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We propose a model of evolving protection against systemic risk related to recovery. Using the failure potential in network-agent
dynamics, we present a process-based simulation that provides insights into alternative interventions and their mechanical
uniqueness. ,e fundamental operating principle of this model is that computation allows greater emphasis on optimizing the
recovery within the general regularity of random network dynamics. ,e rules and processes that are used here could be regarded
as useful techniques in systemic risk measurement relative to numerical failure reduction analyses.

1. Introduction

1.1. Background. Various contemporary studies have argued
that systemic risk and abrupt failure events are related to the
highly interconnected systems and networked structures
created by agents [1]. Based on a simple set of properties,
observations derived from several models indicate that the
proportion of protection between nodes in the network can
be described as a probability. ,is is related to how systemic
risk should be coped with rather than simply predicting it
based on the probability of failure (e.g., a failed bank in a
financial system, asymptomatic transmission of a disease,
and cognitive bias in decision-making). ,e risk of propa-
gation is higher than that of independent failure events,
extending to interdependent ones, which we refer to as
cascading failures among system components [2]. Many
scenarios that arise in simulations should be regarded not as
indicating uncertainty or mistakes but rather as the con-
sequences of inappropriate settings and interactions. In
particular, proper protection against systemic risk with
system components can be evolved heuristically through
strategy dynamics (social learning and exploration) as a
potential means of limiting failure. ,e present model ex-
pands this concept to investigate nonlinear randomness
effects due to delayed responses, which may result in

sensitivity to small changes that are difficult to prepare or
manage [3]. To assess the profound implications that this
approach may have for our understanding of dynamic be-
havior, including protection processes, this study investi-
gates the influence of the necessary heuristics through which
a proper response could mediate risk diffusion before a
system completely fails [4], as discussed below.

1.2. Literature Review. By investigating how the complexity
of networked structures underpins real-world systemic
phenomena, various simulation studies have identified
implications for individual robustness, the propagation of
systemic risk, protection flow, and collective behavior across
networks [5]. A distinguishing feature of such phenomena is
that they emerge from the complex interactions among
individual elements in a system or from their associations
with each other [3].,e effect of context-varying mechanical
flux on a system’s risk is highly complex. ,e possibility of
quantifying such a risk needs to be evaluated in consider-
ation of the distortions and patterns of such effects [4]. ,e
investigations involve a variety of information, e.g., social
contacts that are favored as the infection and spreading
route, which in turn can be used to infer the characteristics
of the underlying networks [6]. As demonstrated by the

Hindawi
Complexity
Volume 2021, Article ID 4805404, 23 pages
https://doi.org/10.1155/2021/4805404

mailto:pcw8531@gmail.com
https://orcid.org/0000-0001-8714-5760
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2021/4805404


existence history (e.g., the financial crisis in 2008, the
outbreak of COVID-19 in 2019), a reproduction (i.e., failure,
bias, or virus) varies greatly from individual to individual,
which is generally believed to affect the spreading dynamics
significantly [7]. Whether such individual inhomogeneity
aggravates the outbreak is a challenging question, and the
answer depends on the specific model [8, 9]. In particular,
the connectivity patterns of individuals are key to under-
standing [10] how networks are structured and communi-
cated with each other [11]. Other network properties that
have been investigated include the concept of evolutionary
dynamics, which helps characterize and understand the
architecture of artificial systems in relation to the network
properties [12]. As most tools for laying out networks are
variants of an algorithm, it is difficult to use them to explore
how the conditions of a network affect the network’s dy-
namics [13]. ,e assessment process can be used to make
macroscale observations for input performance, while ap-
proaches for microscale evaluations to simultaneously ob-
tain more detailed insights must be treated within the
structure of the network itself [14]. Several studies have
reported such structures in terms of both microscale (e.g.,
individual incentives and relative gain versus effort) and
macroscale (e.g., institutional competition and central in-
tervention) behavior. For example, evolutionary explana-
tions of systemic risk demonstrate how optimal decision
makers are constrained when creating biased estimates of
their capability and show how individuals alter their strat-
egies in response to perceptions of resource value [15].
Standard evolutionary models in complex environments
show that potentially different biases in decision-making
expose different experimental groups at different transition
probabilities [16]. A recent study found that by employing
strong mitigation (i.e., social distancing and isolation of
confirmed cases as guided by risk diffusion testing) related to
the different response strategies, an outbreak can be sup-
pressed to levels below the normal critical care capacity [10].
Although a triggered cascade can evolve over a certain time
scale (i.e., days), it can be mitigated with intervention by the
central system [17]. Evidence from many nowcasting and
forecasting estimates indicates that in the absence of pre-
vention and control measures other than simply isolating the
risk cases, the probability of continued transmission with the
projected trajectory remains high (exponential growth of the
number of infections) [7, 8]. ,us, there is an urgent need to
reduce propagation rates and control the growth of this risk
to reduce not only the peak demand on the system but also
the total number of eventually affected individuals [18].

1.3. Gap Statement. ,e computational modeling technique
shows no bridge between the dynamics of agent nodes (with
the vertex as a fundamental element) and the emergent
properties of failure in recovery [19] (note that “recovery” in
the context of financial systemic risk often refers to the
fraction of a loan that is recovered after the default of the
counterparty; here, it refers to a different quantity called
“recovery time delay” similar to the concept of intervention).
Most tools for laying out networks are variants of an

algorithm and hence cannot easily be used to explore how
the conditions affect the dynamics of the network [20] owing
to the following factors: (1) Many of them take the form of a
theoretical explanatory insight constructed in response to a
hypothetical assumption. (2) ,e type and number of in-
dividuals are arbitrary or left undefined. (3) Validation with
respect to stylized mechanical parameters cannot explain
their potential over-parameterization. (4) ,ere is an ex-
tended transient or burn-in phase that is discarded before
analysis [21]. (5) Most importantly, the time units for many
of these models may have no clear interpretation. To address
these issues, we extend the model to fit an estimation of
macro-/microscale variables, such as protections and in-
terventions. ,e assessment process can be used to make
macro- or microscale observations of input performance,
while approaches for improving the recovery delay and
obtaining more detailed insights should be investigated in
the structure of the network itself [22]. ,is requires the
combination of large repositories to construct representa-
tions of trajectories that can be analyzed at different scales
and from different perspectives [23]. Indeed, the mecha-
nisms and serial algorithms that underpin our under-
standing of systemic risk in networked agents must be
evaluated through various means. Accordingly, we can es-
tablish a common ground for the integration of knowledge
and methodologies with consistent definitions and reconcile
the approaches for studying networks from various fields,
which will intuitively enable us to face all the difficulties and
pitfalls that are inherent in interdisciplinary work.

1.4. Purpose. ,is study develops a modeling framework
that can account for quantitative measurement in agented
networks, allowing us to explore how the recovery time delay
affects the risk potential in both macro- and microscale
cases. To regard agent dynamics as a random network, this
model follows the standard approach in agent-network
modeling, where by default, a small event (agent n is hit by a
shock at time t) can trigger the initial passage in a risk
diffusion process. ,e mechanism tests the clear implica-
tions for different values of the interaction, including in-
terruption, and how protection may be related to a set of
interconnectedness with mitigation entities against failure
potential, rather than solely focusing on cascading events.

1.5. Value. With the objectives of better risk assessment and
effective risk reduction, this model will enable us to not only
directly observe the spread of failure in agented network
industries but also better understand how protection can be
accomplished through intervention. ,is work is related to
themainstream of research that contributes to the discussion
of systemic robustness.

