
1. Introduction
Methane is the second-largest anthropogenic driver of current global radiative forcing after CO2 (Myhre 
et al., 2013), and all representative concentration pathways (RCPs; Collins et al., 2013) show it maintain-
ing this ranking in the future, thus becoming of critical importance in mitigation strategies for attaining 
low-warming targets. The largest anthropogenic methane source is livestock production, with the main 
components being the enteric fermentation of ruminants and manure management. Currently, livestock 
production represents a third of the global anthropogenic methane emissions, comparable to the magnitude 
of fossil fuels’ methane emissions (Saunois et al., 2020).

Livestock emissions reported by countries to the UNFCCC are based on common methodologies provided 
by the IPCC Guidelines (IPCC, 1997, 2000, 2003, 2006, 2019). These guidelines give the possibility to make 
inventories with various levels of detail, depending on a country’s capability, from the simplest Tier 1 to the 
most detailed Tier 3, and are periodically updated to reflect the latest expert knowledge on methodologies 
and emission factors. In parallel, global inventories have been developed to quantify livestock methane 

Abstract The livestock sector is the largest source of anthropogenic methane emissions and is 
projected to increase in the future with the increased demand for livestock products. Here, we compare 
livestock methane emissions and emission intensities, defined by the amount of methane emitted per unit 
of animal proteins, estimated by different methodologies, and identify mitigation potentials in different 
regions of the world based on possible future projections. We show that emission intensity decreased 
for most livestock categories globally during 2000–2018, due to an increasing protein-production 
efficiency, and the IPCC Tier 2 method should be used for capturing the temporal changes in the 
emission intensities. We further show that efforts on the demand-side to promote balanced, healthy, and 
environmentally sustainable diets in most countries will not be sufficient to mitigate livestock methane 
emissions without parallel efforts to improve production efficiency. The latter efforts have much greater 
mitigating effects than demand-side efforts, and hence should be prioritized in a few developing countries 
that contribute most of the mitigation potential.

Plain Language Summary Livestock production represents a third of the global 
anthropogenic methane emissions nowadays, and the emissions are expected to keep increasing in the 
future. Using three sets of methodologies and emission factors from two versions of the IPCC guidelines 
(the 2006 and the 2019 refinement), we re-assess global livestock methane emissions over the past two 
decades and project the emissions till 2050. We find a decreasing trend of methane emission intensity 
per kg of protein produced during the past two decades. We show that promoting balanced, healthy, and 
environmentally sustainable diets in most countries can mitigate future livestock methane emissions, but 
a larger mitigation potential is projected if the past trend in decreasing emission intensity (i.e., increasing 
production efficiency) can be continued. We further identify major countries that have the largest 
mitigation potential through increasing production efficiency.
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emissions for the past few decades (Chang et al., 2019; Crippa et al., 2020; Dangal et al., 2017; EPA, 2012; 
FAOSTAT, 2020; Janssens-Maenhout et al., 2019; Wolf et al., 2017) or for some specific years (Gerber, Stein-
feld, et al., 2013; Herrero et al., 2013). These data sets cover either all livestock types (Crippa et al., 2020; 
EPA, 2012; FAOSTAT, 2020; Janssens-Maenhout et al., 2019; Wolf et al., 2017) or major categories (Chang 
et  al.,  2019; Dangal et  al.,  2017; Gerber, Steinfeld, et  al.,  2013; Herrero et  al.,  2013). Livestock methane 
emission estimates from inventories differ substantially depending on the choice of the methodological tier, 
emission factors, and livestock activity data (e.g., from globally available FAOSTAT statistics or from nation-
al/regional information). For example, estimates of emissions from enteric fermentation of ruminants in 
2000, obtained from different inventories (Chang et al., 2019), range from 60.9 to 86.3 Tg CH4 yr−1.

The spread between inventory estimates of livestock emissions arises from uncertainties in the intensity 
of emission per head of livestock, or per unit of production, such as per amount of protein. The IPCC 
Guidelines (2019 IPCC Refinement [IPCC, 2019]) recently updated their Tier 1 methodology for manure 
management emissions and revised many emission factors for livestock emissions. This major revision im-
pacts global estimated emissions and their intensities. To our knowledge, no study has compared emission 
intensities derived from different methods at the global scale, although Gerber, Steinfeld, et al. (2013) pro-
duced an assessment of these quantities for a single year (2005) using the Global Livestock Environmental 
Accounting model (GLEAM).

According to FAOSTAT (2020), livestock methane emissions increased by 51.4% between 1961 and 2018, 
following the increase in ruminant numbers and manure excretion from various livestock categories. This 
increasing trend will probably continue in the future, given the projected rising demand for livestock prod-
ucts (FAO, 2018). In developing countries, in particular, large increases in livestock production are project-
ed, driven by the increase in per capita income and/or population. The uncertainty in emission intensities 
induced by the choice of method affects the future projections of livestock methane emissions, and thus 
climate projections.

In this study, we constructed two new estimates of global livestock methane emissions at a spatial resolu-
tion of 5 arc-min for the period 2000–2018, using both a combined Tier 1 and Tier 2 method (hereafter, 2019 
Mixed Tiers, MT method) and a Tier 1 method (hereafter, 2019 T1 method) based on the latest IPCC Guide-
lines (IPCC, 2019) Vol. 4, Chapter 10 (Table S1). Further, we derived new estimates of emission intensities, 
expressed as emissions per kg of protein in products including milk and meat from cattle, buffaloes, goats, 
and sheep, meat from swine, and meat and eggs from poultry, by combining our emission estimates with 
the FAOSTAT production statistics (FAOSTAT, 2020). Finally, we investigated how our update to emission 
calculations using the latest IPCC Guidelines affects future projections from this sector by the year 2050 for 
three global socio-economic scenarios (FAO, 2018), and contrasted pathways of livestock production effi-
ciency changes. To facilitate the usage of these new methods for assessing livestock methane emissions, we 
have provided a full package of the R code on Zenodo for producing these two new estimates and associated 
projections.

