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a b s t r a c t

In abnormal optimal control problems it is necessary to basically ignore the objective for certain state
values in order to be able to determine the optimal control. In the past, abnormal problems were
considered to be degenerated problems that did not fit to any real application. In the present paper
we discuss reasons for the occurrence of abnormality. We show that abnormality can be an integral
part of a meaningful problem rather than to be a sign for degeneracy.

© 2021 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
s

i
t
c

1. Introduction

In his often-quoted paper Halkin [1] presents a relatively
imple infinite time horizon problem with free end-state that is
bnormal. In particular, this means that the Lagrange multiplier
orresponding to the objective function in the Hamiltonian, which
s often denoted by λ0, is equal to zero. In finite dimensional
ptimization it was John [2] who formulated Lagrange’s rule in
ase that no conditions on the constraints are specified. Since
hen much effort has been undertaken to find so called constraint
ualifications, cf. [3–7], that guarantee the existence of regular
agrange-multipliers, i.e. λ0 = 1. Results on this topic can also
e found for the infinite dimensional optimization problems and
bstract constraints, see e.g. [8–10]. But in its generality these
onditions are hard to verify.
In optimal control theory normality can be guaranteed for

inite time and free end-state problems. However, normality does
ot need to hold for infinite time horizon problems with free end-
tate. Halkin [1] shows that even relatively simple problems can
e abnormal, if the time horizon is increased to infinity.
Nonetheless, abnormality in real applications seems to occur

nly in degenerate cases and it was thought that it relates to an
ll posed model. The fact that in the abnormal case the objective
unction does not play any role in the optimization process seems
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convincing for the latter viewpoint. In this note we design and an-
alyze an optimal control model about the optimal accumulation
of reputation. We show that abnormality is an integral part and
not a sign for degeneracy.

The paper is structured as follows. Section 2 discusses the
occurrence of abnormality in Halkin’s example. In Section 3 we
consider a model dealing with the accumulation of reputation.
Section 4 concludes.

2. Halkin’s example

We start with Halkin’s example and carry out the details
leading to abnormality. We also shortly discuss a possible modi-
fication of this example, which reveals more clearly the cause for
abnormality.

In Halkin [1] the following stylized model

max
u(·)

{∫
∞

0
(u(t) − x(t))dt

}
(1a)

.t. ẋ(t) = u(t)2 + x(t) (1b)

− 1 ≤ u(t) ≤ 1, for all t (1c)

x(0) = x0, (1d)

s used to show that optimal control problems over an infinite
ime horizon with free end state are not necessarily normal
ontrary to finite time horizon problems. Note that in Halkin [1]
he problem is only considered for x = 0.
0
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To derive the necessary optimality conditions we consider the
Hamiltonian function

H(x, u, λ, λ0) := λ0(u − x) + λ(u2
+ x), (2a)

and the Lagrangian

L(x, u, λ, ν1, ν2, λ0) := H(x, u, λ, λ0)+ν1(u+1)+ν2(1−u), (2b)

together with the derivatives

Hu(x, u, λ, λ0) = λ0 + 2λu, (2c)

Hx(x, u, λ, λ0) = −λ0 + λ. (2d)

or an optimal solution (x∗(·), u∗(·)) the maximizing condition
∗(t) = argmax

−1≤u≤1
H(x∗(t), u, λ(t), λ0) (2e)

yields

u∗(t) =

⎧⎪⎪⎨⎪⎪⎩
−1 for λ0 − 2λ(t) ≤ 0

−
λ0

2λ(t)
for − 1 ≤

λ0

2λ(t)
≤ 1

1 for λ0 + 2λ(t) ≥ 0.

(2f)

or x0 = 0 it is immediately clear that the optimal solution is
x∗(·), u∗(·)) = (0, 0). The reason is that for this solution the
bjective value is equal to zero, whereas for every other choice
f the control u the objective value is strictly negative.
Now it is important to realize that, when taking Eq. (2f) into

ccount, we find that u = 0 can only be achieved for λ0 = 0
r λ(·) = −∞. The latter choice is not an absolutely continuous
unction, as is required by the necessary optimality conditions.
hen we are left with λ0 = 0, implying that the problem is

abnormal.
For x0 > 0 the optimal solution is (x∗(·), u∗(·)) = (et x0, 0).1

The same argument as for x0 = 0 yields that the problem is
abnormal.

