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Here we consider one special problem of linkage which was used as a frame- 
work for the analysis of the steady-state of a large dynamical model describing 
the processes of growing and using wood on a particular example of Finland. 

A short description of the dynamical model is given together with the static 
linear linkage problem which represents the stationary state of the general 
model. The technique of nondifferentiable optimization was applied for solving 
this problem. A new method of subgradient type is discussed, results of compu- 
tation are given which show its good convergence characteristics. 



A Method of Nondifferentiable Optimization 
Applied to the Problem of Finnish Forestry 
and Forest Industrial Sector Development 

Olga  Glushkova 

1. Introduction 

There are many models, describing economic and social activities, whlch 

consist of several submodels. Examples are industrial or agriculture production 

models, resources allocation and supply models, manpower and educational 

planning models, etc. Variables in such models can be divided in two parts: 

internal variables of subsystems and external ones which link different subsys- 

tems in an integral system. The solution of such a problem as a single large- 

scale model might be dflicult or practically impossible because of many rea- 

sons. Among these reasons are: 

-practical impossibility of puttlng a large-scale problem on a small com- 

puter at hand; 

-distributed character of data collected in different places; 

-institutional constraints. 

So it might be useful to And a way of sol- such problems preserving indi- 

viduality of subrnodels and leaving them relatively independant. 

The whole scope of questions arising in t h s  respect is referred to as a link- 

age problem. 

The general approach to decomposition and linkage problems was studied 

in(Dantzig64a, Ditrix79a, Ermoliev8la, ErmolievBOa, Nurminski79a). 



The objective of t h s  paper is to discuss one special linear linkage problem 

and the possibilities for applying some methods of nondifferentiable optirniza- 

.tion to its solution. One new method is discussed and the computational results 

are given. This method can be applied to both linear and nonlinear Linkage prob- 

lems, it is also possible to use it in a stochastic case. Our objective is to show 

how to do it  in the case of a special problem of growing and using wood in Fin- 

land as a particular example. 

2. Case Study. 

This chapter describes the linear programming model for studylng develop- 

ment of forestry and forest based industries. The data on Finnish forest sector 

was used for actual numerical calculation. 

The detailed account of t h s  model is given in(Kallio80a). , and here we give 

only basic characteristics of this problem. 

The model consists of two subsystems, the forestry and industrial ones, 

which are  linked to each other through the wood supply from the  &st to the 

second. The forestry submodel describes planting and harvesting activities, and 

the  volume of various tree species a t  different ages. The production process is 

described by a small Leontiev model with substitution. Various production activi- 

ties are  considered; such as the pulp and paper industry, the panel industry, the 

saw mill industry, and also further processing of primary products Production is 

restricted through supply of wood and demand for wood products, as well as 

through labor availability, financial resources and production capacities. The 

general model is formulated withn the framework of the dynamic linear pro- 

gramming approach. Its terminal conditions are  determined through a n  optimal 

solution of a stationary problem. In this paper one special method of 

nondifferentiable optimization is discussed for solving this stationary problem. 



Here Pollow-ing (6) we give the brief d.escription of the dynamic linear pro- 

gramming model for forest sector. 

2.1. The Forestry Subsystem. 

Let w(t) be a vector determining the number of trees of various types in 

different age groups: we denote by w,,(t) the number of trees of species s 

(s=1,2 ,...,I) in in age group a (a=1,2 ,... N) a t  the beginning of time period t 

(t=O,1 ,..., T). Let a: show the ratio of trees of species s and in age group a that 

will proceed to the age group a+l .  We denote by u+( t )  and u - ( t )  the vectors of 

planting and harvesting activities at time period t. The state equation describing 

the development of the forest is the following 

w ( t  +1) = aw ( t )  + vu+(t)-wu-(t) (1) 

where matrices v and o are so that vu+(t)  and -rim-(f) are the incremental 

change in numbers of trees resulting from planting and harvesting activities, . 

respectively. 

Let G& be the area of land type d required by one tree of species s and age 

group a. We have the land availability restriction 

GhJ ( t )  H( f  (2) 

where matrix G=(G&) and H(t) is the vector of total amount of different 

types of land available a t  time period t .  

For harvesting and planting activities we need special resources such as 

machinery and labor. Let R&,(t) and R 6 ( t )  be the usage of resource g at the 

unit level of planting activity n and harvesting activity h, respectively. We have 

the resource availability constraint as follows: 

where matrices R+(t)= j ~ & ( t )  4 and r-(t)=1 ~ ~ ( t ) j  and R(t)=1 R, ( t )  1 is vector 



of available resources during period t. 