2. Materials and Methods
2.1. Estimating Livestock CH4 Emissions Using the Mixed IPCC Tier 1 and Tier 2 Methods From 
the 2019 Refinement (the 2019 MT Method)

The first set of livestock CH4 emissions was estimated using a mixture of the IPCC Tier 1 and Tier 2 meth-
ods from the the 2019 Refinement to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories 
(IPCC, 2019) Vol. 4, Chapter 10. Enteric fermentation CH4 emissions from dairy cows, meat and other non-
dairy cattle, buffaloes, sheep, and goats were estimated using the IPCC Tier 2 method ([IPCC, 2019] Vol. 4, 
Chapter 10, Equation 10.21) based on the gross energy intake of livestock (GE) and a conversion factor, Ym, 
calculated from the regional digestibility of feed (DE). For enteric fermentation emissions of other livestock, 
an adjusted IPCC Tier 1 method ([IPCC, 2019] Vol. 4, Chapter 10, Equation 10.19), accounting for changes 
in liveweight was used to estimate CH4 emissions from enteric fermentation. Text S1 presents a detailed 
description of the methods used for estimating enteric fermentation emissions.

Livestock CH4 emissions from manure management, for all livestock categories, were estimated using an 
updated IPCC Tier 2 method ([IPCC,  2019] Vol. 4, Chapter 10, Equation 10.23), which is based on the 
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volatile solids excreted by livestock (VS), maximum methane production capacity for manure produced 
by livestock (B0), methane conversion factors (MCF) for each manure management system and each cli-
mate region, and the fraction of livestock manure handled using each animal waste management system 
(AWMS) in each region. The estimation was made at the grid cell level with the following parameters: (a) 
distributing country level VS into grid cells following the livestock distributions in the GLW3 data set (see 
Section 2.4) and (b) using MCF depending on manure management system and the IPCC climate zones. 
Text S2 presents a detailed description of the methods used for estimating manure management emissions.

2.2. Estimating Livestock CH4 Emissions Using IPCC Tier 1 Methods From the 2019 Refinement 
(the 2019 T1 Method)

Another set of livestock CH4 emissions was estimated using the IPCC Tier 1 method updated by the 2019 Re-
finement to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories (IPCC, 2019) Vol. 4, Chapter 
10. For emissions from enteric fermentation, we used the IPCC Tier 1 method ([IPCC, 2019] Vol. 4, Chapter 
10, Equation 10.19) with the total number of livestock population associated with specific CH4 emission 
factors for each category of livestock. The total number of livestock population was derived from the statis-
tics of stock and producing animals (dairy cows) from the FAOSTAT (FAOSTAT, 2020) (“Live Animals” and 
“Livestock Primary” domains). For dairy cows, meat, and other non-dairy cattle and buffaloes, regional CH4 
Tier 1 emission factors from Table 10.11 of the IPCC (2019), Vol. 4, Chapter 10 were used. For other livestock 
categories, emission factors from Table 10.10 of the IPCC (2019), Vol. 4, Chapter 10 were used, and factors 
for high and low productivity systems were applied for developed and developing countries, respectively.

For emissions from manure management, we used methane emission factors per unit of volatile solid (VS) 
excreted by livestock category, multiplied by the corresponding VS excretions. VS excretion for each live-
stock category and productivity system were calculated following Equation 10.22A of the IPCC (2019), Vol. 
4, Chapter 10. The regional VS excretion rate for each productivity system was obtained from Table 10.13A 
of the IPCC (2019), Vol. 4, Chapter 10, and the typical animal mass for each region and productivity system 
was obtained from Table 10A.5 of the IPCC (2019), Vol. 4, Chapter 10. We assumed North America, Europe, 
and Oceania to have only high productivity systems, while the regional shares between high ( high,rS ) and low 
productivity systems ( low,rS ) for Latin America, Africa, the Middle East, Asia, and India sub-continents were 
derived according to the regional mean live weights ( mean,Weight r), and live weights for high ( high,Weight r) 
and low productivity systems ( low,Weight r) as given below:





mean, low,

high,
high, low,

Weight Weight
Weight Weight

r r
r

r r
S (1)

where mean,Weight r, high,Weight r, and low,Weight r were derived from Table 10A.5 of the IPCC (2019), Vol. 4, 
Chapter 10. The regional shares between high ( high,rS ) and low productivity systems ( low,rS ) could only be 
derived for cattle, buffalo, swine, and poultry, given the data availability in Table 10A.5 of the IPCC (2019), 
Vol. 4, Chapter 10. For other livestock categories, values representative of high and low productivity systems 
were applied for developed and developing countries, respectively. The methane emission factors per unit 
of VS by livestock category were derived from Table 10.14 of the IPCC (2019), Vol. 4, Chapter 10, depending 
on the climate zone, manure management system, and production system. Therefore, we first distributed 
country-level VS into grid cells following the livestock distributions in the GLW3 data set (see Methods 
Section 2.4), then applied the fraction of livestock manure handled using each AWMS in each region, and 
calculated the CH4 emissions using the methane emission factors. The procedure is similar to the IPCC Tier 
2 method described above but with the following additional parameters: (a) Tier 1 based VS calculation, and 
(b) default Tier 1 emission factors instead of B0 and MCF.

The 2019 IPCC Refinement (IPCC, 2019) also introduced new Tier 1a emission factors for enteric fermenta-
tion to account for increases in production levels by livestock raised in countries that apply a Tier 1 meth-
odology for estimating enteric CH4 emissions. For comparison, we additionally estimated another set of 
CH4 emissions from enteric fermentation using the Tier 1a method (the 2019 T1a method). For dairy cows, 
meat and other non-dairy cattle, and swine in Latin America, Africa, the Middle East, Asia, and India 
sub-continents, regional CH4 Tier 1a emission factors from Table 10.10 and Table 10.11 of the IPCC (2019), 
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Vol. 4, Chapter 10 and the regional shares between high ( high,rS ) and low productivity systems, with ( low,rS ) 
calculated by Equation 1 given above were used. Due to the limited regional information on the production 
systems and on their time variation from the IPCC guideline, emissions from other livestock categories are 
the same as those of the 2019 T1 method, and the shares between high and low productivity systems are 
time-invariant in our estimate.