2. Model (Process-Based Methodology)

,e concept of network generation in this study is based on
random processes, such as those described in graph theory
[24]. Although an arbitrary construction cannot fully cap-
ture the local characteristics of individuals observed in real-
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world networks, everyone in the world is connected to ev-
eryone else through a chain of mutual acquaintances or even
stronger relationships [25]. To examine the systemic risks that
may result from failures originating and cascading on such
contact networks, together with how the networked agentsmay
be expected to protect themselves against failure cascades, we
consider an agent-based systematic-risk model with evolving
protection strategies that have been developed at the Inter-
national Institute for Applied Systems Analysis (IIASA; Ulf
Dieckmann).,is model enables agent-based simulations [26],
beginning with the simple assumption that pairs of nodes can
be randomly connected by an edge with a given connection
probability (Table 1). Using a parameter to evaluate the impact
of risk on the networked agents, we can estimate the influence
of primary risk along the structure as a general failure property
[27]. ,rough scaling for the different evolutionary (Table 2)
and nonevolutionary components (Table 3), each step com-
putes a new entity and generates a new proportion in relation
to the intervention [3] (Table 4).

2.1. Operating Principles. First, each agent is characterized by
two values: capital and strategy. An agent that has lost all of its
capital is regarded as failed. Initially, only one agent is given as
failed. Each agent is assigned to a node of the network, which is
given with a number n of nodes, a connection probability pd,
and a resultant adjacency matrix A. Second, at each time step,
units of payoff (c) are added to each agent’s capital, of which
fractions fm and fp are spent on maintenance and protection.
,eupdated capital is expressed as 1 + (1 − fm − fp)c.,ird, a
failure potential can originate at each node with probability pn

and can propagate through each link with probability pl. ,e
systemmay reach one of the two states after the appearance of a
random probability (initially failed node of pn through the link
ofpl ) and before the second probability occurs. Each failed node
with a failure potential becomes a failed nodewith probabilitypr

according to the equation below. A failed node losses its capital
and remains in a failed state for one time step
pp � pp,max/(1 + cp,1/2/(fpc)). We can measure capital in
units of cp,1/2 to obtain pp � pp,max/(1 + 1/(fpc)). Fourth,
each agent’s strategy values, namely, fp0 and fp1, are updated
through social learning and exploration. Social learning rep-
resents the process of choosing a random role model with
probability p and imitating the role model’s strategy. ,e
probability of imitation is pi � 1/(1+ exp(− sΔc)), where Δc is
the difference between the role model’s capital and the focal
agent’s capital and s is the selection intensity. ,en, exploration
is performed by altering a randomly chosen strategy with
probability pe with a random value chosen from a normal
distribution with mean 0 and standard deviation
σe [f(x|μ, σ2)]. ,e protection level for each agent is deter-
mined according to the heuristicsfp � fp0 + fp1C, where C is
the eigenvector centrality of the graph, which is a measure of
the influence of a node in a network. If A denotes the ad-
jacency matrix of the graph, the eigenvector centrality or x

must satisfy the equation Ax � λx, where the vector is
normalized to 1. We can normalize this vector to a maximum

value, which brings the vector components closer to 1; here,
fp1 is important for the measurement of fp (note that we did
not explicitly demonstrate this because it has been shown in a
previous study [1]). ,e value for fp must be truncated to the
interval (0, 1 − fm). Finally, the failure potential, which lasts for
only one time step (r t � 1), is controlled by another variable,
which we refer to as the recovery time delay (t r ∈ [0,∞]).
,e details of these process-based mechanisms are presented
below.

2.2. Process 1. Basic Properties of Created Networks.
Individuals in this model are considered as vertices (nodes),
and sets of two elements are drawn as a line (edge) con-
necting two vertices. Data are stored in the nodes, and the
edges represent the connections between them, although
they can also store data. ,e edges between the nodes can
describe any connection (adjacency) between them
(Figure 1(a)).,e nodes can contain any amount of data that
is assigned to them, and the edges include the data of the
strength of the connection they represent.

Connectivity is another essential property of this struc-
ture. A disconnected network has some vertices that cannot
be reached by the edges from any other vertex (Figure 1(b)).

A disconnected networkmight have one vertex connected
to no edges at all, or it might have two connected networks
that have no connection between them. Similarly, a connected
network has no disconnected vertices; thus, a metric called
connectivity is used to describe a network as a whole, and it
depends on the information being presented, usually iden-
tified by (n, d[p])]. Networks also have additional properties,
i.e., edges can have a direction, such that a relationship

Table 3: Nonevolutionary part (five parameters).

Maintenance fm ∈ (0, 1)
Propagation probability for
each node pn ∈ (0, 1)

Propagation probability through
each link pl ∈ (0, 1)

Protection maximum pp,max ∈ (0, 1)
Reference point cp,1/2 ∈ (0, 1)

Table 2: Evolutionary part (four parameters).

Imitation probability pr ∈ (0, 1)
Selection intensity s ∈ (0, 1)
Exploration probability pe ∈ (0, 1)
Normally distributed increment σ ∈ (0, 1)

Table 1: Network property (two parameters).
Number of individuals (nodes) n ∈ (1, ∞)
Connection probability (degrees) d(p) ∈ (0, 1)

Table 4: Time-dependent part (four parameters).
Time periods t 1∼∞
Recovery rate r t 1
Recovery time delay t r 1∼10
Realization tt 1∼100

Complexity 3



between two nodes is only one-way and not reciprocal.
However, in the present model, we used an undirected
network, the edges of which have no direction, because in our
case, edges are drawn between two individual nodes who have
met; hence, all relationships being represented are reciprocal.
,us, the relationship created (network) is undirected and
begins with edges randomly drawn between one pair of nodes
at a time. For example, four nodes may have edges between
them, as shown in Figure 2.

By contrast, if we take an adjacency matrix, we may
consider the rows and columns of the matrix to be labeled by
the vertices (nodes), giving us one, two, three, or four
vertices here. We may use any actual labeling; here, we
denote our adjacency matrix by A. ,e definition of our
matrix is that an entry in rowm and column n is equal to 1 if
there is an edge between m and n, and 0 otherwise:

1

2

3

4

1 2 3 4

Am × n = A = if mn ∈ edge,
otherwise.

1,
0,

(1)

Note that the adjacency matrix of a network contains all
the information contained in that network. Similarly, note
that the presented network is given a random appearance
because of the way the computer generates the visuals. If the
program was to run a second time, a different picture would
be generated; however, regardless of how it is run, the same
relationship holds between the vertices (nodes) and the
edges (line), resulting in the same degrees:

1

2

3

4

1 2 3 4
0 1

1 0

0 0

1 1

0 1

0 1

0 1

1 0

A = , deg(v2m) = 3, deg(v2n) = 3,

a11 a12

a21 a22

... a1n

1 a2n

... ...

am1 am2

... ...

... amn

A = . (2)

,e resulting m × n matrix is obtained as
[A � G(n, p[d])], and any node (n) can be randomly linked
to any other node. Because the collection of nodes influences
the connection probability [p[d] ∈ (0, 1)], the model in-
vestigates the distribution of the connection in the network
(probability of degree) (Figure 3).

Figure 4 is based on the standard representation in
network theory. Note that the vertices have degree d
[A � G(n, d)]. ,is d-regular network has degree d for all
vertices, and the resulting matrix can be compared to an-
other well-known random network called the Erdös–Rényi
network [28], obtained from [A � G(n, p)], shown in Fig-
ure 5, where any node (n) can be randomly exposed to any
other nodes, creating random connections.

Technically, with respect to the collection of nodes
influenced by the connection probability [p ∈ (0, 1)], it can
be observed that both cases with a higher degree (on the
right-hand side of the plots) show a higher probability of
being connected to an agent. However, for simplicity, the
model presents a random regular structure owing to the
connection degree [d ∈ (0, n − 1)] because the network has

all vertices of a certain degree (the same connection prob-
ability). In general, various network types (e.g., institutions,
firms, banks, food distributors, and supply chains) have
ambiguous effects in relation to individual ties because they
allow for different ways of diversifying risk; this is particularly
true as they influence each other in the same procedure of
originating strategies and distributing security [18]. ,is is
considered in the literature to provide strong empirical ev-
idence for a technical approach for comparison with another
network (note the lattice and calculation of eigenvector_-
centrality (Table 5)) to obtain a simple numerical solution
(Figure 6).