Let x(t) be the vector of requirements for different timber assortments in 

industry, and matrix S(t) transforms quantities of harvested trees into the 

volume of different timber assortments. Then th; requirements for wood supply 

to industries can-can be written as follows: 

s ( t ) u - ( t )  = ~ ( t )  (4) 

The objective function is the discounted sum of net income in forestry as 

follows: 

Here J - ( t )  is a price of the wood less transportation and harvesting costs at 

unit level, J + ( t )  describes planting costs at unit level and @(t )  is a discounting 

factor. 

In summary, the forest model may be stated as follows. Given state equa- 

tion (I) ,  an initial state ~ ( 0 )  = w 0  and a terminal state w(T) = w *  (about the 

terminal state see below), And such nonnegative controls fu-( t ) j  and fuc(t)j 

(t=O,l ,..., T-1), which yield nonnegative state vectors w(t), satisfy constraints 

(2)-(4) and maximize the objective function (5). If we consider the vector x(t) of 

wood supply as exogenous variable we obtain an independent forestry model, but- 

we shall link it below to an industrial submodel. 

2.2. The Industrial Subsystem. 

Let y(t) be the vector of production activities (such, for example, as pro- 

duction of sawn wood. panel, pulp, paper, etc.) for period t (t=O, 1, ... ,T-1). For 

each product j there may exist several production activities i. Let U be the 

matrix of wood usage per unit of production activity so that during period t. 

industry processes the amount of wood Uy(t). Matrix U has one row correspond- 



ing to each timber assortment. 

We denote by r(t) the vector of wood raw material inventories in the begin- 

ning of period t .  We have the folloming state equation for ~ t :  

r ( t + l )  = r ( t )  + z ( t )  - Uy(t) + 2+(t)  -2 - ( t )  (6) 

where z+( t )  is the vector of import, z- ( t )  is the vector of export outside the 

forest sector. For wood import and export we have upper limits, so that 

z+ ( t )  5 z ( t ) , z - ( t )  s 2-(t)  ( 7 )  

The production process may be described by a simple input-output model 

with substitution. Let A(t) be an input-output matrix which has one row 

for each product j and one column for each production activity i. Let 

m(t)  and e(t) be the vectors of import and export .  

If the inventory level is constant we have: 

For import and export we have: 

e ( t )  5 E ( t )  . . 

Production activities are also restricted through labor and mill capacities. 

Let us denote L(t) the vector of diderent types of labor available for the forest 

industries, p( t )  denote a coefficient matrix so that p(t)y ( t )  is the vector of labor 

demand given production activity levels y ( t ) .  We have 

Let q(t) be the vector of the amount of different types of mill capacity a t  

the beginning of period t. If Q(t) is a coefficient matrix than Q(t)y(t) is the 

demand for these types of capacity. Thus we have the production capacity 



restriction: 

The state equation for the development of the capacity is as follows: 

where 6 is a deprecation matrix and v(t) is a vector of investments (in physical 

units). 

For financial calculations we define a vector q ( t )  of Wed assets which 

corresponds to the vector q ( t )  given in physical units. Let 8( t )  be such matrix 

that (I q ( t ) ) i j ( t )  is the vector of Axed assets left at the end of period t when we 

have no investments. Let K(t) be a matrix of increase in Axed assets per (physi- 

cal) unit of an investment activity, and let v(t) be the vector of investments ( in 

physical units ). Then we have the following state equation: 

g ( t  +1) = (I q ( t ) ) g ( t ) + K ( t ) v ( t )  (14) 

The state equation for external financing (long-term debt) is as follows: 

where l(t) is the vector of the balance of external financing at  the beginning of 

the t-th period l+( t )  and l-(t)  are the drawings of debt and the repayments 

made during period t. 

We have one more restriction: 

Let p+( t )  and p - ( t )  be vectors of profits and losses for the financial units, 

let P(t) be a matrix of prices for products, C(t) be matrix of direct unit produc- 

tion costs. Then the vector of revenue from sales e(t) outside the forest indus- 

try, is given by P(t)e(t), and the vector of direct production costs is given by 



C(t>y(t>. 

The profit is given as follows: 

where D(t) is the vector of cash expenditure, ~ ( t )  is the matrix of interest rates, 

vector F(t)q(t) yields the Axed costs of period t .  