2.3. Uncertainty Estimates

For estimates of enteric fermentation CH4 emission from dairy cows, meat and other non-dairy cattle, buf-
faloes, sheep, and goats using the 2019 MT method, we assessed uncertainties due to the conversion factor 
Ym. Following Tables 10.12 and 10.13 of the IPCC (2019), Vol. 4, Chapter 10, a standard deviation of 20% was 
applied for dairy cows, meat and other non-dairy cattle, and buffaloes, while a standard deviation of 13.4% 
for sheep and 18.2% for goats were applied. Table 10.10 of the IPCC (2019), Vol. 4, Chapter 10 gives an un-
certainty of ±30%–50% for the Tier 1 emission factors (validated also by the IPCC, 2019, Vol. 4, Chapter 10), 
which is defined as 1.96 times of the standard deviation of the mean. For uncertainty estimates of enteric 
fermentation CH4 emission from other livestock using the 2019 MT method, and from all livestock using 
the 2019 T1 method, we applied a median standard deviation of 40%/1.96 = 20.4% (using 40% as a median 
of ±30%–50%). For all uncertainty estimates of manure management CH4 emission using the 2019 MT and 
2019 T1 methods, we applied a standard deviation of 30%/1.96 = 15.3%, as an uncertainty of ±30% was 
given for the MCF used in the 2019 MT method (Table 10.17 of the IPCC, 2019, Vol. 4, Chapter 10), and also 
for emission factor used in the 2019 T1 method (Tables 10.14 and 10.15 of the IPCC, 2019, Vol. 4, Chapter 
10). Uncertainties were derived from Monte Carlo ensembles (n = 1,000) from the range of uncertainties 
reported for the above parameters and/or emission factors used in the calculations. In the Monte Carlo 
ensembles, we assumed independent uncertainties for each livestock category, methane emissions from 
enteric fermentation, and manure management.

2.4. Estimating Gridded Livestock CH4 Emissions

The Gridded Livestock of the World v3.0 data set (hereafter referred to as the GLW3; Gilbert et al., 2018) pro-
vides global spatial distribution data for cattle, buffaloes, horses, sheep, goats, swine, chickens, and ducks in 
the year 2010 at a spatial resolution of 5 arc min. We estimated the gridded enteric fermentation emissions 
by distributing country emissions into grid cells following the GLW3 livestock distribution data (data pro-
duced from dasymetic [DA] model in Gilbert et al., 2018 were used; Table S2). We assumed no changes in 
the distribution of livestock during the period 2000–2018 in the gridded products, as time-variable livestock 
distribution data, to our knowledge, is not available at the global scale. Gridded enteric fermentation emis-
sion in grid cell i of country j for livestock category k at year m ( CH4 Enteric, , , ,i j k mF ) was calculated as follows:

 



 

 
GLW3, , ,

CH4 Enteric, , , , CH4 Enteric, , ,
GLW3, , ,

i j k i
i j k m j k m

i j i j k i

D A
F F

D A (2)

where CH4 Enteric, , ,j k mF  is the total enteric fermentation emission of country j for livestock category k in year 
m as calculated above, GLW3, , ,i j kD  is livestock density for category k in grid cell i of country j from the GLW3 
(unit: head km−2), and iA  is the land area of grid cell i. For livestock categories that were not represented in 
the GLW3 (i.e., asses, camels, mules, and llamas), the spatial distribution of cattle was used.

The same method was used to distribute country-level VS (for both the Tier 1 and Tier 2 methods), which 
then were used to estimate livestock CH4 emissions from manure management at the grid cell level.

2.5. Revisiting Emission Intensities for Livestock Production and Individual Livestock

For economic output, we derived the methane emission intensities (including enteric fermentation and ma-
nure management emissions) per kg of protein produced for category k in country j and year m ( protein, , ,EF j k m; 
unit: kg CH4 per kg protein) as follows:
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 CH4 Enteric, , , CH4 Manure, , ,

protein, , ,
protein, , ,

EF j k m j k m
j k m

j k m

F F
P (3)

where protein, , ,j k mP  is the protein produced by livestock category k in country j and year m, and is calculated 
as follows:

 protein, , , meat/milk, , , meat/milk,j k m j k m kP P c (4)

where meat/milk, , ,j k mP  is the meat and/or milk production (unit: kg) by livestock category k in country j and 
year m (production quantity from FAOSTAT, 2020 “Livestock Primary” domain), and meat/milk,kc  is the pro-
tein content of the meat or milk of livestock category k (unit: kg protein per kg meat/milk). Here, we used 
a protein content of 0.158 kg protein per kg bovine carcass weight (cattle and buffaloes), 0.141 kg protein 
per kg sheep carcass weight, 0.134 kg protein per kg goat carcass weight, 0.131 kg protein per kg pig carcass 
weight, 0.143 kg protein per kg poultry carcass weight, 0.124 kg protein per kg eggs, and 0.033 kg protein per 
kg milk. The protein content of meat and carcass weights were derived from Table 9.1 of the GLEAM v2.0 
Documentation (FAO, 2017), and the protein content of milk was calculated as 1.9 + 0.4 * %Fat (Milk PR% 
in the IPCC, 2019, Vol. 4, Chapter 10, Equation 10.33) with a typical %Fat of 3.5% (see IPCC, 2019, Vol. 4, 
Chapter 10, Table 10A.1–10A.3). It is acknowledged that meat and other non-dairy cattle and buffaloes are 
used as draft animals in many developing regions, especially in Asia. Hence, for developing countries, we 
also calculated the methane emission intensities per kg of protein excluding emissions from draft animals. 
Emissions from draft animals ( CH draf , , ,4 t j k mF ) were calculated with the IPCC Tier 2 method ([IPCC, 2019] 
Vol. 4, Chapter 10, Equation 10.21) using the GE of draft animals (see Text S3 for the calculation of GE).

The enteric fermentation emission intensities of country j for livestock category k (here, cattle, sheep, goats, 
and buffaloes) in year m ( head Enteric, , ,EF j k m; unit: kg CH4 per head) are calculated as follows:

 
 CH Enteric, , , CH Manure, , ,4 4

head, , ,
head, , ,

EF j k m j k m
j k m

j k m

F F
N (5)

where head, , ,j k mN  is the number of livestock (unit: head) for category k in country j and year m. For dairy 
cows, head, ,cows,j mN  is the number of producing animals obtained from the FAOSTAT (2020) “Livestock Pri-
mary” domain; for meat and other non-dairy cattle, head, ,other cattle,j mN  is the total stock (the FAOSTAT, 2020 

“Live Animals” domain) minus the number of dairy cows; for sheep, goats, and buffaloes, head, , ,j k mN  is the 
total stock from the FAOSTAT (2020) “Live Animals” domain; for swine, head, ,swine,j mN  is the slaughtered 
number from the FAOSTAT (2020) “Livestock Primary” domain, given that their life span is usually shorter 
than 1 year.

