5.4. Scenario 1

In scenario 1, the availability of resources has been
reduced by 10% in every place of treatment. What happens
to the number of patients admitted to hospitals and the
aﬁerage standards of care received depends on the relative
strength of the elasticity parameters, a and y. Low aj
relative to Y, implies an inelasticity in patient admissions
with respect %o treatment standards and vice versa. As is
seen (Table 3), all locations experience a fall in treatment
standards, but because of the choice of empirical elasticities
the negative impact on admissions has generally been more

significant, bearing out the evidence in Figures 2 and 3.

In more detail, it is noticed, for example, that in
district 4 ( a very low assumed elasticity with respect to
treatment standards) the percentage fall in length of stay in
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Table 3. Scenario 1: A 10% decrease in resource
availability in each place of treatment.
% %

Zone Name lj (a;r lj(b) change Dj (a) Dj (b) change
1 barnet+ 10.3 106.1 -2.09 13257.0 12185.6 -8.08
2 edgware 12.9 12.4 -3.83 20467.0 19153.3 -6.42
3 breat 10.2 9.9 -3.42 19068.0 17768.9 -6.81
4 harrow 8.9 8.9 -9.11 21315.0 19204 .6 -9.90
S5 hounslow 10.3 9.9 -4.14 23024.0 21616.0 -6.12
[ s hamm 10.6 10.1 -4.33 23453.0 22062.5 -5.93
7 n hamm 11.3 10.9 -3.42 15439.0 14387.5 -6.81
8 ealing 9.1 9.0 -1.46 7149.0 6529.4 -8.67
9 hilligdn 10.5 10.5 -0.21 34643.0 31244 .4 -9.81
10 kew nw 10.0 9.5 -4.74 33012.0 31189.1 -5.52
11 kew ne 8.7 8.3 ~4.64 33437.0 31556.3 ~5.62
12 kew s 10.5 190.2 -2.60 45941.0 42451.6 -7.60
13 barking 10.1 10.0 -0.74 24566 .0 22273.6 -9.33
14 havering 17.9 16.7 -1.78 11343.0 10393.3 -8.37
1S n camden 11.1 10.7 -3.32 21935.0 20419.5 -6.91
16 s camden 9.7 9.2 -5.44 46414.0 44176.0 -4.82
17 islingtn 11.0 10.4 ~-5.24 31479.0 29898.4 -5.02
18 city + 11.911.5 -3.52 40112.0 37418.3 -6.72
19 newham 13.5 13.3 -1.15 18587.0 16923.6 -8.95
20 t hamlet 11.9 11.1 -6.82 39285.0 37945.9 -3.41
21 enfield 11.0 10.9 -1.08 16876.0 15348.8 -9.05
22 haringey 11.9 11.6 -2.50 25087.0 23156.1 -7.70
23 e roding 9.6 9.3 ~3.32 13262.0 12345.8 -6.91
24 w roding 10.8 10.5 -2.60 28948 .0 26749.6 -7.59
25 bexley 11.0 10.2 -7.51 13162.0 12808. 1 -2.69
26 greenwch 9.8 9.2 -6.30 38156.0 36648.2 -3.95
27 bromley 10.7 10.2 -4.23 26362.0 24774.9 -6.02
28 st thoms 10.8 10.0 -7.41 26153.0 25421.9 -2.80
29 kings 9.8 9.5 -3.42 33096.0 30842.3 -6.81
30 guys 11.2 10.7 -4.03 28887.0 27091 .4 -6.22
31 lewisham 10.8 10.4 -3.42 20626.0 19221.6 -6.81
32 croydon 10.0 9.8 -2.18 19558.0 17995.3 -7.99
33 kingston 10.6 10.2 -4.24 18176.0 17082.6 -6.02
34 roehamtn 9.6 9.5 -0.84 13758.0 12487.3 -9.24
35 wands+em 9.8 9.8 -0.21 43573.0 39296.9 -9.81
36 sutton + 9.9 9.4 -5.14 34012.0 32270.4 -5.12
37 others 9.0 8.5 -5.64 3269161.0 3118044.0 -4.62