In the following section, analyses are conducted for the
case of a random regular network such that agents within the
strategy have the same level of diversification [17].

2.3. Process 2. Primary Risk Influence. Next, to observe the
propagation process, the model uses an array (vector) to
represent the probability of failure [p ∈ (0, 1)] with given
initially influenced nodes (1≤ j≤N) denoted merely by

Nodes (vertices) Lines (edges) 

(a)

Disconnected Connected

(b)

Figure 1: Schematic representation of nodes and lines (a) and connectivity (b).
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(p j). Each node can be in one of the two states: not failed or
failed. All nodes are initially without failure.

Extending the above output, given the failure dynamics,
the following is obtained:

A �

a11 a12

a21 a22

. . . a1n

. . . a2n

. . . . . .

am1 am2

. . . . . .

. . . amn

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

a
→

1

a
→

2

. . .

a
→

n

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

�

a11 a
→

1 + a12 a
→

2 +

a21 a
→

1 + a22 a
→

2 +

. . . a1n a
→

n

. . . a2n a
→

n

. . . . . .

am1 a
→

1 + am2 a
→

2
+

. . . . . .

. . . amn a
→

n

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
� B a

→
�

B a
→

1
B a

→
2

. . .

B a
→

n

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (3)

,at is, the states matrix:

Edge list (2D)

[[0, 1], [1, 2]
[1, 3], [2, 3]]

(a)

0 3
1

2

Adjacency list (2D)

0 = (0, 1), 1 = (1, 2),
2 = (1, 3), 3 = (2, 3)

(b)

Figure 2: Schematic representation of the edge list (a) and the adjacency list (b).

Figure 3: Code book: generating the graph and a random regular d-graph.
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i.e., States Matrix
[[ 1., 1., 1., 1., 0., 0., 1., 1., 1., 1.],
[ 0., 0., 0., 1., 1., 1., 1., 1., 1., 1.],
[ 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.],
[ 0., 0., 0., 0., 1., 1., 1., 1., 0., 0.],
[ 0., 0., 0., 0., 1., 1., 1., 1., 1., 1.],
[ 0., 0., 0., 1., 1., 1., 1., 1., 1., 0.],
[ 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.],
[ 0., 0., 1., 1., 1., 1., 1., 1., 1., 1.],
[ 0., 0., 0., 0., 0., 0., 0., 0., 0., 1.],
[ 0., 0., 0., 0., 0., 0., 1., 1., 1., 1.]]

(4)

Erdős–Rényi network Adjacency matrix
0

2

4

6

8

10

12

14

0 2 4 6 8 10 12 14

513

12

3

67 11 0
98

1
14

2

10
15

4

ER_G (n = 16, p = 0.25 [d≈4])

(a)

Erdős–Rényi network Adjacency matrix

0

2

4

6

8

10

12

14

0 2 4 6 8 10 12 14

11
2

15
14

8 0

4

7

10

9

1213

513

6

ER_G (n = 16, d = 0.937 [d≈15])

(b)

Figure 5: Prototype of a random network with its properties. ,e number of nodes n� 16; connection probability p � 0.937 (b) and
p � 0.25 (a).,e plot on the left-hand side of each half of the figure shows the random (Erdös–Rényi) network that was created. Each node is
represented by a circle, with an arbitrarily assigned label from 0 to 15, and each line represents a link.,e plot on the right-hand side of each
section shows the adjacency matrix with entries in row m and column n (either 1 (black) or 0 (white)).

Table 5: Numerical result for eigenvector_centrality [Ax � λx].

Node(i) 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
d� 4 [p≈0.25] 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25
p � 0.25 [d≈4] 0.33 0.237 0.165 0.207 0.320 0.223 0.150 0.171 0.212 0.100 0.353 0.227 0.382 0.231 0.110 0.339
d� random regular property obtained from Figure 4(a); p � random property obtained from Figure 5(a).

Regular random d-network Adjacency matrix
0

2

4

6

8

10

12

14

0 2 4 6 8 10 12 14

6

3 15
58

14
0

1
7

11
9

2

13

4 10

12

RR_G (n = 16, d = 4 [p≈0.25])

(a)

Regular random d-network Adjacency matrix
0

2

4

6

8

10

12

14

0 2 4 6 8 10 12 14

14 10

2158
3

7 4

9

12 11

13

516

0

RR_G (n = 16, d = 15 [p≈0.937])

(b)

Figure 4: Prototype of a random regular network with its properties. ,e number of nodes n� 4 ∗ 4; connection degree (probability) d� 15
(b) and d� 4 (a). For each section, the plots of the left-hand side show the random (regular) network that was created. ,e circles represent
nodes with an arbitrarily assigned label from 0 to 15, and each line represents a link.,e plot on the right-hand side of each section shows the
adjacency matrix with entries in row m and column n (either 1 (black) or 0 (white)).
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Note that the matrix is denoted by B a
→ instead of A

because it no longer represents the adjacency matrix. B a
→ is

continued to be labeled as rows and columns with values of 1
and 0; the key difference is the possibility of showing the
state of each node (m: 1� failure and 0� absence of failure)
according to the time step (n) (Figure 7).

In relation to the fundamental characteristic of the
model, we stipulate that an individual (node) can fail if one
of its neighbors is infected with failure through a network
(Figure 8). An elementary level of risk (or cascades of failure)

depends on the co-occurrence of i and j of the nodes. ,is
implies that individuals are more biased against other in-
dividuals that are highly linked in their network.

Next, the probability of failure can be determined by the
number of links from the node of the specification scaled by
R/S. If we retain the individual characteristics as constant
(K), R/S is equal to the risk (failure probability: p ∈ (0, 1)) as
a function of the connectivity created by the connections
(λx), and R is set to K/S. Nodes at lower (higher) links can be
expected to have a lower (higher) connectivity to their risk.

Figure 6: Code book: create centrality.

Figure 7: Code book: risk influence.
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In other words, if we remove nodes from the network, the
bias is reduced where the links are lower, even if they retain
their individual characteristics throughout the process.

2.4. Process 3. Impose Protection against Systemic Risk.
Along with the basic intuitions mentioned above, protection
dynamics is also implemented. First, we divide the program
into the subdynamics (payoff, failure, and strategy). ,en,
the result of each subdynamics is saved. ,ese subdynamics
are trivial problems that add complexity to the dynamics. To
implement each of these, we use simple equations. ,ese
equations combine the previously computed variables with
the newly added or computed variables, for example,
a⟶ store in the table, b⟶ store in the table,
a+ b� c⟶ lookup a, b⟶ compute c, d⟶ store in the

table, a+ d� e⟶ lookup a, and d⟶ compute e. In the
example given in Figure 9, we use the values already stored in
the table to compute new variables. ,is technique is often
referred to as memorization (Figure 9).

2.4.1. Payoff Dynamics. An agent is associated with each
node and is characterized by its capital and strategy as
follows: for each time step, each agent receives one unit of
payoff, which is added to that agent’s capital c, of which
fractions fm and fp are spent on maintenance and
protection, respectively; thus, the capital value is updated
as 1 + (1 − fm − fp)c. We used an elementwise
computation with arrays for vectorization ( v

→) instead of a
loop:

fp � v
→

i �

v
→

i1

v
→

i2

. . .

v
→

in

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, fm � v
→

ii

v
→
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v
→
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→
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→
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in( 􏼁

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

�

v
→

iii1

v
→

iii2

. . .

v
→

iiin

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, c

v
→

iii1

v
→

iii2

. . .

v
→

iiin

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

�

c v
→

iii1

c v
→

iii2

. . .

c v
→

iiin

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

�

v
→
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n
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. (5)

,e previous initial random network property is as
follows:
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Figure 8: Schematic description of failure with distribution. (a),e upper left-hand side plot represents the cumulative number of absences
of failure (success) nodes from the initial (blue bar) and final (red bar) cases, and (b) the upper right-hand side plot represents the increasing
number of failure nodes from the initial and final cases. ,e lower plots represent the probability distribution between the initial failure
(blue) and the final failure (red), with the likelihood as the transitivity (yellow bar). Note that the influences of these failures are computed as
the frequencies of the failure nodes in their initial and final states, i.e., as relative frequencies [fj � hj/N, hj � 􏽐k�1,...,N;X(k)�j1], where hj is
the frequency of the failure state (j), and the proportion (percentage) of occurrences of failure in the statistical ensemble corresponds to the
relative frequency.
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A

a11 a12

a21 a22

. . . a1n

. . . a2n

. . . . . .

am1 am2

. . . . . .