2.6. Projecting Livestock Methane Emissions

Future livestock methane emissions depend on changes in livestock production (usually expressed in kg 
of protein) and emission intensities per livestock production (i.e., kg CH4 per kg protein produced). Here, 
we projected livestock methane emissions forward until 2050, using the projected relative changes in pro-
tein production from major livestock categories under different socio-economic scenarios, and assuming 
different pathways of emission intensity changes. The following three socio-economic scenarios: Business 
As Usual (BAU), Stratified Societies (SS), and Toward Sustainability (TS), and the following two pathways 
where we made contrasted assumptions about production efficiency changes: constant emission intensity 
and improving efficiency (i.e., decreasing emission intensity) were used. Future livestock CH4 emissions for 
product p (milk or meat) of livestock category k in country j and year m under socio-economic scenario s 
and emission intensity change pathway w during the period 2012–2050 were calculated as follows:

       CH , , , , , CH prod, , ,2012 rel, , , , rel protein, , , , CH draft, , ,2012 rel draft, , , ,4 4 4EFj k m s w j k j k m s j k m w j k j k m wF F P F I (6)

where CH prod, , ,20124 j kF  and CH draft, , ,20124 j kF  are the methane emissions from livestock category k in country 
j and year 2012 used for production and for draft power, respectively (draft animals are meat and other 
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non-dairy cattle and buffaloes used as draft power in developing countries only; see Section 2.5 for details 
of the emissions of draft animals); rel, , , ,j k m sP  is the change in protein production for livestock category k in 
country j and year m relative to 2012 under socio-economic scenario s; rel protein, , , ,EF j k m w is the change in 
production efficiency (emission intensity per livestock production; protein, , ,EF j k m) for livestock category k in 
country j and year m relative to the 2012 value under emission intensity change pathway w; rel draft, , , ,j k m wI  
is the change in the number of draft animals for livestock category k in country j and year m relative to the 
2012 value under production efficiency change pathway w. We used the year 2012 as the start of the projec-
tion since the FAO projections for livestock production started in 2012 (FAO, 2018). For livestock other than 
cattle, buffaloes, sheep, goats, pigs, and poultry, we assumed dynamic emissions to have their historical val-
ues during 2012–2018 and constant emissions, considering their values in 2018 for the period of 2019–2050.

The FAO (FAO, 2018) provides country level changes in productivity (raw milk and meat) and herd size for 
cattle, buffaloes, sheep, goats, pigs, and poultry under the following three socio-economic scenarios: BAU, 
SS, and TS. Data were provided for the year 2012, 2030, 2035, 2040, and 2050, and linear changes of both 
productivity (raw milk and meat) and herd size were assumed in this study. Given the fact that herd sizes 
for dairy cows and meat and other non-dairy cattle were not provided separately by the FAO, we assumed 
that the relative changes in herd sizes for dairy cows and meat and other non-dairy cattle are the same as 
the changes in cattle. Changes in protein production for livestock category k in country j and year m relative 
to 2012 under socio-economic scenario s ( rel, , , ,j k m sP ) were then calculated as follows:

  

  

, , , , , , , protein, ,
rel, , , ,

, , ,2012, , , ,2012, protein, ,

p p j k m s j k m s p j
j k m s

p p j k s p j k s p j

Y H C
P

Y H C (7)

where , , , ,p j k m sY  is the productivity (unit: kg animal−1 yr−1) for product p (milk or meat) of livestock category 
k in country j and year m under socio-economic scenario s; , , ,j k m sH  is the herd size (unit: head) for livestock 
category k in country j and year m under socio-economic scenario s; and protein, ,p jC  is the protein content 
(unit: kg protein (kg milk/meat−1) of product p (milk or meat) of livestock category k (see Section 2.5). For 
buffaloes, sheep, and goats, protein from milk and meat were summed to obtain the total protein production 
changes.

As outlined above, the following two variant pathways of production efficiency changes (i.e., methane 
emission intensity changes per kg protein produced) were assumed: “constant intensity” and “improving 
efficiency.”

Under the “constant intensity” pathway, both rel protein, , , ,EF j k m w and rel draft, , , ,j k m wI  were assumed to be 1, 
which means no changes in methane emission intensities per livestock production ( protein, , ,EF j k m) and no 
reduction in the numbers and methane emissions of draft animals in developing countries.

We found decreasing trends in emission intensity for major livestock categories during the past two decades 
due to increasing production efficiency. Based on this finding, we constructed our “improving efficiency” 
pathway, assuming a continuing decrease of emission intensity. Under this pathway, the future will see 
(a) a continuation of the country-specific historical trends of the development of gross domestic product 
(GDP) per capita for countries showing decreasing emission intensity during the past two decades; and (b) 
constant emission intensities for countries that experienced no change or an increasing emission intensity 
in the past two decades. For each country, a regression between the emission intensity per kg of protein over 
four periods (2000–2004, 2005–2009, 2010–2014, 2014–2017) and the corresponding GDP per capita was cal-
culated to derive the country-specific trends of emission intensities from the projections of GDP per capita. 
Note that the last period only contains four years because the GDP per capita from the FAOSTAT (2020) is 
only available until 2017. We calculated the regression for these periods, rather than on an annual basis, to 
avoid the impact of potentially strong inter-annual variation of the emission intensities due to temporary 
effects such as livestock epidemics or economic shocks. We calculated the emission intensity per kg protein 
production for livestock category k in country j and year m relative to 2012 rel protein, , , ,EF j k m s as follows:

  protein, , , ,
rel protein, , , ,

protein, , ,2012

EF
EF

EF
j k m s

j k m s
j k

 (8)
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where protein, , ,2012EF j k  is the emission intensity per kg of protein production for livestock category k in coun-
try j in 2012; and protein, , , ,EF j k m s is the future emission intensity per kg o f protein for livestock category k in 
country j in year m under socio-economic scenario s, which is calculated as follows:

   protein, , , , , , , ,EF GDPperCapita , when 0j k m s j k j s j k j ka b a (9)

where ,GDPperCapita j s is the GDP per capita in country j in year m under socio-economic scenario s given 
by the FAO (2018); ,j ka  and ,j kb  are the regression coefficients representing the trend and intercept, respec-
tively, from the regression between the emission intensity per kg of protein over four periods (2000–2004, 
2005–2009, 2010–2014, 2014–2017) and the corresponding GDP per capita during the historical period. 
Equation 9 only applies to countries showing decreasing emission intensities during the past two decades 
(i.e., , 0j ka ). For countries with no change or increasing emission intensities in the past two decades (i.e., 