For b(t) we have the following state equation: 

The state equation for cash is: 

c (t+l)=~(t)+[1-~(t)h+(t)p-(t)+3(t)q(t)+~+(t)-f-(t)-~(t)~(t)+~(t)(19) 

In thls model we have the initial state given as 

and a terminal state restricted as follows: 

T ( T )  r r * , q ( T )  2 q*,Fj(T)rij*, 

L(T) s f * , c ( T ) s  c* 

The objective function may be chosen as follows: 

So the problem is to find nonnegative control vectors 

z ( t ) , z ' ( t ) , z - ( t ) , m ( t ) , e ( t ) , v ( t ) , l C ( t ) , l - ( t ) , p + ( t )  and p- ( t )  and nonnegative state . 

vectors r ( t ) , q  ( t ) , q ( t ) , l  ( t ) , c  ( t )  and b ( t )  ,for all t ,  whch satisfy constraints and 

state equations (6)-(19), the terminal requirements (21), and maximize the 

linear functional (22). ' ' 



For both of the models above the wood supply x(t) from forestry to indus- 

trial submodel is considered as exogenous. For the integrated model we con- 

sider x(t) as an endogenous vector of linking variables. The objective function 

may be written as ICF+ICI. 

3. Problem Formulation. 

Due to the long transient time of forest system planning, the horizon in this 

model is of 50 to 80 years, and one period has an interval of flve years. To the 

industrial subsystem such a horizon is too long and it is too short.for the fores- 

try subsystem. That's why it is desirable to analyze a stationary regime for the 

forests, i.e. we set w(t+l)=w(t)=w; u+( t )=u+ and u-(t)=u-, for all t. The state 

equation in t h s  case is the following: 

With constraints (2)-(4) we have the static linear programming problem for 

the forestry subsystem. There are also some simplifications. Equation (la) 

presumes that there are separate planning/harvesting activities in every age 

and species category. It is difficult to imagine, however, that harvesting, for 

instance, follows this routine. So two generalized harvesting activities were 

introduc ed--thinning and final harvesting, which harvest some fixed proportions 

of trees in age and species categories. We can-find an optimal stationary state 

w* of the forest and corresponding harvesting and planting activities. The solu- 

tion of a dynamic linear programming problem with terminal constraints 

w(T) = w *  

yields the optimal transition to this stationary state. 

Similarly we can determine the terminal state as a stationary solution in 

the industrial subprobleni. considering the integrated model and corresponding 

dynamic linear programming problem it is desirable to know its stationary 



solution. Our objective now is to And t h s  stationary solution. 

The correspondent static linear programming problem has the following 

dual block-angular form: 

(cF,zF) + (CI,ZI) = min (23) 

where blocks F and I represent sets of equations in the forestry submodel and in 

the industry submodels. The variables ZI and ZI are  internal variables of the 

Forestry and Industrial models respectively. Variable x is a linking variable 

(wood supply from forestry to industry) whch  links those submodels. 

The matrix of the forest part  is given in lig. 1 and the matrix of the industry 

part is given in lig. 2. 

4. Relation to Nonuerentiable Optimization 

To solve the problem described above one can use the well-known finite 

methods of decomposition or iterative methods cof nondifferentiable optimiza- 

tion. 

The number of vertices of the feasible polyhedral se t  for such problem is, 

generally speaking, combinatorially large enough, and finite-step methods, 

based on moving from one vertex to another yield very small steps a t  each itera- 

tion. Empirical evidence shows that  the convergence of these methods is slow. 

Moreover, the finite methods often possess numerical instability, when the  

number of steps is large and errors are accumulated. 



The nondifferentiable approach gives a possibility to develop iterative 

decomposition schemes. They are easy to implement, and robust, with respect 

to computational errors. That is why we chose a nondifferentiable approach for 

solving the problem 

The initial problem can be written in such a way 

min t f ~ ( 2 )  + f r ( z )  I 
where 

To use the iterative decomposition scheme of the subgradient type to (28)  

and (29 )  we must know the feasible set X, such that fFSr (Z)  are flmte. This set 

has implicit representation and it is difficult to take it into account directly. 

W e  can avoid this difficulty using extra variables yp and yr in the objective 

function: 

Now any x is feasible in subproblems' (F) and (I), so we get rid of the 



feasibiiity problem. When x is feasible then (F) 1s equal to (28) and (I) is equal to 

(29). MF and MI are penalty vectors for violation of constraints. If .their com- 

ponents are big enough the value of extra variables is zero at  the optimal point 

and problem (27) has the same solution as the problem m i n g F ( z )  + f r iz ) ) .  

Let us denote 

g (2)  = B & F ( ~ )  + B T ~ I ( ~ )  (31) 

Here up(z)  is the optimal value of dual variables in F-subproblem, uI(z)  the 

optimal value of dual variables in subproblem I. According to the standard LP 

theory, g(x) is a subgradient of function f(x). 