. . . amn

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

+ kA

ka11 ka12

ka21 ka22
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kam1 kam2

. . . . . .
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� B, k ∈ [0, 1]. (6)

,us, the applied output given the payoff dynamics
becomes

B �

b11 b12

b21 b22

. . . b1n

. . . b2n

. . . . . .

bm1 bm2

. . . . . .

. . . bmn
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v
→

1

v
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v
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n

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

�

b11 v
→

1 + b12 v
→

2 + . . . b1n v
→

n

b21 v
→

1 + b22 v
→

2 + . . . b2n v
→

n

. . . . . . . . . · · · . . . . . .

bm1 v
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, (7)

where the vector ( v
→

� payoff_dynamics) components are
equal to matrix B. ,is product is equal to B v

→ (Figure 10).

2.4.2. Failure Dynamics. ,e failure potential can originate
at each node with probability pn ∈ [0, 1], and it also
propagates along each link with probability pl ∈ [0, 1] at
each time step. ,e failure potential turns into failure with
probability 1 − pp depending on the agent’s investment in
protection: a possible choice is [pp � pp,max/(1+

cp,1/2/(fpc))], where protection (pp) is equal to the applied
(saturation) function. Here, pp,max is a designated protection
maximum, cp,1/2 denotes an allocated reference point, and

fpc represents an evolutionary protection level multiplied
by the updated capital:

pp � u
→

i �

u
→

i1

u
→

i2

. . .

w
→

in
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v
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, fpc � c

c v
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c v
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. (8)

,e applied output given the failure dynamics is as
follows:

B �
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· · · b1n
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· · · · · ·
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Figure 9: Code book: initial parameters.
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where the vector ( u
→

� failure_dynamics) components are
equal to matrix B. ,is product is equal to B u

→. In this
section, a prewritten function (regular) is used to create a
short iterate 1 �D array for vectorization ( u

→) instead of
using the adjacency matrix directly. ,is substitution
shortens the loop. ,e failure lasts for one time step
(default) and results in the loss of an agent’s capital
(Figure 11).

2.4.3. Strategy Dynamics. Each agent chooses its protection
level according to the heuristics fp � fp0 + fp1C truncated
to the interval (0, 1 − fm):

v
→⟶ f

→
⟶ f( v

→
),

f( v
→

) �
0< f( v

→
)< 0.9, fm � 0.9,

0< f( v
→

)< 0.1, fm � 0.1,

⎧⎨

⎩ v
→

|fp�fp0+fp1C.

(10)

Figure 10: Code book: payoff dynamics.

Figure 11: Code book: protection potential.
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For initialization of the strategy values, two arrays are
added for vectorization ((fp0 � w i), (fp1C � Cw i)):

fp0 � w
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n
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, C ∈ [0, 1],

(11)

where w
→

i1 is a vectorization as the designated strategy of fp0
and w

→
ii is a vectorization as the designated strategy of fp1,

multiplied by the eigenvector centrality from the random
graph (C), which is a measure of the centrality of the agent’s
node, normalized to the interval (0, 1):
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⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (12)

,e eigenvector centrality for node I is Ax � λx, where
A is the matrix of the network with eigenvalue λ.,e strategy
values fp0 and fp1 evolve through social learning and
strategy exploration as follows: at each time step, each agent
randomly chooses another agent as a role model with
probability pr ∈ [0, 1] and imitates that agent’s strategy
values with the following probability:

pi � 1 + e
− ωΔπ

􏽨 􏽩
− 1

, πr − πf � Δπ|πr�rolemodel, (13)

where pI is the probability of acceptance of the role model
for imitation, πf is the capital of the focal individual, πr is the
capital of the role individual, e denotes the exponential, and
ω is the intensity of the selection (ω< 1�weak selection;
ω∞� strong selection). ,e focal individual imitates the
strategy of the nearby role individual, comparing its new
capital (large Δπ � large capital difference; small Δπ � small
capital difference); then, the focal individual chooses to
imitate the strategy of the role individual. In relation to this
imitation, a temporarymatrix is employed to avoid changing
and using one matrix in the loop (Figure 12).

Finally, at each time step, each agent with probability
pe ∈ [0, 1] randomly chooses one of its two strategy
values and alters it with a normally distributed
increment with mean 0 and the following standard devi-
ation (Figure 13):

f x/μ, σ2􏼐 􏼑 �
1

����
2πσ2

􏽰 exp− (x− μ)2/2σ2
|x � individual capital,

μ ∈ R � mean(location), σ2 > 0 � variance(squared scale).
(14)

2.5. Process 4. Reset Failure (and/or Protection) Potential.
A failure lasts for one time step and results in the loss of an
agent’s capital, according to the reset failure potential and/or
failure, as follows:

random(n)< r t � 1⟶ 1 − pp � 0, (15)

where random(n)< rec � 1 denotes randomly chosen in-
dividuals with a certain probability [random(n)], and the
failure potential of any individual is (1 − pp), which is
chosen according to a certain probability that approaches 0:

t r< 1 � strong intervention,

t r⟶∞ � weak intervention, t r ∈ [0,∞],
(16)

By default, this recovery rate is implemented by resetting
the failure potential after every r t � 1 time step. At the same
time, to control this intervention, we allowed the number of
time steps to be controlled by another parameter
(t r ∈ [0,∞]), which represents the recovery time delay
(Figure 14).

2.6. Mechanical Insight of the Programming. ,e broader
objective of this step-by-step procedure is to show the
computerized process underlying the fundamental mecha-
nisms that are used. ,e Tables 1–5 and matrix mentioned
above account for the details of the rules and procedures (see
Appendix 6 for details on the coding). In relation to the
technical insights of the implementation, we present the
details in Figure 15 that may interest program developers
(Figure 15).

,e versions on the left- and right-hand sides in Fig-
ure 15 represent vectorization using a loop and an array,
respectively. Both versions are used in the development of
our programming, as can be seen in the code book, which
presents simple calculations. Specifically, following the step-
by-step procedures of the operation, the version on the left-
hand side can be recommended in general; however, it
requires more time to simulate many individuals across time
steps (see Output in Figure 15). ,us, in some dynamics
implementations of models, we used the version on the
right-hand side owing to its efficiency.
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3. Performance (Results)

Given the set of features in relation to the dynamics pre-
sented according to the model description, the results of the
simulation show the fundamental characteristics of risk
diffusion in a randomly networked system and present a
framework that enables us to examine the assumptions
efficiently while imposing realistic protections against fail-
ure. In particular, the simulation characterizes the role of the
recovery time delay from the observations of applied dy-
namics over time to indicate how failure spreads.

First, individuals in the model are considered as vertices,
and a set of two elements is drawn as edges connecting two
vertices in relation to the information given in the graph.
,is representation involves two parameters: the number of
nodes (n) and the probability that an edge is present (d). In
network analysis, indicators of centrality identify the most
important vertices within a graph, and their applications

include the identification of the most influential node(s) in a
network. ,e eigenvector centrality of a node is defined as
Ax � λx, where A represents the adjacency matrix of the
network with eigenvalue λ. ,e principal has an entry for
each of the n vertices.,e larger the entry for each vertex, the
higher it’s the ranking with respect to the eigenvector
centrality (Figure 16).