(a) current
(b) predicted
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relatively small (-0.11%) as compared with district 20 (allo-
cated a high elasticity), where the change is more substantial
(-6.82%). If we compare the numbers of cases admitted to these
two districts, however, the picture is reversed. The admissions
to district 4 are down by 9.90%, while those in district 20

are only 3.41% lower. These examples show how the model is
working. With more data on different patient categories, it

is straight-forward to visualize the potential degree of

detail available using this approach. We now compare these

results with those obtained in scenario 2.

5.5. Scenario 2

In scenario 2, the resources in each place of treatment
have been increased by 10% (results in Table 4). As would
be expected the results show completely the opposite pattern
- an all-round improvement in treatment standards and the
number of patients treated. Again because of the choice in
empirical elasticities, the proportionate increases in the
in the latter are generally higher but they still vary between
treatment districts.

For comparative purposes, it is noted that in districts
4 and 20, the actual increases are 0.09% and 6.58% in terms
of length of stay and 9.90% and 3.20% for patient admissions.
This is.hence an almost exact reversal of the results described

in scenario 1 above.
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Table 4. Scenario 2: A 10% increase in resource
availability in each place of treatment.
% %

e 1. t1 ) D,

Zone  Nam j@&@ “3jb) change DJ (a) j (b) change
! barnet+ 10.3 10.5 1.92 13257.@ 143907.6 7.93
2 edgware 12.9 13.4 3.59 20467.0 21736.0 6.20
3 brent 10.2 10.5 3.19 19068.0 20325.9 6.60
4 harrow 8.9 8.9 0.09 21315.0 23425.2 9.90
S hounslow 10.3 10.7 3.87 23024.0 24381.8 5.90
6 s hamm 1[0.6 11.0 4.08 23453.0 24785.8 5.68
7 n hamm 11.3 11.7 3.19 15439.0 16458 .0 6.60
8 ealing 9.1 9.2 1.35 7149.0 7759.4 8.54
9 hilligdn 10.5 10.5 0.19 34643.0 38034.6 9.79

10 kew nw 10.0 10.4 4.47 33012.0 34758.6 5.29
1l kcw ne 8.7 9.1 4.38 23437.0 35238.8 5.39
12 kew s 10.5 10.8 2.41 45941.0 49346 .5 7.41
13 barking 10.1 10.2 .67 24566 .0 26843.6 9.27
14 havering 17.0 17.3 1.63 11343.0 12276 .9 8.23
1S n camden 11.1 11.4 3.09 21935.0 23405.0 6.70
16 s camden 9.7 10.2 5.17 46414.0 48545.0 4.59
17 islingtn 11.0 11.5§ 4.97 31479.0 32987.5 4.79
18 city + 11.9 12.3 3.29 40112.0 42717.5 6.50
19 newham 13.5 13.6 1.05 18587.0 20232.8 8.8S
20 t hamlet 11.9 12.7 6.58 39285.0 40543.8 3.20
21 enfield 11.0 11.1 0.96 16876.0 18387.1 8.95
22 haringey 11.9 12.2 2.32 25087.0 26971.3 7.51
23 e roding 9.6 9.9 3.09 13262.0 14150.8 6.70
24 w roding 10.8 11.1 2.41 28948.0 31094.2 7.41
25 bexley 11.0 11.8 7.29 13162.0 13494.0 2.52
26 greenwch 9.8 10.4 6.03 38156.0 39582.8 3.74
27 bromley 10.7 11.1 3.98 26362.0 27888.6 5.79
28 st thoms 10.8 11.6 7.20 26153.0 26837.3 2.62
29 kings 9.8 10.1 3.19 33096.0 35280.7 6.60
30 guys 11.2 11.6 3.78 28887.0 30618.8 6.00
31 lewisham 10.8 1.1 3.19 20626.0 21987.7 6.60
32 croydon 10.90 10.2 2.03 19558.0 21086.7 7.82
33 kingston 160.6 11.0 3.97 18176.0 19229.6 5.80
34 roehamtn 9.6 9.7 0.76 13758.0 15019.3 9.17
35 wands+em 9.8 9.8 0.19 43573.0 47837.1 9.79
36 sutton + 9.9 10.4 4.87 34012.0 35676.2 4,89
37 others 9.0 9.5 5.37 3269161.0 3412706.5 4,39