It follows that for problem (1) the objective value depends on
x0, where it is discontinuous at x0 = 0 :

V ∗(x0) =

{
0 x0 = 0
−∞ x0 > 0.

(3)

This model is degenerate in the sense that the state diverges
and the objective value immediately jumps from zero to minus
infinity.

3. A model with self-enforcing reputation

Let x(t) be the reputation of the decision maker at time t .
he decision maker wants his or her reputation to be high and
herefore the objective is to maximize the discounted stream of
eputation values over time:

ax
u(·)

{∫
∞

0
e−rt x(t)dt

}
, (4a)

n which r is the discount rate and the control variable u(t) stands
or networking efforts by which the decision maker can improve
eputation over time.

The development of reputation over time is influenced by
hree effects. First, reputation is positively influenced by the
etworking efforts with the amount of u(t)x(t), which are thus

assumed to be more effective when reputation is already large.
Second, there is a depreciation or forgetfulness effect due to
which reputation decreases by the amount ax(t), in which a is
the constant depreciation rate or rate of forgetfulness. Third,

1 The technical details can be requested from the authors.
 i

2

reputation has a self-enforcing effect, x(t)2 see, e.g. [11], due to
which a sufficiently large reputation grows without any efforts
by the decision maker (e.g. due to word-of-mouth propagation
or the so-called Matthew effect), namely when x exceeds the
depreciation rate a. Adding up the three effects results in the
following state equation2:

ẋ(t) = x(t)(x(t) − a + u(t)). (4b)

The decision maker’s capacity related to networking efforts is
bounded, for instance because there are only a restricted number
of hours per day that can be spend on networking. In order to
limit the number of possible scenarios we assume that network-
ing capacity falls below the rate of depreciation, implying that for
the control variable u(t) it holds that

0 ≤ u(t) ≤ umax < a, for all t (4c)

If reputation gets to very high levels, at some point a situation
arises where reputation cannot increase further. Then the deci-
sion maker is known to ‘‘everybody being relevant’’. To account
for this in the model we introduce a fixed upper bound A so that

0 ≤ x(t) ≤ A, for all t (4d)

The optimal control model consists of the expressions (4a)-(4d).
To guarantee that the maximum reputation level A can be
reached, we introduce the additional assumption

0 ≤ a − A ≤ umax. (4e)

Noting that the usage of control is costless3 and that it is ad-
vantageous to stay at the highest possible state value, an optimal
control is

u(t) =

{
umax 0 ≤ x(t) < A
a − A x(t) = A.

(5)

From this result the following proposition follows directly.

Proposition 1. Problem (4) can be reformulated as a free end-time
problem with the objective function

V (u(·), x0) :=

∫ T

0
e−rt x(t)dt +

e−rT

r
x(T )

∗(x0) := max
u(·)

V (u(·), x0) (6a)

atisfying the state dynamics (4b), control constraint (4c) and the
nd constraint

(T ) ≤ A. (6b)

or initial values satisfying a − umax < x0 ≤ A the optimal solution
x∗(·), u∗(·)) is

∗(t) =
x0(a − umax)

x0 + e(a−umax)t ((a − umax) − x0)
, 0 ≤ t ≤ T (7)

nd
∗(t) = umax, 0 ≤ t ≤ T

ith

=
1

(a − umax)
ln
(
x0(umax − a + A)
A(umax − a + x0)

)
.

2 In case the decision maker is a scientist, the state variable x represents the
oodwill that a scientist receives within his or her peer community. If we link
ur model to a marketing application, we can argue that Eq. (4b) extends the
tate equation of the classic Nerlove–Arrow model for goodwill accumulation,
ee [12], by a term accounting for the self-enforcing effect.
3 On the one hand networking, for instance by visiting a conference, is costly,
ut on the other hand it is also rewarding meeting old friends and so on. So
mplicitly we assume that costs and rewards cancel out in our model.
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or initial values satisfying 0 ≤ x0 ≤ a − umax the optimal solution
is

x∗(t) =
x0(a − umax)

x0 + e(a−umax)t ((a − umax) − x0)
, 0 ≤ t < ∞

nd
∗(t) = umax, 0 ≤ t < ∞.