Figure 16(a) represents the influences of failures,
computed as the frequency of failure nodes in relation to
their initial and final states, with the computed relative
frequencies fj � hj/N, hj � 􏽐k�1,...,N;X(k)�j1, where hj is the
frequency of the failure state (j) and the percentage
of occurrences of that failure outcome in the statistical
ensemble corresponds to the relative frequency fj.
Figure 16(b) is created to be run in a number of such
simulations according to the time step, as one could spread
the failure through the network P(X ∈ [a, b]; t) � 1/N
􏽐k�1,...,N;X(k)(t)∈[a,b]1, with a time series of the number of

Figure 12: Code book: imitation.

Figure 13: Code book: exploration.
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Figure 14: Code book: recovery delay.

With for_loop

vs.

With vector_array

# for initial parameters
B = np.zeros((n,4))
pe = 0.5
mu = 0.0
sigma = 0.01

for i in range(n):
R = np.random.random()
if R ≤ pe:
choose = np.random.randint(1,3)
norInc = np.random.normal(mu, sigma, size = None)
B[i, choose] = B[i, choose] + norInc

# for initial parameters
B = np.zeros((n,4))
pe = 0.5
mu = 0.0
sigma = 0.01

temp =B[:,1:3] R = np.random.random(size =
[n, 2]) ≤ (0.5 ∗ pe) 
temp[R] += np.random.normal(mu, sigma, size =
[n,2])[R] 
B[:,1:3 ] = temp

(Output)

R is: 0.15185496744882165
choose is: 2
0.0104693604787
R is: 0.7683043808698666
R is: 0.13780958929673937
choose is: 1
–0.0147493833134
R is: 0.3237906283769204
choose is: 2
–0.00149137311491
R is: 0.47586950300136266
choose is: 2
–0.00348010349487
R is: 0.3097678759688134
choose is: 2
–0.000587484956137
R is: 0.07287711142245623
choose is: 2
–0.00493456667833
R is: 0.12517600508302607
choose is: 1
–0.00438073778316
R is: 0.04830857294798152
choose is: 1
–0.00497596487175
R is: 0.5264128287834354
[[ 0.

[ 0.
[ 0.
[ 0.
[ 0.
[ 0.
[ 0.
[ 0.

(Output)

[[True True]
[True False]
[True True]
[False False]
[True False]
[False False]
[False False]
[False True]
[False False]
[False False]]

0.00938266
–0.01086615[

[
[
[
[
[
[
[
[

0.01279481
0.00011118
0.00566594

–0.00104304
–0.00413213

0.00614522
–0.00086985
–0.01461356

0. 0.01046936 0. ]
[ 0. 0.

–0.01474938
0.
0.
0.
0.

–0.00438074
–0.00497596

0.
0.

–0.00149137
–0.0034801
–0.00058748
–0.00493457

0.
0.

0. ]
0. ]
0. ]
0. ]
0. ]
0. ]
0. ]
0. ]

[ 0.

[[ 0.

[ 0.
[ 0.
[ 0.
[ 0.
[ 0.
[ 0.
[ 0.

[ 0.

[ 0.

0. 0. 0. ]]

]
]
]
]
]
]
]
]
]

0.
0.
0.
0.
0.
0.
0.
0.
0.
0.

–0.00177942
0.

–0.00112887
0.
0.
0.
0.

–0.00477365
0.
0.

0.00938266
–0.01086615

0.01279481
0.
0.00566594
0.
0.
0.
0.
0. ]]

–0.00177942]
0.00553024]

–0.00112887]
–0.00223817]

0.00394121]
0.01093303]
0.00267854]

–0.00477365]
 –0.00050924]

0.01471215]]

[[ 

Figure 15: Numerical results using a loop (left side) and an array (right side).
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failures for 100 realizations (black lines) until the number
of failed nodes is stabilized. ,is implies that the greater the
propagation from a higher rank (with respect to degree or
centrality), the greater the area drawn between the failed
nodes (red) and the nonfailed nodes (blue). ,is result
intuitively implies that, primarily, higher-degree agents
have greater exposure to cascading failure risk than lower-
degree agents; this increases the potential for cascading
failure [29].

3.1. Protection against Failure (Imposing Realistic Dynamics).
In line with our proposition, protection dynamics was ap-
plied in reference to the risk of failure. ,is model allows an
agent to make a large investment in protection. Note that we
assume that the failure potential from the dynamics becomes
failure with probability 1 − pp depending on the agent’s
investment in protection; pp � pp,max/(1 + cp,1/2/ (fpc))

when a failure lasts for one time step (Figure 17). ,e
probabilities of these scenarios can be proven as follows.

First, scenario A’s failure potential 1 − pp is 0.527 be-
cause the investment in protection pp is 0.473, based on the

possible choice pp: pp,max/(1 + cp,1/2/(fpc)) �

1/(1 + 1/(0.9∗1)), for certain parameter values (pp,max � 1,
cp,1/2 � 1, pr, pe � 0.9, C � 1). Second, scenario B’s failure
potential 1 − pp becomes 0.953 because the investment in
protection pp is 0.047 based on the possible choice pp:
pp,max/(1 + cp,1/2/ (fpc)) � 0.1/(1 + 1/(0.9∗1)), for certain
parameter values (pp,max � 0.1, cp,1/2 � 1, pr, pe � 0.9, C �

1). As can be seen from the set on the left-hand side of the
plot, this scenario has a better result than the set on the right-
hand side, corresponding to the coexistence of failure and
the absence of the 20 eurist with time. ,e results imply that
contagion and systemic risk are likely to be intensified by the
parameter setting (i.e., pp,max, cp,1/2, and fp), resulting in a
significant failure cost [30]. Note that the failure potential
1 − pp also changes in relation to the choice of strategy
values fp0 and fp1 based on social learning (pr ∈ [0, 1]) and
exploration (pe ∈ [0, 1]) because these probabilities can lead
to different levels of protection in fp [1].

3.2. Role of Recovery (Imposing Recovery Time Delay).
Here, we present a specific characterization to determine
whether an alternative intervention could affect the failure
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Figure 16: Visualization of the propagation of failure over time. (a) ,e individuals’ state from the absence of failure (⟶blue) to failure
(⟶red). (b) ,e time series of the number of failures for 100 realizations (black lines) until the number of failed nodes is stabilized. ,e
horizontal axis represents the time step, and the vertical axis represents the proportion of failed nodes (the red dots denote the averages, and
the yellow error bars denote the standard deviations). ,e histogram in the inset on the left-hand side shows the numerical distributions
(failure probabilities), and the plot in the inset on the right-hand side shows the potential of failure corresponding to the time length.
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trends observed in coexistence scenario A (pp,max � 1,
cp,1/2 � 1, pr, pe � 0.9, C � 1). ,e model shown in
Figure 18 implies that contagion and systemic risk are also
likely to be intensified with the recovery time delay, resulting
in a significant failure cost. We observe that immediate or
delayed intervention is associated with microscale propa-
gation criteria for each node (Figure 18).

In Figure 18, the individuals can be distinguished clearly.
Obviously, nodes that have immediate recovery (plots on
the left-hand side) appear to have the potential to protect
against the propagation of failure; on the contrary, nodes
with a malfunction (plots on the right-hand side) do not
have such potential. ,e simulation consisted of repeated
trials, and each trial had two possible outcomes: failure (�
red) and absence of failure (� blue).,e probability of failure
is the same for every trial, as in flipping a coin n times, based
on the binomial variable that we defined in the model’s basic
structure. ,e probability of failure in each trial is given
by P(X) � n!/r!(n − r)!pr(1 − p)n− r � C(n, r)pr(1 − p)n− r,
where n is the total number of trials, r is the total number of
failure events, and p is the probability of failure in a single
trial.