+(a) current
(b) predicted
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5.6. Scenario 3

In scenario 3, the added abilities of DRAMOS are most
clearly demonstrated by giving the predicted outcomes of
what happens to service levels when there are simultaneous
changes in resource levels and potential demand. On the
supply side resources have been increased by 10% in every
location; on the demand side, the potential uptake in services
has been reduced by 10% in the inner-city and increased by
10% on the city periphery.

The resultant effects on the treatment standards and
patient admissions are shown in Table 5. Why are these results
substantially different from scenario 2 in which resources

were increased by the same amount? The reason is the changed
pattern of potential demand. 1In inner-city areas, where

potential demand has been reduced 10%, the increases in patient
admissions are small, and in two cases, slightly negative. On the
other hand, the increase in resource levels (+10%), which is con-
trary in trend to the demand potiential, creates relative surplus
of bed-days in these parts of the city, thus enabling higher treat-
ment standards to result (over 10% on two lengths of stay in
zones 20 and 28). In peripheral areas, however, the opposite
predictions are made. The added demand potential induces
proportionately more patient admissions (since more resources

are available), but causes treatment standards to change only
little (since there is a higher demand potential). These results
are precisely the types of predictions that neither DRAM nor
RAMOS can make if they are applied separately to this problem.

Some further contrasts with the prediction given in
scenario 2 are shown in the following two diagrams (Figures
4 and 5),which help to indicate the magnitude of probable
error in admission/hospitalization rates were information
in the model on demand potential excluded. As is seen these
differences could be as high as $8% in each i and j for this
particular scenario, with the over-estimates concentrated in

the inner-city and under-estimates on the periphery.
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Table 5. Scenario 3: Patient admissions and treatment
standards resulting from an increase in
resource availability and a redistribution
of demand potential.

% %
Zone Nam .
© lj (a)+ l;1(13) change Dj (a) Dj (b) change

1 barnet+ 10.3 10.3 0.04 13257.9 14577. 1 9.96
2 edgware 12.9 12.9 0.04 20467.9 22506.8 9.97
3 brent 10.2 10.2 0.16 19068 .0 20941.9 9.83
4 harrow 8.9 8.9 -0.00 21315.0 23447.4 10.00
S hounslow 10.3 10.3 0.01 23024.9 25322.9 9.98
6 s hanm 10.6 11.2 5.71 23453.0 24405.5 4.06
7 n hamm 11.3 11.6 2.32 15439.0 16597.6 7.50
8 ealing S.1 9.1 9.03 7149.0 7862.0 9.97
9 hilligdn 10.5 10.5 0.00 34643.0 38107.1 10.00
10 kcw nw 10.0 10.7 6.66 33012.90 34045.9 3.13
11 kew ne 8.7 9.2 5.85 33437.0 34746.6 3.92
12 kew s 10.5 10.9 4.09 45941.0 48550.4 5.68
13 barking 10.1 10.1 0.03 24566 .0 27014.3 9.97
14 havering 17.0 17.0 0.01 11343.0 12476 .0 9.99
1S n camden 11.1 11.5 3.92 21935.90 23217.5 5.85
16 s camden 9.7 10.4 7.14 46414.0 47651.6 2.67
17 islingtn 11.0 12.0 8.71 31479.0 31852.6 1.19
18 ity + 11.9 12.6 5.88 40112.0 41673.4 3.89
19 newham 13.5 13.8 1.89 18587.0 20066 . 4 7.96
20 t hamlet 11.9 13.3 11.56 39285.06 38755.7 -1.35
2] enfield 11.0 11.0 0.15 16876.0 18535.8 9.84
22 haringey 11.9 12.2 2.58 25087.0 26900.7 7.23
23 e roding 9.6 9.6 0.36 132€2.0 14535.7 9.60
24 w roding 10.8 10.8 0.43 28348.0 31706.7 9.53
25 bexley 11.0 11.0 0.15 13162.9 14456.7 9.84
26 greenwch 9.8 10.0 1.55 38156.0 41330.8 8.32
27 bromley 10.7 10.7 0.42 26362.0 28877.7 9.54
28 st thoms 10.8 12.2 12.85 261353.0 25492.3 -2.53
29 kings 9.8 10.4 5.68 33096.0 34448.4 4.09
30 guys 11.2 11.8 5.59 28887.0 30094 .7 4.18
31 lewisham 10.8 11.4 5.16 20626.0 21575.7 4.60
32 croydon (0.9 10.0 0.92 19558.0 21509.0 9.98
33 kiagston 10.6 10.6 0.14 18176.0 19966.3 9.85
34 roehamtn 9.6 9.7 0.86 13758.0 1500-1.9 9.06
35 wands+em 9.8 9.8 9.26 43573.0 47806. 1 9.72
36 sutton + 9.9 9.9 a.12 34012.0 37369.9 9.87
37 others 9.0 9.5 5.37 3269161.0 3412706.5 4.39