Note that for the free end-time problem (6) two cases have to
be distinguished, namely T < ∞ and T = ∞, yielding different
transversality conditions, see also [13] and [14].

Proof. We already argued that the optimal control is umax as
long as x(t) < A is satisfied. Solving state equation (4b) with this
control value we find

x(t) =
x0(a − umax)

x0 + e(a−umax)t ((a − umax) − x0)
, t ≥ 0. (8)

For 0 ≤ x0 < a−umax the dynamics (4b) is strictly negative. Thus,
x(t) in Eq. (8) converges to zero and exists for the every t ≥ 0.
For x0 = a − umax Eq. (8) shows that the solution stays put at
x(t) = a − umax.

For a − umax < x(0) ≤ A, there exists a time T ≥ 0 with

T =
1

(a − umax)
ln
(
x0(umax − a + A)
A(umax − a + A)

)
nd x(T ) = A.4 Plugging this solution into the objective function
4a) yields Eq. (6a) under the condition (6b). □

.1. Necessary optimality conditions

We start out presenting the current value Hamiltonian

(x, u, λ, λ0) := λ0x + λx(x − a + u),

nd the Lagrangian

(x, u, λ, ν1, ν2, λ0) := H(x, u, λ, λ0) + ν1u + ν2(umax − u) (9a)

ogether with the derivatives

u(x, u, λ, λ0) = xλ,

x(x, u, λ, λ0) = λ0 + λ(2x − a + u).

hen the Maximum Principle, see e.g. Seierstad and Sydsæter
15], yields

∗(t) =

⎧⎨⎩
0 for ν1 = −Hu > 0
[0, umax] for Hu = 0
umax for ν2 = Hu > 0

(9b)

˙ (t) = λ(t)(r − 2x(t) − u(t) + a) − λ0. (9c)

sing Proposition 1 the necessary optimality conditions for A ≥

(0) > x̃ := a − umax are those for a finite time horizon problem
ith fixed end state x(T ) = A. Therefore the costate at time T

s free. Since the optimal control is umax the costate at T has to
atisfy condition (9b) yielding

(T ) ≥ 0. (9d)

pecifically we can chose

(T ) = 0. (9e)

or the optimal solution over an infinite time horizon T = ∞ the
ollowing limiting transversality condition has to hold

lim
t→∞

e−rt λ(t) = 0. (9f)

4 For the numerical example we set a = A = 2.
3

A more general formulation of the limiting transversality condi-
tion can be found in Aseev and Veliov [16].

Next we analyze the geometric properties of the Stalling Equi-
librium x̃ > 0, which is a steady state at which effort is at its
aximum (see Feichtinger et al. [11]).
Due to the assumption umax < a, it follows from equation (4b)

hat the Stalling Equilibrium with x̃ = a−umax > 0 always exists.

.2. Stalling equilibrium

In this section we consider problem (4) for x(0) = x̃ and the
ccording equilibrium solution. We see that the adjoint equa-
ion (9c) exhibits an equilibrium λ̃ at x̃. The properties of the
quilibrium (x̃, λ̃) in the state–costate space are:

˜ := a − umax (10a)

˜ :=
λ0

r − x̃
. (10b)

t the Stalling Equilibrium the maximizing condition (9b) yields
or λ0 > 0:

u(x̃, umax, λ̃) =
λ0x̃
r − x̃

⎧⎨⎩
< 0 for r < x̃
undefined for r = x̃
> 0 for r > x̃.

(10c)

hus, for r ̸= x̃ the equilibrium (x̃, λ̃) exists and the according
acobian J̃ is given as

˜ =

(
x̃ 0

−2λ̃ r − x̃

)
. (10d)

his matrix exhibits the eigenvalues

1 = x̃ > 0, ξ2 = r − x̃ ⪋ 0 (10e)

nd eigenvectors

1 =

(
(r − x̃)(r − 2x̃)

2

)
, ν2 =

(
0
1

)
. (10f)

he eigenvalue ξ1 > 0 is always strictly positive and hence
orresponds to an unstable direction. The sign of the eigenvalue
2 depends on the relation between the discount rate r and the
ize of the Stalling Equilibrium x̃.