The problem now can be reformulated as 

minf ( z )  

Once optimal x is found it is easy to solve the initial problem by solvirig the 

independent problems (28), (29). 

Generally speaking, f(x) is a nondifferentiable piece-wise linear convex func- 

tion. To find the subgradient g(x) we must know only the optimal value of dual 

variables in subproblems F and I. This can be done by solving the following dual 

problems: 



In problems (FD) and (ID) only the objective function depends on x, so only 

the objective function changes with the number of iterations. Therefore the pre- 

vious solutions uF(zk),uI(zk) can be used as basic solutions for calculating the 

solution uF(zk+'),ul(zk+') in the next iteration k + 1. For this reason it is possi- 

ble to calculate uF(zk++'),u1(zk+') very quickly. 

5. One Method of Nonmerentiable Optimization 

For minimization of the function f(x) we can use a method of the subgra- 

dient type. The simplest one is the following(Ermoliev76a, 78a, 79a). 

where g ( z k )  is a subgradient of the function f(x) in the point zk,  

.. 
pk++O, x p k  = = . However, the convergence of this method is not very fast espe- 

*=a 

cially for ill-behaving functions. The convergence of t h s  method is based on the 

decrese of the distance from the approximate solution zk to the minimum point 

z*  when k+= and when the vector g (zk )  is nearly orthogonal to the vector 

zk - z* then this decrease is small and the convergence is slow. So to minimize 

function f (z )  (as well as any convex function) we can use another subgradient 

method v h c h  finds better descent directions. Its main idea is to use the infor- 

mation about some previous descent directions for obtaining the new one in the 

case when corresponding points lie not far from one another 

The procedure is the following: 



1 ) .  . . 1 1  is euclidean norm; pk is step-size multiplier. 

Points zk' are the special points in which one of two conditions must be fulfilled: 

either 

llzk#+l - zk'll > Ea (36)  

There are two versions of t h s  method. The first version is described by the 

following theorem, which can easily be proved: 

Theorem 1. If in method (34) - (37)  for the step-size multiplier we have - 
x p k  = m,pk -r + 0,  then any accumulation point of the sequence tzk] belongs to 

k =o 

the set X* = z *  : f ( z * )  minf ( z ) .  

There is also another way of choosing the step-size multiplier: 

(2") - c  
pk = Yk Ils (zk)II 

where c  2 minf ( z ) .  

Theorem 2. Let us suppose that 

0 < 7 . s 7 k  S y *  < 2 , E S  +O,S - r m  

Then either such k *  exists that Z * E M ( C )  or any accumulation point belongs 

to set M ( c )  =  EX : f ( z )  < C. 



The proof of theorems !,2 is based on the technique proposed in(79a). 

This method is easy in computation and at the same time the results of the 

tests showed it's good convergence characteristics. The r e sd t s  of the computa- 

tion are good for ravined-type functions whch are didicult to deal with by 

straightforward subgradient methods. 

6. Computer Implementation. 

The program for solving the problem (32) - (33) was written and run with 

F77 compiler under the UNIX operating system on the Institute VAX-11/780. The 

executable flle compiled from Fortran source has a name PROG and so it may be 

called by the following sentence 

PROG1 =FOR.DATA2=IND.DATA3=F14=F2 

Files F0R.DATA and IND.DATA contain the initial matrices of forestry and 

industrial subproblems written in a compact form. 

In the file F2 we obtain the values of x( l ) ,  x(2) and f(x) on each iteration. 

In the file F1 some more information about the computational process is 

written.Here we have the iteration number, the subgradient value in each point 

zk ,the value of the descent direction pk, the step-size multiplier value and the 

value of the objective function of each subproblem. If each of the two linear pro- 

gramming subproblems is solved normally, than we have KOUT=2, otherwise 

these subproblems have no optimal solutions (something is wrong with the initial 

data). In F1 we also have the information about Ibkll and if it is less than 10-l2 

the program inform you about restart. If the subgradient norm is less than lo-'' 

program terminates and informs about the value of t h s  norm. All the informa- 

tion given in F1 we also can see on the screen of the terminal attached to the 

program as standard output. 

In the main program of PROG the descent direction pk  is calculated and 



In the main program of PROG the descent direction p k  is calculated and 

step ( i  1) is realised. In this program step-size muultiplier is chosen acccl-ding to 

the theorem 1. The part of the main program provides an interface between a 

user and a computer. User must specify: 

1)the dimension NX of the linlclng vector X (for this problem NX=2); 

2)the initial values of X(1) and X(2); 

3)the number of iterations NITER; 

4)the initial value RO of the step-size multiplier (on the step k the value of 

p, is RO/K;  in the subroutine PP the value of RO can be changed in order to 

obtain better convergence ); 

5)the minimum value of RO, ROMIN ; the maximum value of RO, ROMAX. 