(a) current
(b) predicted
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We may ask the model finally whether the strategy of
increasing the resources by 10% in all locations is a good
one, given the changed configuration in potential demand.
In Figures 6 and 7 two scatter diagrams are shown based
also on the outputs of the model. On the horizontal axes

are the indices of potential demand (Wi) scaled by 6 (where

8 =) D. /] W.); on the vertical axes is satisfied demand
j i
(total patients generated in i, Z Tij)- For a more equitable

resource configuration, these points would be on a straight
line (Mayhew, 1980). As is seen, the simulated effects of

the proposed reallocation (Figure 7) create no improvement

at all (in fact, the correlation coefficient shows a fractional
fall), on this basis, therefore, the unsatisfactory predictions
would probably lead to the rejection of this planned set of
allocations, and the creation of another option probably in-

volving proportionately larger allocations to peripheral areas.

5.7. Sensitivity to V and X

In the model there is some arbitrariness due to the
values of V and i that are assumed at the outset of the
calibration steps. A sequence of combined calibration-
prediction runs, however, showed only very small (< 0.01%)
variation in the outputs when V and X were allowed to vary
over a range from 3.0 to 15.0. This confirms the earlier
finding of Gibbs (1978) using a similar method of calibration.
Since the parameter values are all strictly positive a suit-
able starting value for G is found from an inspection of
equations (35), and (37); namely

V.

- J -

jk

{0
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Figure 6. Plot of patients generated in i (= L T,.) on

the relative demand in i scaled by 6, where j
6 =2 Dj/g wi, for existing resource configuration and
3 i

demand potentials. For an efficient resource configuration
the result should be a straight line 45° to the origin
(Mayhew, 1980). Here the correlation coefficient is 0.832
(instead of 1.0) and the slope, 0.892 (1.0). Conclusion:
Current distribution of resources not very equitable.
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Figure 7. Plot of patients generated in i on the relative
demand in i based on the distribution of demand potentials
and resource configuration presumed in scenario 3. The
correlation coefficient is 0.808, and the slope, 0.786.
Conclusion: The test resource configuration is slightly
poorer than that existing at present.
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6. = ] ] -1 (37)

Ignoring the subscript j on V (the same value can be used
everywhere) the above suggest

§ . > max 3bD., 5L % (51)

For reasons given in Gibbs (1978), a suitable value for A is

approximately given by

c (52)

>
Q
N

Computational experience here has shown this to be a rough though
useful guideline. In solving £(})=0 for a new set of resources/
demands the convergence procedure usually reaches a solution in
an average of about five iterations for each place of treatment