, 0j ka ), a constant emission intensity is applied. Furthermore, to avoid unrealistically low emission in-
tensities in the future, we set a minimum emission intensity per kg of protein for each livestock category k 
( protein, ,minEF k ) as a threshold. This is derived as the 0.05-quantile of the emission intensities per kg of protein 
from all countries with more than 100 tonnes of protein production per year for that livestock category dur-
ing the most recent 5-year period (2014–2018). The thresholds varied with the different methods used (the 
2019 MT, the 2019 T1, or the 2006 T1 method) and are listed in Table S3. Figure S17 provides the number of 
countries that reach the minimum emission intensity per kg of protein for each livestock category by 2050, 
and the protein production of these countries under the “improving efficiency” pathway.

The following additional sensitivity pathway of production efficiency changes (i.e., methane emission in-
tensity changes per kg protein produced) was considered: (a) a continuation of the country-specific trend 
of the development of the GDP per capita for countries showing decreasing emission intensity during the 
past two decades; and (b) a continuation of the country-specific trend of the development of GDP per capita 
for countries showing increasing emission intensity during the past two decades. For countries showing 
decreasing emission intensities, same as the “improving efficiency” pathway, we set a minimum emission 
intensity per kg of protein for each livestock category k ( protein, ,minEF k ) as a threshold to avoid unrealistically 
low emission intensities. Similarly, to avoid unrealistically low emission intensities for countries showing 
increasing emission intensities, we set a maximum emission intensity per kg of protein for each livestock 
category k ( protein, ,maxEF k ) as a threshold. This is derived as the 0.95-quantile of the emission intensities per 
kg of protein from all countries with more than 100 tonnes of protein production per year for that livestock 
category during the most recent 5-year period (2014–2018). The thresholds varied with the different meth-
ods used (the 2019 MT, the 2019 T1, or the 2006 T1 method) and are listed in Table S4.

3. Estimated Livestock Methane Emissions and Recent Changes
The magnitude of global livestock methane emissions estimated for 2010 using our 2019  MT method 
(122 ± 13 Tg CH4 yr−1; Figure 1a) is consistent with that estimated by EDGAR v4.3.2 (Janssens-Maenhout 
et al., 2019) (115 Tg CH4 yr−1), EDGAR v5.0 (Crippa et al., 2020) (113 Tg CH4 yr−1), and (Wolf et al., 2017) 
(118 ± 18 Tg CH4 yr−1). All these data sets consider trends in liveweight and/or productivity of livestock 
(Table S1). They are all higher than those of the most recent FAOSTAT (FAOSTAT, 2020) data (104 Tg CH4 
yr−1) and the US EPA data set (EPA, 2012) (103 Tg CH4 yr−1). The FAOSTAT used the default 2006 T1 emis-
sion factors, while the US EPA data set (EPA, 2012) used the 2006 T1 supplemented by country-reported 
inventory data. We found a higher estimate using the new 2019 T1 method (130 ± 14 Tg CH4 yr−1), which 
is explained by higher emission factors (Table S4) for both enteric fermentation and manure management, 
and changes in the method used for estimating manure management to reflect the latest livestock charac-
teristics. Global estimates using the 2019 T1a method (see Section 2.2) are nearly the same as those using 
the 2019 T1 method (<0.2% differences; Table S2) with differences ranging from 0.01% to 3.4% in regional 
estimates, thus, we do not discuss the emissions using the 2019 T1a method hereafter. It should be kept in 
mind that it is a purely academic exercise to show the effect of the different Tiers on total livestock methane 
emissions. As emphasized in the 2019 IPCC Refinement (IPCC, 2019) Vol. 4, Chapter 10, Section 10.3.1, “the 
Tier 2 method should be used if enteric fermentation is a key source category for the animal category that 
represents a large portion of the country’s total emissions,” and “the Tier 1 method is likely to be suitable 
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for most animal species in countries where enteric fermentation is not a key source category, or where en-
hanced characterization data are not available.”

Globally, we found that 88%–91% of the livestock methane emissions come from enteric fermentation (Ta-
ble S2), and are dominated by cattle, sheep, goats, and buffaloes. The share of the total emissions attributed 
to different livestock categories varies between regions, while the pattern is similar between our two esti-
mates and the FAOSTAT (2020) (Figure S1). There are significant regional differences in livestock methane 
emissions between the four data sets (Figure S2), mainly due to the revised Tier 1 enteric fermentation 
emission factors used in the 2019 Guidelines and the Tier 2 method (the 2019 MT in Figure S2). We also 
established gridded livestock methane emission fields by downscaling our national totals (Figure S3), which 
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Figure 1. Global livestock methane emission changes from 2000 to 2018 (a), and global and regional changes in 
livestock methane emissions between the periods 2000–2004 and 2014–2018 (b). The shaded area indicates the 1-sigma 
standard deviation of the estimates using the 2019 MT and the 2019 T1 methods in this study. Uncertainties were 
derived from Monte Carlo ensembles (n = 1,000) from the range of uncertainties reported for various parameters and/
or emission factors used in the calculations (see Methods). In the Monte Carlo ensembles, we assume independent 
uncertainties for each livestock category, and for methane emissions from enteric fermentation and manure 
management. Contributions due to the changes in livestock numbers and to the changes in emission intensities 
per head are shown separately in (b). For EDGAR v5.0, the changes in (b) are between the periods 2000–2004 and 
2014–2015. Regions are classified following the definition of the FAO Global Livestock Environmental Assessment 
Model (GLEAM): NAM, North America; RUS, Russia; WEU, western Europe; EEU, eastern Europe, NENA, Near East 
and North Africa; EAS, eastern Asia; OCE, Oceania; SAS, south Asia; LAC, Latin America and Caribbean; SSA, Sub-
Saharan Africa.
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can provide valuable high-resolution prior information for atmospheric inverse studies. These emission 
maps show higher livestock methane emission intensity per area of land, compared to EDGAR v5.0 (Crippa 
et al., 2020), in the Sahel countries, Eastern Africa, South Asia, Eastern China, and Northeast Australia, but 
lower values in Europe and Latin America (Figures S4a and S4c).