6)the value of the penalty coefficient CM (in t h s  realisation all the com- 

ponents of vectors MF and MI are equal CM. The convergence of the process 

depends on this variable. We usually had it from( lo-' to lo-'); 

7) interactive or automatic regulation of RO . 

This dialogue is basically self-explanatory and is not particularly bound by 

formats. 

The example of t h s  dialogue: 



the question the answer 

NX = 2 
xo = 0.0 
XO = 10.0 
NITER = 100 
RO = 1 .o 
CM = 1.0e5 
ROMIN = 0.2 
ROMAX = 20.0 
CHANGE RO ? 
ANSWER: YES=1 OR NO=O 0 

Besides the main program there are also several subroutines. The basic ones are 

LLP, COPY, YTAB, FUN, GRAD and PP. 

Subroutine LLP realises symplex method procedure ( it was written by 

N.Orchard-Hays when he was with IIASA ). 

Subroutine COPY transforms the data in files FOR.DATA and 1ND.DATA from 

compact form into the full symplex tables. 

Subroutine YTAB reads the data and forms the symplex tables for subprob- 

lems (F) and (I) which includes extra variables y ~ ,  y1 

Subroutine FUN obtains the value of f(x) in the point x. 

Subroutine GRAD deflnes the subgra&ent vector GR of the function f(x). 

Subroutine PP calculates the vector zk+' given zk and changes the value of 

a step-size RO, if necessary. Its input parameters are K, NX, X, P, NN, EN, ROMIN 

and ROMAX, X1 is an output variable and RO is input-output variable. This sub- 

routine makes not more than N N  steps from the point X in the direction P with 

the step-size multiplier ROK=RO/K. It makes such a step if the function value in 

the next point is less than in the previous one. If ,  on the contrary, the function 

increases than the process terminates and X1 is calculated as the arithmetic 

mean of two last points. If the number of successive steps is more than NK1 the 

value of RO is doubled ( RO=2*RO ). If t h s  number is zero, i.e., the function did 



not decrease in this direction, than RO=R0/2. Yihen the value of RO becomes less 

than ROMIN we have RO=ROMIN in the case of automatic regulation EN=O j o r 

the user must se t  a new value of RO (EN=:). So is the situation when the value of 

RG becomes more than ROMAX. 

The main process terminates when either the subgradient norm is less than 

10-lo or when the number of iterations is equal to  NITER. 

Results of the computation are given in figures 2 to 8 (here we have values 

of 1 f (z)l instead of f ( 2 )  ). The initial point was taken z (1)  = 0,z(2) = 0, and the 

total number of iterations was taken equal to 80. We can see that on the first 50 

- 55 iterations the function decreased quickly and values of x( l ) ,  x(2) also 

changed quickly. Then the process began to oxcillate around the optimal point. 

Such behavior is typical of the gradient typical of the gradient type methods. 

The minimum value of the function, (-140471.2), was achieved a t  the point 

z(1) = 20.92, z (2 )  = 167.39. These results correspond well with results obtained 

with the help of another approach (f = -140480, z (1) = 2 0 . 9 2 , ~  (2) = 167.43) . 

7. Conclusions 

--Nonmerentiable optimization presents a n  adequate theoretical frame- 

work for linkage optimization problems. 

--Computational experience with iterative procedures based on 

nondifferentiable optimization shows that  they represent a robust, reliable 

means of solving linkage problems. They are especially valuable for getting f i s t  

estimates of the solution, with possible application of other methods to  the final 

solution. Iterative schemes of nondifferentiable optimization are particularly 

well suited as an  algorithmic base of iterative linkage systems. The provide 

many ways of controlling a solution process which are  well suited to the practi- 

cal user. 
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ITERATIONS 

Figure  3 .  Convernence o f  t h e  X 1  l i n k i n g  v a r i a b l e .  
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ITERATIONS 

F i g u r e  4 .  Convergence of t h e  X 2  l i n k i n g  v a r i a b l e  
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Figure 5.  Convergence of t h e  value of t h e  o b j e c t i v e  funct ion.  
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~ i g u r e  6. Convergence o f  t h e  X1 l i n k i n g  v a r i a b l e .  



ITEPATIONS 

~ i ~ u r e  7. Convergence of the X2 linking variable. 
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Figure  8. Convergence o f  t h e  va lue  of t h e  o b j e c t i v e  func t ion .  