.3. Solution structure

From (10c) we obtain that the relationship between the
talling Equilibrium x̃ and the discount rate r is crucial. Therefore,
e have to distinguish between the cases where r is larger or
maller than x̃. The following proposition states necessary and
ufficient conditions for abnormality of problem (6).

roposition 2. Problem (6) is abnormal iff x(0) = x̃ and r − x̃ ≤ 0.

Proof. We already carried out, why for every 0 ≤ x(0) ≤ A an
optimal control is u∗(·) ≡ umax. Therefore x(·) satisfies a logistic
quation, converging to zero for x(0) < x̃, or (for infinite T )

diverging to infinity for x(0) > x̃ and staying at x̃ for x(0) = x̃.
The costate path corresponding to x(·) is given as

λ(t) = e
∫ t
0 (r+x̃−2x(s))ds

(
λ(0) − λ0

∫ t

0
e
∫ s
0(r+x̃−2x(z))dz ds

)
. (11)

oreover we note that an admissible equilibrium
(
0,

λ0

r + x̃

)
exists, with the Jacobian

Ĵ =

(
−x̃ 0

−2
λ0 r + x̃

)
.

r + x̃
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Ĵ has a negative ξ1 = −x̃ and positive ξ2 = r + x̃ eigenvalue
nd hence exhibits a stable saddle path (xs(·), λs(·)), which exists

on the interval [0, x̃). The stable path is the only solution that
satisfies the limiting transversality condition (9f). Due to the
representation of the costate path (11) (xs(·), λs(·)) with xs(0) < x̃
satisfies

lim
t→∞

λs(t) =
λ0

r + x̃
> 0

nd

s(0) = lim
t→∞

λ0

∫ t

0
e
∫ s
0(r+x̃−2xs(z))dz ds,

where the term on the RHS is strictly increasing, implying

λs(0) > λ0

∫ t

0
e
∫ s
0(r+x̃−2xs(z))dz ds, for all t ≥ 0.

Therefore the optimality conditions

ν2(t) = Hu(xs(t), umax, λs(t), λ0) = xs(t)λs(t) > 0

are satisfied for all t ≥ 0, yielding that for every 0 ≤ x(0) < x̃ the
optimal solution is normal.

For x̃ < x(0) ≤ A the constraint value A is reached in finite
time. Again using the representation (11) we can choose λ(0) such
that the adjoint equation (9c) together with the transversality
condition (9e) for λ0 = 1 is satisfied and hence the problem is
normal.

Finally we have to analyze the case x(0) = x̃ and therefore we
consider the cases r − x̃ ≶ 0 and r − x̃ = 0.

Case r− x̃ < 0. The equilibrium (x̃, λ̃) is not admissible for λ0 > 0.
This is because λ̃ < 0 and hence the maximizing condition (9b)
for umax is violated since Eq. (10c) yields for λ0 = 1

ν2 = Hu(x̃, umax, λ̃, λ0) < 0. (12)

In Section 3.2 we showed that for r − x̃ < 0 the equilibrium is
a saddle point (see Eq. (10e)) and the vertical line is the stable
manifold (see Eq. (10f)). This situation is depicted in Fig. 1(a).
The maximized objective value for different initial state values
is shown in Fig. 2(a).

To show that the problem is abnormal we have to prove that
no costate path λ(·) exists that satisfies the adjoint equation (9c)
and the maximizing condition (9b) for u = umax. To the contrary
let us assume that λ(·) exists such that

ν2(t) = Hu(x̃, umax, λ(t), λ0) = λ(t)x̃ ≥ 0, for all t ≥ 0. (13a)

Representation (11) reduces to

λ(t) = e(r−x̃)t
(

λ(0) +
λ0

r − x̃

(
e(x̃−r)t

−1
))

hus, time t , such that λ(t) = 0 for some λ(0) > 0 yields

t =
1

x̃ − r
ln
(
1 +

λ(0)(x̃ − r)
λ0

)
. (13b)

To satisfy the non-negativity condition (13a) expression (13b) has
to be infinite. Due to r − x̃ < 0 this can only be satisfied if λ0 = 0
or λ(0) = ∞. Analogous to Halkin’s example this yields that the
problem is abnormal.