Temporal changes of livestock methane emissions in the last two decades or so (2000–2018) were quantified 
as the difference between the values in 2000–2004 and those in 2014–2018. We found that global emissions 
increased by +10 to +18 Tg CH4 yr−1 between these two periods (Figure 1b), the largest increase being found 
with our 2019 MT method and the lowest with the FAOSTAT. The 2019 MT method accounts for changes in 
productivity through varying liveweight and production (see Methods), and thus allows attribution of the 
increase to changes in livestock numbers versus emission intensities per head. We estimated that 73% of 
the increase in global emissions between the two periods is explained by increasing livestock numbers, the 
remaining 27% due to increasing emission intensities per head in most regions (i.e., larger mean body size 
and higher meat and milk production per head).

Regional analysis gives, however, a more nuanced picture of the role of these two drivers (Figure 1b; Fig-
ure S5). The most noticeable increases in emissions between the two periods were found in South Asia (+3 
to +6 Tg CH4 yr−1) and Sub-Saharan Africa (+4 to +7 Tg CH4 yr−1; see also Figure S6). For the 2019 MT 
emission estimates, 24% of the increase in South Asia during the period 2000–2018 can be attributed to 
changes in emission factors per head, while the entire increase in emissions in Sub-Saharan Africa is ex-
plained by rising livestock numbers. Moderate increases were found in Latin America, Near East and North 
Africa, and East and Southeast Asia. On the other hand, estimated emissions decreased in the developed 
regions between the two periods when using the Tier 1 methods, while estimates using the 2019 MT method 
showed slightly increased emissions in North America, and almost constant emissions in other developed 
regions as increasing yield and liveweight were accounted for.

Dairy cows (+2 to +6 Tg CH4 yr−1) and meat and other non-dairy cattle (+2 to +4 Tg CH4 yr−1) in develop-
ing countries are the major contributors to the increase of livestock methane emissions during 2000–2018, 
followed by buffaloes in South Asia (+2 to +3 Tg CH4 yr−1; Figure S5). Sheep in Near East and North Afri-
ca, East and Southeast Asia, and Sub-Saharan Africa, goats in Sub-Saharan Africa, and swine in East and 
Southeast Asia also contributed significantly to the regional emission increases (Figure S5).

4. Revised Estimates of Emission Intensities for Livestock Protein Production 
and the Recent Changes
We analyzed estimates of emission intensities per kg of protein production for each livestock category, as 
derived from the following : (a) protein production figures given by livestock production commodities sta-
tistics from the FAOSTAT (2020) and their protein content obtained from the GLEAM model (FAO, 2017), 
and (b) emissions estimates using our new 2019 MT and 2019 T1 calculations, and the 2006 T1 method (i.e., 
data from the FAOSTAT, 2020).

During 2014–2018, methane emission intensity per kg of protein produced is the lowest for poultry meat 
and eggs (0.02–0.08 kg CH4 per kg protein at global scale), followed by swine meat (0.3–0.5 kg CH4 per 
kg protein), because of negligible enteric fermentation emissions from monogastric (Figure 2). Ruminant 
meats have the highest methane emission intensity per kg of protein among major livestock products. At 
the global scale, we estimated intensities of 3.5–4.2 kg CH4 per kg protein for beef cattle, 3.8–5.5 kg CH4 per 
kg protein for goats, and 4.1–5.0 kg CH4 per kg protein for sheep. Higher methane emission intensities of 
goats and sheep meat than that of beef are mainly due to the low digestibility of feed (low-quality rough-
age). On the other hand, it means that goats and sheep depend less on human-edible feed and avoid food-
feed competition (Mottet et al., 2017; Van Zanten et al., 2018). Cow milk production has a global average 
methane emission intensity of 1.0–1.2 kg CH4 per kg of protein, lower than meat production because of 
(a) the higher protein production efficiency of milk compared with meat, and (b) a more protein-rich and 
digestible diet given to milking cows. Buffaloes are mostly used as draft animals in Asia with only a small 
fraction of them being used for meat and milk production. Excluding the emissions from draft animals, the 
global average methane emission intensity for buffalo meat and milk, which is essentially only produced 
in Asia and some European countries, ranges from 2.0-3.0 kg CH4 per kg of protein. Accounting for all the 
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above seven major protein-producing livestock, globally the weighted average emission intensity ranges 
from 1.0-1.3 kg CH4 per kg of protein (Figure 2).

For ruminant products, intensity differences between regions are mainly due to differences in productivity, 
themselves explained by differences in diet and/or grazing intensity, with a less nutritious/digestible diet 
(e.g., low protein and high fiber) and/or more extensive grazing (ruminants only) leading to higher emis-
sions. However, for swine and poultry, it is the management of manure that dominates methane emissions, 
and regional differences in emission intensities depend on climate (with warmer climate enhancing emis-
sions) and the manure management system. The choice of a method to calculate emissions, affects the glob-
al and regional emission intensity per kg of protein for each livestock product, with the strongest differences 
being for poultry (Figure 2). The differences in intensities between regions and between livestock categories 
can also have different signs across the different methods (i.e., not always higher or lower intensities from 
one method compared to another).

During the past two decades, the emission intensity decreased for most livestock categories at the glob-
al scale (but not in all countries), indicating an increasing protein-production efficiency (Figure 3). The 
emission intensity for meat and other non-dairy cattle, however, shows slight changes. Using the 2019 MT 
method, globally the weighted average emission intensity of the seven major protein-producing livestock 
categories decreased by 9% (Figure 3). The attribution shows that 30% of the changes are due to changes in 
the emission per kg of protein of different livestock categories, while 66% are due to changes in the mixture 
of livestock categories. The latter comes from the faster increase in protein from poultry with low emission 
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Figure 2. Livestock CH4 emission intensities (including enteric fermentation and manure management emissions) per kg of protein produced during the 
period 2014–2018 for major livestock categories. Emissions from draft animals were excluded from the calculation. Regions are classified following the 
definition of the FAO Global Livestock Environmental Assessment Model (GLEAM): NAM, North America; RUS, Russia; WEU, western Europe; EEU, eastern 
Europe, NENA, Near East and North Africa; EAS, eastern Asia; OCE, Oceania; SAS, south Asia; LAC, Latin America and Caribbean; SSA, Sub-Saharan Africa.
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intensities (+51% between 2000–2004 and 2014–2018) than that from ruminants with high emission inten-
sities (+28% between 2000–2004 and 2014–2018; Figure S7). Using the 2006 or 2019 T1 methods, however, 
larger decreases in the weighted average emission intensity were estimated (around 14%), and they were 
mainly attributed to changes in the emission intensities per kg of protein of different livestock categories 
(53%).