In the plots on the left-hand side in Figure 18, the
probability of absence of failure is approximately 0.6, and the
probability of failure is 0.4 (the case probability for Scenario

A is calculated by the number of failures from the time steps:
fj � hj/N, hj � 􏽐k�1,...,N;X(k)�j1). We assume a random
variable X, which is equal to the number of failures after a
certain number of time steps. One of the first conditions of
this result is that it consists of a finite number of independent
trials. ,is means that the probability of obtaining failure or
absence of failure in each trial is independent of whether we
obtained failure in a previous trial. ,us, in the case of the
plots on the left-hand side with recovery at every time step
(immediate intervention), the results of the simulation show
independent trials. Another condition is that each trial
clearly has one of the two discrete outcomes in which the
variable X should be clearly classified as showing either
failure or absence of failure with a given fixed number of
trials. ,en, the final condition of the probability of failure
and absence of failure for each trail is constant, as we have
already obtained measurements for each trial from the cases
of Scenarios A and B.

Proof of the role of the recovery rate. We now examine the
frequency of failed agents observed on the left-hand side in
Figure 18. Suppose that at a given time, there are failed nodes
(Nf) and nonfailed nodes (N − Nf). ,e number of failed
nodes at t + 1 is given by
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pp = pp,max/(1 + cp,1/2/(fpc)), pp,max = 1, cp,1/2 = 1, pr = 0.9, pe = 0.9
Scenario A: large pp,max, large fp, and large cp,1/2 → enough

protection → coexistence

pp = pp,max/(1 + cp,1/2/(fpc)), pp,max = 0.1, cp,1/2 = 1, pr = 0.9, pe = 0.9
Scenario B: small pp,max, large fp, and large cp,1/2 →

low protection → all failure

Figure 17: Protection dynamics against systemic risk. In each section, the plot on the left-hand side shows a matrix (horizontal axis� time
step from 1 to 16; vertical axis� individuals [16]; color of the matrix� failure state: failure [red] and absence of failure [blue]).,e plot in the
middle shows each individual’s parameter values at a given time step (t �16: orange: fp_0� strategy [1]; cyan: fp_1� strategy [2]; red:
fail� failure; green: pro � protection potential [pp]). ,e plot on the right-hand side represents individuals’ dynamics within a random
network; node number� random label for each node, line width� eigenvector centrality, and node color� states (failure [red]←⟶ [blue]
absence of failure; green� protection potential; yellow� initial structure of the state without failure and protection). ,e initialized pa-
rameters of the simulations are as follows: nodes n � 10, connection d � 0.9 (%� 5.5), pp,max � 1, fp0 � 0.4, fp1 � 0.5, fm � 0.1, s � 1, μ � 0.0,
σ � 0.1, pn � 0.1, pl � 0.3, and t � 10 (see Appendixes 1 and 2 for the results of the entire simulation).
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pA(n) � Nf � 0.731 � Nf + pp N − Nf􏼐 􏼑

� 0.731 + 0.5(1 − 0.731) � 0.865 � NNof ,
(17)

where pp denotes the protection probability (arbitrarily
designated as 0.5 only for this numerical calculation);
conversely, the number of failed nodes is

1 − pp􏼐 􏼑 N − Nf􏼐 􏼑 � (1 − 0.5)(1 − 0.731) � 0.135 � Nf.

(18)

Failure is propagated through an existing link with
probability pl; at the same time, a link exists with a certain
probability through the created network (pRR, RR � random
regular graph). ,erefore, if we impose the condition that
the failure potential can propagate through each link, and
the propagation probability pl is less than 1 (when the
original probability pn � constant), this equation can be
modified simply by replacing pp with

pp
′ � 1 − 1 − pp􏼐 􏼑 1 − 1 − plpRR( 􏼁( 􏼁

Nf . (19)

For example, when we arbitrarily consider the protection
pp � 0.5 and failure propagation (pl) through a random

network (pRR) to be sufficiently high (plpRR � 0.9), the
protection influenced by the failure propagation pp

′ becomes
small because 1 − (1 − 0.5)(1 − (1 − 0.9))Nf � 0.09. On the
contrary, if a weak failure propagation occurs, such as
plpRR � 0.1, the protection influenced by the failure prop-
agation pp

′ increases because

1 − (1 − 0.5)(1 − (1 − 0.1))
Nf � 0.95. (20)

However, in the plots on the right-hand side in Figure 18,
the probability is no longer the same but changes from trial to
trial. We have the variable X(pl), which is equal to the
number of failures from a designated population. It seems to
represent the same operation because, with it, each trial can be
classified as either a failure or an absence of failure over a fixed
number of trials (t� 16). At the same time, there is the
probability that the variable plpRR is not constant for each
trial owing to the recovery time delay, which does not consist
of independent trials. ,e probability of failure or absence of
failure in the first trial would be equal to the total number of
individuals between the two simulation cases:

plpRR k on 1st trial􏼐 􏼑 � 0.1. (21)
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pp = pp,max/(1 + cp,1/2/(fpc)), pp,max = 1, cp,1/2 = 1, pr = 0.9, pe = 0.9
Scenario A: large pp,max, large fp, and large cp,1/2 → enough

protection → coexistence
pp = pp,max/(1 + cp,1/2/(fpc)), pp,max = 1, cp,1/2 = 1, pr = 0.9, pe = 0.9

Scenario C: small pp,max, large fp, and large cp,1/2 →
low protection → all failure

Figure 18: Dynamics of protection against systemic risk with recovery time delay. Using the same initial parameter values
(pp,max � 1, cp,1/2 � 1, pr � 0.1, pe � 0.1, C � 1), this set of the plots represents the time delay case (left-hand side: r_t� 1; right-hand side:
r_t� 5). In each section, the plot on the left-hand side shows the matrix (horizontal axis� time step from 1 to 16; vertical axis� individuals
from 1 to 16; color of the matrix� failure state: failure [red] and absence of failure [blue]) corresponding to each individual’s parameter
values at the given time step (t� 16: orange: fp_0� strategy [1]; cyan: fp_1� strategy [2]; red: fail� failure; green: pro � protection potential
[pp]).,e graph on the right-hand side represents the dynamics in a random regular network, such that the node number� random label for
each node and the node color� state (failure� red, absence of failure� blue) (see Appendix 3 for the results of the entire simulation).
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However, the probability of the second trial (and the
following trial) would not be the same because the simu-
lation of the right-hand side case depends on what happened
in the first (previous) trial:

plpRR k on 2nd trial􏼐 􏼑≠ constant. (22)

In other words, each trial is carried out without re-
placement, which results in an exponentially large difference
between the two cases. ,us, this result does not meet the
independent condition: the probability present in the fol-
lowing trial depends on what happened in the previous one.
Because replacement does not take place, the probability of
failure for each trail is also not constant, unlike the simu-
lation on the left-hand side, where the probability of failure
is constant:

plpRR k on 2nd trial􏼐 􏼑 � constant. (23)

Inspired by the plausible scenarios included in the re-
covery delay for cases A and C in Figure 18, we focus on the
comparison of the parameter pp,max (when recovery delay
constant� 1) withmore time steps (t�100).,is is because of
the applied function pp [� pp,max/(1 + cp,1/2/(fpc))] for this
application, which will primarily be decided by pp,max when
we consider cp,1/2/(fpc) and the recovery time as constants
(Figure 19). ,is refers to the individual for control by
interventions to be protected against the risk of failure when
the failure propagation mechanism influences agents’ de-
cisions as they are generated.

Figure 19 shows a scatter plot constructed using pp,max
(Figure 19(a)) with a clear negative correlation between
failure and capital. Although it is constructed by the
recovery time delay (Figure 19(b)), strong power law
relationships are still obeyed in cascading failure, even if
the capital values remain strong (see the averaged values
for the failure and capital in the lower part of Figure 10).
In the following results, this trend (failure and capital) is
determined by two parameters (pp,max, rec t); however,
their influences do not have the same weight. Here, we
should note that intervention applied to recovery can
persist for a short period of time, which we could cite as a
bias or rationality.