Case r − x̃ = 0. In that case the costate dynamics (9c) reduces to

λ̇(t) = −λ0 yielding the solution λ(t) = λ(0) − λ0t

and therefore ts =
λ(0)
λ0

,

where ts is the time, when λ(ts) becomes zero and hence is
not admissible for t > t in the sense that inequality (13a)
s

4

is violated. Thus for any λ(0) > 0 and λ0 = 1 the solution
is not admissible for a large enough t . Therefore the necessary
optimality conditions are only satisfied if λ0 = 0 or λ(0) = ∞.
This implies that the problem is abnormal.

Case r − x̃ > 0. In that case the equilibrium (x̃, λ̃) is admissible
and is an unstable node, see Fig. 1(b). Thus, it is a threshold point
separating the solutions converging to the origin or moving to
A and staying there and the necessary optimality conditions hold
for λ0 = 1, yielding the normal case, which finishes the proof. □

Note that results in Basco et al. [17] would suggest that the
necessary conditions are normal for each x(0), thus also when
x(0) = x̃. However, the analysis of Basco et al. [17] is based on
Lipschitz continuity.

In the next proposition we show that for sufficiently small
values of r and for x0 = x̃ the value function V ∗(x0) of problem
6) is not Lipschitz continuous at x̃. This result is a consequence
f the abnormality at x0 = x̃ and is illustrated in Fig. 2.

roposition 3. For 0 ≤ r ≤ x̃ the value function V ∗(x0) is not
ipschitz continuous at x0 = x̃.

roof. To show that the value function V ∗(x0) is not Lipschitz
ontinuous at x̃ we calculate the left side derivative of Eq. (7).
his yields for 0 ≤ x0 ≤ x̃

(t) =
x0x̃

x0 + ex̃t (x̃ − x0)
nd hence

∗(x0) =

∫
∞

0

e−rt x0x̃
x0 + ex̃t (x̃ − x0)

dt.

his value is finite for every (admissible) x0 satisfying

lim
0→x̃

V ∗(x0) = V ∗(x̃) =
1
r
x̃.

For x0 < x̃ the derivative of V ∗(x0) with respect to x0 exists and
is given by

∂

∂x0
V ∗(x0) =

∫
∞

0

e(x̃−r)t x̃2

x0 + ex̃t (x̃ − x0)2
dt.

or x0 = x̃ and r ≤ x̃ we find

lim
0→x̃

∂

∂x0
V ∗(x0) =

∫
∞

0
e(x̃−r)t x̃dt = ∞. □

The next proposition shows that for r > x̃ the first variation
f the objective function V (x̃, u(·)) at the Stalling Equilibrium x̃
xists, and the first order necessary optimality conditions can be
pplied. For r ≤ x̃ the first variation does not exist and hence the
irst order necessary optimality conditions cannot be applied in
ts normal form.

roposition 4. The first variation δV (x̃, δu(·)) with

V (x̃, δu(·)) :=
d
dε

V (x̃, umax + εδu(·))
⏐⏐⏐⏐
0+

, δu(·) ∈ U

ith

:= {v(·): [0, ∞) → R−

0 , measurable and ess inf v(·) > −∞},

(14)

atisfies for δu(·) being essentially different from zero

V (x̃, δu(·)) ∈

{
R− r > x̃
{−∞} r ≤ x̃.

(15)
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roof. Let x(·, x̃, ε) be the solution of the state equation (4b) with
max + εδu(·), starting at x̃, i.e.

˙(t, x̃, ε) = x(t, x̃, ε)(x(t, x̃, ε) − x̃ + εδu), x(0, x̃, ε) = x̃. (16)

ue to the continuous differentiability of the dynamics (16),
(·, x̃, ε) is differentiable with respect to ε and satisfies the ODE

˙ε(t, x̃, ε) = (2x(t, x̃, ε) − x̃ + εδu)xε(t, x̃, ε) + δu.

valuated at ε = 0 this yields the ODE

˙ε(t, x̃, 0) = x̃xε(t, x̃, 0) + δu. (17)

olving ODE (17) we find for xε(0, x̃, 0) = 0

ε(t, x̃, 0) = ex̃t
∫ t

0
e−x̃s δu(s)ds.

ince the integral (4a) is finite for every T and the integrand is
ontinuously differentiable, integration and differentiation can be
nterchanged yielding

d
dε

∫ T

0
e−rt x(t, x̃, ε)dt =

∫ T

0
e−rt xε(t, x̃, ε)dt.