It is noteworthy that the intensity changes obtained using the 2019 MT method usually show smaller de-
creases, or even increases in emission intensities per protein production than the estimates using the other 
two methods (Figure 3). The estimates using the 2006 or 2019 T1 methods consider the fixed emissions per 
head of livestock, and underestimate the increasing trend of total emissions caused by the increasing yield 
and liveweight (Figure 1b). Thus, with an increasing trend of protein production per head of livestock in 
reality, using the 2006 or 2019 T1 methods partly overestimates the decreasing trend from emission intensi-
ties per protein production. Our results highlight the key role of accounting for methane emissions due to 
productivity and liveweight changes (as in the 2019 MT method) in capturing the temporal changes in the 
emission intensities per protein production.

The changes in the weighted average emission intensity vary between regions (Figure 3). The largest rel-
ative decrease was found in Russia, followed by Eastern Europe, South Asia, and Oceania. In contrast, 
Sub-Saharan Africa only shows a slight decrease (3%). In North America, Western Europe, Russia, and Latin 
America, the decrease is mainly (>66%) due to the changes in the mixture of livestock categories, with faster 
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Figure 3. Relative changes in livestock CH4 emission intensities per kg of protein produced from 2000–2004 to 2014–2018 for major livestock categories. For a 
livestock category, the changes between the two periods were expressed as percentage change of emission intensities during 2014–2018 compared to that during 
2000–2004. For the seven major livestock categories together, the net changes in emission intensities (black points) were attributed: (1) to the changes due to the 
changes in emission intensity of each livestock category; (2) to the changes in the livestock composition; and (3) to the residual between the net changes and 
the sum of (1) and (2). Emissions from draft animals were excluded from the calculation.
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increases in protein from pigs and poultry with low emission intensities than in ruminants with high emis-
sion intensities. In the Near East and North Africa, Eastern and Southeast Asia, and Oceania, the decrease 
is mainly (>63%) due to the changes in the emission per kg of protein of different livestock categories. These 
widespread decreases in regional emission intensities observed in the past two decades imply the potential 
of improving production efficiency to mitigate livestock emissions.

5. Future Projections of Livestock Methane Emissions
Combining the category-specific methane emission intensities per kg of protein (dairy cows, meat and other 
non-dairy cattle, buffaloes, sheep, goats, swine and poultry) and the FAO’s projections on future livestock 
production (FAO, 2018), we projected future livestock methane emissions up to 2050 under different so-
cio-economic scenarios (see Methods).

Assuming constant emission intensities, as in the period 2014–2018 (referred to as “Constant intensity” 
pathway), and keeping emission intensities values from the new 2019  MT method, the global livestock 
methane emissions were projected to increase by 51%–54% from 2012 to 2050 under different socio-eco-
nomic scenarios (FAO, 2018) (i.e., reach 186–191 Tg CH4 yr−1 in 2050; Figure 4a). The relative increases are 
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Figure 4. Projections of global livestock methane emissions under different socio-economic scenarios and emission intensity change pathways (a–c), emission 
contribution of each livestock category (d), and each livestock category’s share of contribution to emission reduction from improving efficiency (e). Socio-
economic scenarios: Business As Usual (BAU), Stratified Societies (SS), and Toward Sustainability (TS). Emission intensity change pathways: Constant emission 
intensity per kg protein and improving efficiency with decreasing emission intensity per kg protein.
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similar with the 2006 T1 (46%–52%) and 2019 T1 methods (51%–53%; Figures 4b and 4c) because of the same 
changes in protein production from the FAO (2018) and constant emission intensities in this projection.

For the past two decades, we have shown in the previous section that methane emission intensity per kg 
protein for various livestock categories in each region has been observed to decrease (Figure 3; Figure S8) 
following the increases in productivity. The changes in productivity could be empirically related to the 
development of GDP per capita. Country-specific past trends in emission intensity for major livestock cate-
gories were estimated from regressions between the emission intensity and GDP per capita (see Section 2.6, 
and Figure S9 as examples). In the “Improving efficiency” pathway (i.e., decreasing emission intensity per 
kg of protein), we assumed the following: (a) a continuation of the country-specific past trend with the 
development of GDP per capita for countries showing decreasing emission intensity during the past two 
decades; and (b) constant emission intensity for countries with no changes or increasing emission intensity 
in the past (Figure S8). We find that this reasonable scenario of “Improving efficiency” (e.g., Figure S10) 
can reduce future livestock emissions by a large amount compared to baselines where intensity is constant 
in the future (Figure 4d). Global livestock methane emissions were projected to increase by only 15%–21% 
from 2012 to 2050 using the new 2019 MT method (reach 143–150 Tg CH4 yr−1 by 2050; Figure 4a). Similar 
relative increases were estimated using the 2006 T1 (15%–19%) and 2019 T1 methods (14%–18%; Figures 4b 
and 4c). Additional sensitivity projections were conducted with a continuation of the country-specific past 
trend with the development of GDP per capita allowing both increasing or decreasing emission intensity in 
the future (see Methods). Global livestock methane emissions were projected to increase from 2012 to 2050 
by 34%–35%, 30%–33%, and 31%–33% using the 2019 MT, the 2019 T1, and the 2006 T1 methods, respectively 
(Figure S11).