3.3. Generalize with Stationarity. Let us assume that the
system has evolved and reaches stationarity, which implies
that all variables have nearly constant fluctuation around
their mean values. In stationarity, the state of the system can
be considered independently of the initial conditions. It is
useful to obtain a relationship among the variables in sta-
tionarity. First, we denote the number and fraction of failed
agents by Nf and f, respectively. For stationarity, the av-
erage number of failed agents remains constant. Consider
the two successive steps t and t + 1. Suppose that at time t,
there are Nf and N − Nf failed and nonfailed nodes, re-
spectively. ,erefore, the number of nonfailed nodes at t + 1
is Nf + pp(N − Nf), and the number of failed nodes is
(1 − pp)(N − Nf). Stationarity means that the number of
failed (or nonfailed) nodes remain constant (on average),
i.e.,

Nf � 1 − pp􏼐 􏼑 N − Nf􏼐 􏼑, Nf �

pp ≈ 0.9, Nf � ↓,

pp ≈ 0.1, Nf � ↑,

⎧⎪⎨

⎪⎩

f �
1 − pp

2 − pp

�
1 − pp,max􏼐 􏼑fpc + 1

2 − pp,max􏼐 􏼑fpc + 2
, f �

2 − pp,max􏼐 􏼑 ≈ ↑, f � ↓,

2 − pp,max􏼐 􏼑 ≈ ↓, f � ↑.

⎧⎪⎪⎨

⎪⎪⎩

(24)

Let us define qp � 1 − pp. ,e above formula for f can
be written as f � qp/(1 + qp), which is simple. Here, pp is
the average probability of protection among the nonfailed
nodes. Note that the protection probability for the failed
nodes is zero because they have no capital. In other words,
pp � 􏽐 pp(i)/N − Nf, where pp(i) represents the protec-
tion probability for node i. In the second equality, fp and c

are defined similarly.
,is relationship shows that the stationary value for f is

bounded in the interval [0, 1] and is a decreasing function of
pp. ,e limiting values seem promising. For pp � 1, i.e., full
protection, there is no failed agent. For pp � 0, i.e., no
protection, there is a failed agent. Note that at the end of each
time step, all the failed agents recover (as an initial setting). If
the propagation probability plpRR is less than 1, this
equation should be modified by replacing pp as follows:

pp
′ � 1 − 1 − pp􏼐 􏼑 1 − 1 − plpRR( 􏼁

Nf􏼐 􏼑,

pp
′ �

plpRR ≈ 0.9, pp
′ � ↓,

plpRR ≈ 0.1, pp
′ � ↑.

⎧⎪⎨

⎪⎩

(25)

Again, by defining qp
′ � 1 − pp

′, we implicitly obtain f.
To check the validity of these formulae with a simulation, we
increase the total simulation time (t� 1,000); for smaller
plpRR < 1, a longer time is required to reach stationarity
(Figure 20).

Proof of the stationary state. we calculate the average value
of the capital in the stationary state to prove the long-term
role of the recovery time delay. First, consider the
case plpRR � 1. It can be easily seen that the average value of
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the capital in the stationary state satisfies the following
equation:

cin + pp 1 − fp − fm􏼐 􏼑c � c,

c �
pp ≈ 0.9, c � ↑,

pp ≈ 0.1, c � ↓,

⎧⎨

⎩

c �
fp ≈ ↑, c � ↓,

fp ≈ ↓, c � ↑,

⎧⎨

⎩

(26)

where c is the average value of the capital among nonfailed
individuals. Combining the above equations, we can obtain c

and fp as a function of f in the stationary state. However, it
is easier to obtain c as a function of pp, such that the
protection probability should be replaced by pp

′ � 1 − (1 −

pp)(1 − (1 − plpRR)Nf ) when plpRR < 1. ,erefore, we

obtain the following (note that in the simulation, we use a
truncation of fp to constrain it to the interval [0, 1 − fm]
[see code book]):

c �
pppp
′ − cin pp,max − pp􏼐 􏼑

pp,max − pp􏼐 􏼑 pp
′ 1 − fm( 􏼁 − 1􏼐 􏼑

,

fp �
pp pp
′ 1 − fm( 􏼁 − 1􏼐 􏼑

pppp
′ − cin pp,max − pp􏼐 􏼑

. (27)

According to the trajectories (upper part of Figure 20),
the outcomes such as failure (or capital) reach a stationary
state even if the trajectories from the strategies continue to
evolve and exhibit different behaviors (see the inset of the
upper plots). ,erefore, the presence of the detailed dy-
namic features of the system (capital and failure) indicates
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the possibility of stationarity in the coevolutionary pro-
cess. ,is observation can enable us to gain a sense of the
qualitatively different nature of propagation (compared to
pp,max) within systems, such that failure is not limited to
protection or strategy but is due to regulation over time.
In other words, there is another rate that continues to

increase the bias as the length of the delay causes the
cascading failure, even where the individuals still have
potential (Figure 21).

As indicated by the protection (Figure 21; bottom,
marker of green, nodes that are controlled by pp,max � 0.1
(left-hand side) seem to lose their ability to protect, owing
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to the propagation of failure. On the contrary, nodes that
are controlled by t r � 2 (right-hand plots) seem to
maintain their potential, even if they all feature cascading
failure. We noted that the different levels of potential
(between the two parameters [pp,max, t r]) came from
their capital, as marked in blue in Figure 20 (see bottom
plots of the figure).

,us, to reduce the potential ramifications (pp
′) of such

additional losses to others, an immediate recovery in-
tervention may not only be preferred to the potential
damage (1 − pp

′) from individual failures but also guar-
antee that it is strategically possible for even large in-
solvent individuals to recover losses to uninsured
connectors. Before the potential for failure can advance
the propagation value, it must be identified, and the re-
covery value of the individual protection potential (i.e.,
capital) must be estimated.

4. Discussion

We presented a simple general model to quantify the pro-
tection for mitigating systemic risk, with the recovery time
delay as the result. Using a simple set of properties, the

observations from this model indicate how probability de-
scribes the proportion of protection that can be charac-
terized by how systemic risk should be coped with rather
than being predicted by the probability of failure [31].

4.1. Summary of the Model. We proposed the following
process-based steps (1–4) to create a model. First, network-
agent propertieswere established: when the basic data structure
was constructed, the functionalities of the mechanism began
with a specific undirected relationship between agents through
agent-based simulations, in a coexisting macroscale structure
with individuals interconnected at the microscale level in the
network. Next, the primary risk influence was established using
a parameter to evaluate the impact of risk on the networked
agents; the influence of primary risk was estimated along the
structure as a general failure property.,en, it was necessary to
implement protection against systemic risk by embedding
protection dynamics that emphasizes the roles of payoff,
failure, and strategy dynamics. Finally, recoverywas considered
through scaling for the different evolutionary and nonevolu-
tionary components; this is crucial to the way this system
functions, where each step computes a new entity and
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generates a new proportion in relation to the intervention. ,e
implications of this model are as follows.

4.2. Ceoretical Implications. A suite of plausible dynamics
and decentralized bottom-up mechanisms was constructed
by establishing appropriate rules for the interaction, within
which the system components can self-organize, including
mechanisms for ensuring rule compliance (vectorized
microscale implementation). ,is evolutionary heuristic
promotes balance with respect to the interactions [32]. For
example, when investment in protection is weak (low in-
vestment), a pattern of strong systemic risk emerges in the
form of agent failure in networked conditions. By contrast,
when investment in protection is strong (high investment),
a pattern of protection emerges, with little diversification
against all challenges (Figure 17). ,e simulation also re-
flected a clear correlation between a set of parameter values
(between those for capital and failure and between those for
the strategies of fp0 and fp1). ,us, the strategy of social
learning could be another crucial factor in resource pro-
vision that violates expectations and leads to novel trends
with high impact. ,ese results shed light on the propa-
gation modes. ,e observed contagion and persistence
patterns can be regarded not as a direct causal link but in
relation to an accumulated rational driven by intercon-
nectedness [33].