J depending on the accuracy required. A sample set of iterations
(from scenario 1) is shown in Table 6 as an illustration of the
method. The tolerance value € in f(A) = 0%*€, has been set in
this example to 0.005.
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Table 6. Scenario 3: A typical iteration sequence in
destination zones 9 to 11 to solve f(k )=0
for one patient category.

zone destination iter no f (lamda) lamda omega
10 kew nw 1 -.4761¢+05 0.9000e+0]1 0. 1333e+03
10 kew nw 2 0.1696e+05 0.5866e+0] 0.6882¢+02
10 kKew nw 3 0.1165e+04 0.6465e¢+0] 0.8001e¢+02
10 kew nw 4 0.6187¢+90] 0.6513e+0] 0.8092e+02
10 kew nw S -.2558¢-02 0.6513e+0] 0.8093¢+02
10 ke nw 5 -.2558e-02 0.6513e+0]1 0.8093e+02
theta = 0 19229e+02
fdash =-0.24301e+0S
alpha = 0.25510e+01
gamma = 0.40000e+01]
zone destination iter no f(lamda) lamda omega
11 kew ne 1 -.3804¢+05 0.9000e+01 0.5574e+02
11 kew ne 2 0.7991e+04 0.7179e+01 0.4094¢+02
11 kcw ne 3 0.2391e+03 0.7439¢+0] 0,4299¢+02
11 kew ne 4 0.2337e+00 0.7448e+0] 0.4305e+02
11 kcw ne ) -.2468e-02 0.7448e+01 0.4305e+02
11 kew ne S -.2468e-02 0.7448e+0]1 0.4305e+02
theta = 0.79079e+01
fdash =-0.28797e+05
alpha = 0.10410e+01
gamma = 0.23330e+01
zone destination iter no f{lamda? lamda omega
12 kew s l —-.7875e+05 0.9000e+01 O.1390¢+03
12 kew s 2 0.3787e¢+05 0.5079e+01 0.6914e+02
12 kew s 3 0.3921e+04 0.5919e¢+01 0.8338e+02
12 kew s 4 0.4993e+02 0.6027e+01 0.8525e+02
12 kew s S 9.1111e-0] 0.6028e+0]1 0.8527e+02
12 kew s 5 0.1111e-0] 0.6028e+91 0.8527e+02
theta = 0.17291e+02
fdash =-0.35382e+0S
alpha = 0.20420e+01
gamma = 0.90000e+01
KEY
gamma = v,
(J
alpha = . -
P B a,/y;+1 a.+l Yj/Yj+l
theta = 0, = A, b da, +y. + 1.0 - [,
J J J J Yj+1 Jj
(o, +y.+1) /(y.+1) (o, +1) / (v, +1)
omega = Q. = (y.+1)A, J ] J -, ) J
] J ] ]
o, 1/(aj+1) -(aj+2)/(uj+l)
£1(A) = __li_&l _ Q. 0
5 (@ +1) Y5 3 3

destination zone (place of treatment)

.
1
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6. CONCLUSIONS

In this paper two IIASA health care models, DRAM and RAMOS,
have been merged to produce an enhanced resource allocation
model called DRAMOS. This merger was achieved with very little
modification to the theoretical structures of either model,
implying a consistency in their assumptions and formulation.
This is highly encouraging since both models were developed
entirely independently and for completely different reasons.

In the future it is hoped to test the new model on a larger
set of data containing more than one patient category in order

to develop more fully the potential of this approach.

Naturally, this merger has caused a very substantial
increase in data requirements: for example, observations

are generally required on the matrix fTi, }, the observed

patient flows between i and j in categor§kk and this informa-
tion may not be readily available in some health care systems.
On the other hand, this work has shown that it is possible to
take general information on resource availability, treatment
standards, and population characteristics in a region and to
form meaningful predictions concerning service standards at
the local level of health care delivery. This is most im-
portant since it is at this level that the providers and con-
sumers of health care alike generally guage and discuss the
efficacy of the system, and at which models of this type can
be usefully employed to show in a simple way the consequences

of different actions in terms of population and treatment trends.