The higher emission intensities per kg of protein from either the 2019 MT or the 2019 T1 method, com-
pared to the 2006 T1 method, led to projections of larger livestock methane emissions in the future, for a 
given scenario of livestock numbers and production from the FAO (2018). The projections using the new 
2019 MT and 2019 T1 methods are 18%–21% and 24%–28% higher, respectively, than that given by the 2006 
T1 method (Figures 4a–4c). Moving to the methodology of the 2019 IPCC Refinement(IPCC, 2019) is im-
portant, as the differences can be substantial, particularly in regions such as Sub-Saharan Africa, Near East 
and North Africa, and South Asia, where large positive trends on livestock production (Figure S12) and 
emissions (Figure S13) are projected in the future scenarios. In the SSP database (Riahi et al., 2017) (https://
tntcat.iiasa.ac.at/SspDb/), the projections for greenhouse gas emissions by Integrated Assessment Models 
(IAMs) were first harmonized for a base year of 2015 to the historical inventory from FAOSTAT. Our results 
suggest that using historical emissions from the FAOSTAT as a reference in the IAMs underestimates future 
emissions. The updated historical emissions by the 2019 MT and 2019 T1 methods in this study could be 
used as references in the IAMs. We further provided alternative pathways on emission intensity per kg of 
protein production based on country-specific past trend with the development of GDP per capita. They can 
be considered as supplementary scenarios of emission intensities for the IAMs projections.

6. The Key Role of Production Efficiency Changes in Emission Mitigation
While we found that the differences in the projections among different socio-economic scenarios are small 
(Figures 4a–4c), global livestock methane emissions under the TS scenario were projected to be lower than 
those under the BAU and SS scenarios. This is due to the similar global ruminant protein production (as 
dominant methane emitters) across the three socio-economic scenarios by 2050 (Figure S12). At the same 
time, the continuation of the past decreases in emission intensity provides large potential to mitigate live-
stock emissions (Figures  4a–4c). The estimated mitigation can be mainly contributed by the efficiency 
change for dairy cows (contributing 38%–46% of the total reduction by 2050; Figure 4e and Figure S14) 
followed by meat and other non-dairy cattle (contributing 22%–33% of the total reduction by 2050). Sheep, 
goats, and swine also contributed a significant share of the emission reduction, ranging between 5% and 
13% of the total reduction by 2050.

Livestock productivity of milk and beef in most developed countries is already high nowadays (methane 
emission intensity is already low; Figure 2), and there is only little room for methane reduction through 
productivity increase (Figure S10). On the other hand, further productivity increase requires high shares 
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of concentrates (i.e., potential competition with human nutrition from 
plant-based food [Gill et al., 2010]) and encounters potential health prob-
lems in cows (see review by Herzog et al., 2018). In addition, the inten-
sive livestock breeding and management have resulted in fragile systems 
that do not adequately handle their manure, causing air and water pol-
lution. There is a trend that some developing countries are moving from 
high efficiency systems toward more extensive livestock systems (such as 
“free range” chicken and grass-fed beef; e.g., Cheung & McMahon, 2017). 
Therefore, there is a possibility that the emission intensity per kg of pro-
tein in those developed countries will increase, which is the opposite of 
our assumption of constant decreasing emission intensity.

The potential is the largest in developing countries where the current 
efficiency is low (i.e., emission intensity per kg protein is high) and a 
large increase in livestock production is projected. For example, in our 
projections under the BAU scenario, 60%–65% of the global reduction 
in livestock emissions by 2050 due to improving efficiency (compared to 
baselines where intensity is constant in the future) can be contributed by 
the top 10 countries with the largest reduction potential (Figure 5 and 
Figures  S15–S17). Most of them are the developing countries in Asia, 
South America, and Africa.

The continuation of past decreases in emission intensity, especially in 
developing countries, can be achieved through the transition of livestock 
production systems from extensive rangeland systems to mixed crop-live-
stock systems (Frank et al., 2018; Havlík et al., 2014), and through im-
proving livestock management within the existing systems (Thornton & 
Herrero, 2010). Various factors can contribute to such a transition: for in-
stance, better breeding, fertility and health intervention (Gill et al., 2010), 
better quality feed (Gill et al., 2010; Johnson & Johnson, 1995), and op-
timization of grazing management (e.g., forage storage to avoid losing 
weight in winter [Thornton & Herrero, 2010]). In addition, new technol-

ogies, such as feed supplements, can also reduce methane emissions from rumen (Caro et al., 2016; Gerber, 
Hristov, et al., 2013), while methane emissions from manure management can be mitigated through various 
options, such as improving housing systems, manure storage, composting, and anaerobic digestion (Gerber, 
Hristov, et al., 2013). However, there are adaptability issues and side-effects that must be considered when 
implementing these strategies. For example, breeding practices from temperate regions may not adapt well 
to the warm conditions in Africa. A shift in productivity might involve an increase in the consumption of 
grain-based feed and/or high-quality fodder in the diet, but it can also be effectively achieved through bet-
ter roughage quality and better grazing management. For example, in semi-arid regions where increasing 
crop production for feeding livestock is impossible due to water limitations (e.g., central Asia), improving 
grazing management to increase productivity should be prioritized as a sustainable solution rather than 
moving from low to industrialized systems (i.e., landless livestock systems with livestock fed by grain-based 
feed and/or high-quality fodder). Improving livestock production efficiency should always be in line with 
the natural circumstances in the respective region. The optimal strategy should also consider other relevant 
sustainability goals such as biodiversity, water pollution through nutrient runoff, and potential implications 
for livelihoods and resilience to climate change impacts.

Our results highlight the fact that (a) efforts on the demand-side to promote balanced, healthy and envi-
ronmentally sustainable diets in most counties, as assumed in the TS scenario (FAO, 2018), will not be suf-
ficient for livestock methane emission mitigation without parallel efforts to improve production efficiency 
and decrease the emission intensity per unit protein produced; and (b) efforts to decrease emission intensity 
should be prioritized in a few developing countries with the largest mitigation potential.
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Figure 5. Projections on the increase in protein production, methane 
emission, and the effects of improving efficiency on reducing livestock 
methane emissions for all livestock under Business As Usual (BAU) 
scenarios, resulting from the 2019 MT method. The black lines indicate 
the protein production (x-axis) and methane emission (y-axis) from 2012 
(start of black lines) to 2050 (dots). The arrows indicate the emission 
reduction potential by 2050 due to improving efficiency compared to the 
baseline where emission intensity is constant in the future. Results for the 
top 10 countries/areas with the largest mitigation potential for all livestock 
were presented, with their ISO3 country codes (http://www.fao.org/
countryprofiles/iso3list/en/) annotated near the dots or arrows. The red-
yellow-violet color scheme represents the mitigation potential from large 
to small. The number presented in percentage indicates the contribution 
of these 10 countries/areas in global total mitigation potential. Countries/
areas were presented as ISO3 country codes.
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