More importantly, in this study, the failure potential also
reflects the time delay after the official failure of an indi-
vidual [34]. Newly damaged individuals may affect others or
may recover from the next time step onwards (recovery
occurs with the rate tr). ,e potential needed for recovery is
related to the number of healthy individuals n(t), and if
individuals recover at time tr � 1, the protection potential
changes as follows:

c(t + 1) � c(t) + n(t) − [1 − pp(t)]. (28)

Once the capital is exhausted, the systemic risk increases
rapidly. ,is is based on suitable real-time intervention
related to short-term anticipation of risk flows [35]. How-
ever, because regulation occurs over time, another rate itself
increases the failure potential even if the capital is still
exhausted (note that the recovery rate mainly influences
failure and does not have the same weight for capital). From
our observations, we assume that the protection (or ro-
bustness) of an agent πi decreases (or increases) by an
amount proportional to the relative exposure of risk sharing
ηij. Consistent with the network of dynamics described
above, the dynamics, including the recovery time delay (in
time series), can be formalized as follows:

πi � πi(0) −
a

k
􏽘

j

ηijχj(τ),

πi �

τ ≈ ↑, πi � ↓,

τ ≈ ↓, πi � ↑.

⎧⎪⎨

⎪⎩

(29)

For convenience, with respect to the results, k substitutes
the protection potential, defined by c(t + 1) � c(t)+

n(t) − [1 − pp(t)], such that the function a determines the
extent of the loss caused by the default χj(τ) when we fix risk
sharing ηij. ,is indicates that the agent has defaulted at a
previous time, denoted by the time variable τ. In the simu-
lations, there was no delay during the development of the
cascade (τ ≈ 0, τ � t2 − t1). However, this dynamic differs
across the default of the recovery [36]. If the system delays the
intervention, the cascade tends to bemuch larger (following the
power law) because the defaults of the neighbors of a given
agent are statistically dependent on j, such that their default is
more likely to cause the default of others:

f′(x) �
k

x
􏼠 􏼡 + c, x � rt(+1), c � 1. (30)

In Table 6, such a range [f′(x)] will be determined by
failure propagation through each link in the random regular
network (plpRR), which was determined by the recovery
time delay. We simply proved that this numerical trend of
the protection probability defined by pp

′ � 1 − (1 − pp)(1 −

(1 − plpER)Nf ) could not be the same as that of pp max
[when plpER � constant (Figure 20)]. ,us, the failure in-
fluences in these simulations are not identical, as pp max
changes according to these parameters, including where
increases or decreases occur following a nonlinear curvature
[37].

4.3. Practical Implications. We propose a modified version
of the protection model against systemic risk in terms of its
failure recovery mechanics, as demonstrated above. ,e
mechanisms here are based on a few simple basic rules: a
node fails at a time with a probability of failure if its failure
potential is greater than or equal to that of its nearest
neighbors [1], and it fails owing to the interconnected po-
tential, although it spontaneously recovers at an external
recovery or according to an intervention probability [3]. ,e
consequences of the damage are crucial for systemic risk and
controllability; however, they have not been explored sys-
tematically thus far [38]. We show how the process of
embedding and the related recovery times impact the dy-
namics of failure processes in a network (see the section on
the proof of the role of the recovery time delay). ,erefore,
we propose that the extent of the intervention regime in the
system can be a source of evolutionary (in)stability, wherein
the immediate recovery of components can mitigate damage
and propagate failure in dynamic networks [17]. ,ese
decentralized management principles could be applied to
logistical and production systems, or even to administrative
processes and governance [18].

Governments are often reluctant to resolve insolvency in
institutions [e.g., banks, firms, supply chains, and infected
virus individual (i.e., Ebola, SARS, and COVID-19)], and
they permit them to continue operating despite their neg-
ative effects. ,e length of the attendant delay causes a
cascading failure, regardless of each individual’s capital (i.e.,
immunity), which then leads to reductions in network
welfare. ,ese delays may propagate the damage to many
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other individuals in the network, increasing their fragility
and probability of failure [39]. Evidence from governing
systems suggests that if individuals’ troubles are estimated
before their capital becomes negative, institutions could,
based on their risk potential, weed out the inefficient or
unfortunate individuals to avoidmore serious adverse effects
[40].,is indicates the importance of resolving challenges to
individuals as quickly as possible and developing more rapid
responses to certify protected individuals by providing
immediate intervention. On the contrary, prompt corrective
action can increase the willingness to supply protection to
reduce the chances of systemic risk [41]. Given the evolu-
tionary mechanisms shown in this simulation model, we
observed that the evolutionary response often obtains a
critical value for a plausible protection potential. We
demonstrated that, although structures have high potential
for individual protection and a strategy to maintain their
capital, the function of the interconnected recovery delay
makes them weak amplifiers, where unprofitable interven-
tion shows a high bias.

5. Concluding Remarks

Cascading failure was used to assess how rules and pro-
cesses can collectively add up to a series of interconnected
unsuitable outcomes. In the simulations, although every
object was considered to be doing well individually, sys-
temic risks could emerge, as the whole was vast. In other
words, even if every single object is considered to be highly
fitted and behaving properly (i.e., capital), there is no
standard solution for proper management for everyone’s
benefit. ,erefore, the elimination of resources needed for
recovery requires a strong effort to halt cascades as they
begin, when the damage is still small, and the problem may
not yet be perceived as threatening. ,ese issues can and
must be treated with a proper (re)design of the system and
adoption of management principles, as shown by the
simulation results [42].

Many disasters in the real-world result from incorrect
thinking and inappropriate system design. To address such
risks more completely, a better understanding of proper
intervention and resilience is crucial. However, there re-
mains a lack of an effective method for calculating net-
worked risk. ,e proposed model can facilitate realistic
calculation of the interdependence and propagation of risks
in a network and how they can be absorbed, and it can
mediate such that both the system components and the
plausible systemic intervention and outcomes will work well.

We derived a unifying framework for the interplay of
observations that embed realistic dynamics such as payoff,
failure, strategy, and recovery in a random regular network.
,e mechanics showed that the complexity should be

described by the essential features of the model’s processes
that capture evolutionary damage spread owing to the co-
existence of crucial hypotheses in the system.,us, it may be
possible to create an account where protection and failure
are not static quantities, and propagation is likely to be
understood in terms of how frequently the system is in a
condition that leads to a large diffusion. ,is availability of
mechanisms raises additional expectations that predict-
ability and controllability are a simple matter of proper
system design and operation [43]. More intuitively, this
study can provide a better understanding of recovery, where
real-time management can overcome instabilities caused by
delays in feedback or lack of information.
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Appendix 1: the results of the entire simulation for pro-
tection dynamics against systemic risk (left-hand side of
Figure 17). Appendix 2: the results of the entire simulation
for protection dynamics against systemic risk (right-hand
side of Figure 17). Appendix 3: the results of the entire
simulation for protection dynamics against systemic risk
(right-hand side of Figure 18). Appendix 4: stationarity
controlled by pp,max: (nodes� 10 ∗ 10, connection d� 9,
time step� 1,000). Appendix 5: stationarity controlled by
rec_t: (nodes� 10 ∗ 10, connection d� 9, time steps� 1,000).
Appendix 6: code book. (Supplementary Materials)

Table 6: Numerical result of the function [f′(x)].

Domain(x � r t) 1 2 3 4 5 6 7 8 9 10
Numericalf′(x) 2 1.333 1.2 1.142 1.111 1.09 0 1.076 1.066 1.058 1.050
Fixedmean (capital) 0.772 0.585 0.563 0.539 0.538 0.561 0.548 0.589 0.533 0.566
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