In the future, there are several interesting avenues of
development for this model. They mainly involve improvements
in the allocative submodels to take account of theoretical
developments by Hughes and Wierzbicki (1980) in the DRAM
component, and similarly, a greater recognition of recent
advances that are relevant on the RAMOS side (Mayhew, 1980;
Walsh and Gibberd, 1980; Leonardi, 1980).
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APPENDIX:

Variable Name

Accessibility costs

Admission rate

Alpha

Balancing factor

Catchment population

Cases treated

Compound variable

Glossary of Main Terms used in DRAMOS

Notation*

Remarks

i3

ajk

jk

ik

ujk

*

Bars over variables in this paper

Expresses the difficulty of someone
in i obtaining treatment in j

Patients admitted in j per head of
catchment population: (ZZ T, /CP.)x10
kJ ijk ]

A parameter measuring the relative
importance of treating the ideal
number of individuals in j, category k

-1
= [Z W, .e Bkcij]
i 1]

Resident population dependent on
treatment facilities in j: L Ei P,
i

J 1

where Eij = }ET'jk/IE

§ T4k

Patient admissions in j.

category k (= E Tijk)

1
= — (B,. +1) A,
ij jk ]

indicate that actual observations are

being discussed; hats indicate regression estimates.
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Variable Name

Constrained utility
function

Empirical constants

Empirical elasticity
w.r.t length of
stay

Empirical elasticity
w.r.t patient
admissions

Gamma

Gravity parameter

Hospitalization rate

Ideal patient flow

Ideal treatment
Standard

Multiplier

Notation

H, (T,1,)\)
J

HR

ijk

jk

-51-

Remarks

The utility function in that agents
in the HCS seek to maximize given
constraints on resource availability.

Constants in the linear regressions:

1 = R + d
log ljkt f(log Rjt) ujt an

— _ - .
log Djkt f(log Rjk) zjt'

where I} D and R are observations in
time t and u and z are stochastic error
terms.

Input into the model to determine
ij. Coefficients in above regression

equation (see empirical constants).

Input into the model to determine

ajk' Coefficients in above regression

equation (see empirical constants).

A parameter measuring the relative
importance of achieving the ideal
length of stay, ij

Behavioral parameter estimated from
actual patient flows (Tijk) and

accessibility costs (E;j) and potential

d (W .
deman (Wik)

The number of patients per head of
population in i admitted to hospital:

_ 3
= (E § Tijk/Pi) x 1o

The ideal number of patients generated
in i, treated in j in category k.

The ideal length of hospital stay in j,
category k.

The Lagrange multiplier in Hj (T,1,A)



Variable Name

Patient category

Patient generating
factor

Place of residence

Place of treatment

Predicted patient

flow

Resource availability

Service/demand
ratio

Scaling factor

Starting constants in
calibration pro-
cedure

Time

Treatment standards

Treatment costs

Utility function

Notation

ik

wjk

Q¢
>

U, (T,1)
]
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Remarks

A clinical specialty, disease cate-
gory or combinations thereof, k=1,K.

An index of relative potential patient
demand in i category k.

Zone i, i = 1, I; an administrative
subset of the same region as i.

Zone j, j = 1, J; a health district
and subset of a region.

Patients generated in i, treated in
j.,in patient category k.

Bed-days available in

j =L ZT... 1, .
I Tk i

The ratio of total cases treated to
total potential demand, I D./I Wi

i i

Scales the demand potential on j dis-
counted by accessibility costs. A
measure of the relative importance
of j used for calculating ¢ijk'

Abjitrary constants used in the para-
meter estimation process.
See "empirical constants".

Length of hospital sta¥ in j, patient
category k, where 1 = ljk}'

The marginal cost of a bed-day in each
place of treatment.

The utility function in j that agents
in the HCS seek to maximize.
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