Evaluated at ε = 0 and for x̃ − r > 0 this yields∫ T

0
e−rt xε(t, x̃, 0)dt =

∫ T

0
e(x̃−r)t

∫ t

0
e−x̃s δu(s)ds.

Partially integrating the last integral we get

∫ T

0
e(x̃−r)t

∫ t

0
e−x̃s δu(s)ds =

e(x̃−r)T

x̃ − r

∫ T

0
e−x̃t δu(t)dt−

1
x̃ − r

∫ T

0
e−rt δu(t)dt.

ince according to Eq. (14) δu(·) is essentially bounded, the inte-
rals converge and the limiting behavior depends on the term in
ront of the first integral, i.e.

lim
→∞

e(x̃−r)T

x̃ − r
=

{
∞ x̃ − r > 0
0 x̃ − r < 0.

(18)

For x̃ − r = 0 we argue analogously∫ T

0
e−rt xε(t, x̃, 0)dt =

∫ T

0

∫ t

0
e−rs δu(s)ds

= T
∫ T

e−rt δu(t)dt −

∫ T

t e−rt δu(t)dt. (19)

0 0

f

5

The integrals converge since δu(·) is essentially bounded.
Summing up we find for δu(·) being essentially different from

zero

lim
T→∞

∫ T

0
e−rt xε(t, x̃, 0)dt ∈

{
R− r > x̃
{−∞} r ≤ x̃

which completes the proof. □

The first remark stresses the importance of the infinite time
horizon for the appearance of an abnormal solution.

Remark 3.1. The infinite time horizon is crucial. Otherwise, for
some fixed finite time T , we could chose λ(0) large enough, such
hat λ(T ) ≥ 0 satisfies the transversality condition and hence
ields Hu(t) ≥ 0 for t ∈ [0, T ].

In the second remark we give a more intuitive explanation for
bnormality in problem (4) and its difference to the normal case.

emark 3.2. Fig. 2(a) shows that a solution ending at A gives
significantly higher value than a solution ending up at zero.
ue to the control constraint u ≤ umax, however, reaching A is
nly possible for x(0) > x̃. Exactly at x̃, setting u ≤ umax is
ust sufficient to keep x equal to x̃ forever. This implies that an
nfinitesimal increase of x at x̃ would make a solution of reaching
possible, which would result in a significant value increase. This
alue increase translates into an infinite value of the costate, as
s confirmed by the blue trajectories in Fig. 1(a). The maximum
rinciple does not allow infinite costate values, which is the
eason that the abnormal problem applies for x(0) = x̃.

An important difference with Fig. 2(a) is that in Fig. 2(b) the
alue function is smooth, especially also at the Stalling Equilib-
ium x̃. Still it is the case that solutions ending at A have a higher
alue but differences with the alternative solutions, like staying at

˜ or converging to zero are not that large. The reason is that future
roceeds are to a large extent discounted away. Note that what
istinguishes the scenario of Fig. 2(b) from Fig. 2(a) is the large
iscount rate. The smoothness of the value function implies that
he costate value is finite at x̃, so that considering the abnormal
olution is not needed here.

. Conclusion

In the present paper we saw that the presence of constraints
an lead to the occurrence of abnormal behavior. The essential

eature of these problems is that at a certain point in the state
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Fig. 2. The graphs of this figure show the maximized objective value for r = 0.03 and r = 2 in dependence of x0 with A = a = 2. The solutions of the different
cases, ending at zero and ending at a are represented by the different colors blue and green. This graphs are connected by the solution staying at x̃ = 1, the value
of the Stalling Equilibrium. The corresponding derivatives of the objective function with respect to the state yielding the shadow price denoted by the costate λ are
epicted in Fig. 1. For r = 0.03 the optimal objective value is not differentiable in the Stalling Equilibrium x̃, and since the derivative diverges, it is not Lipschitz

continuous in this point (see Proposition 3). For r = 2 the optimal objective value is continuously differentiable for every initial x0 in the state space [0, A]. (For
interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
space the decision maker would like to steer the system into a
favorable direction, but is not able to as the control does not
have the desired impact on the state dynamics. This property is
something that can occur in economically meaningful problems
e.g. in environmental or health economics, marketing, capital
accumulation etc. Therefore, the possibility of abnormality must
not be neglected in models exhibiting this feature as it is a central
part of the underlying problem.
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