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Centralized vs. distributed energy storage systems: The 

case of residential solar PV-battery 

Behnam Zakeri a,b,c,d,*,¥, Giorgio Castagneto Gissey b,¥, Paul E. Dodds b, Dina Subkhankulova b  

 

Distributed energy storage is a solution for balancing variable renewable energy such as solar 

photovoltaic (PV). Small-scale energy storage systems can be centrally coordinated to offer different 

services to the grid, such as balancing and peak shaving. This paper shows how centralized and 

distributed coordination of residential electricity storage could affect the savings of owners of 

battery energy storage and solar PV. A hybrid method is applied to model the operation of solar PV-

storage for a typical UK householder, linked with a whole-system power system model to account 

for long-term energy transitions. Based on results, electricity consumers can cut electricity bills by 

28-44% using storage alone, 45-56% with stand-alone solar PV, while 82-88% with PV-battery 

combined. Centralized coordination of home batteries offers 10% higher benefits compared to 

distributed operation. Under centralized coordination, consumers without onsite energy 

technologies benefit almost double compared to PV-battery owners, because peak electricity prices 

decline in the system for all consumers. Therefore, the economic benefits of aggregation may be 

redistributed to incentivize prosumers with PV-battery to join such schemes, who can balance their 

electricity demand even without coordination. The private value of distributed energy storage 

declines as more storage owners join the coordination scheme. 
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1 Introduction 

1.1 Distributed solar PV and energy storage 

Many governments worldwide plan to increase the share of renewable energy for 

environmental, economic, and energy security reasons. For achieving renewable energy targets, 

different incentives and support schemes have been put in place to promote the deployment of 

renewable energy through decentralized and distributed generation, e.g., through solar photovoltaic 

(PV) at consumer sites.  

Electricity generation from solar PV is not always correlated with electricity demand. For 

example, in cold climate countries electricity demand peaks typically happen in the evenings when 

there is no solar energy [1]. There are different solutions for increasing the consumption of solar PV 

onsite, or so called “self-consumption”, which can maximize the benefits of distributed energy 

generation and minimize the electricity bills of the PV owner [2]. One of the common solutions is to 

export extra electricity from solar PV to the grid. However, in large-scale penetration of distributed 

solar PV, the export of electricity from many buildings to the distribution grid at peak generation 

times will cause contingencies and grid imbalances [3], resulting in additional costs for the system 

[4]. Moreover, the value of self-consumption of solar electricity for the private owner is typically 

much higher compared to the gains from exporting electricity to the grid, as export tariffs are 

typically lower than purchasing electricity prices [5]. Therefore, the private owner of solar PV prefers 

to find different ways to increase their self-consumption, e.g., by storing electricity via electrical 

energy storage1 (EES) systems such as batteries [6]. 

EES can balance the mismatch between onsite solar PV generation and electricity demand by 

storing electric energy at hours of low demand in daytime and discharging that to meet evening 

peaks. Different studies have shown that pairing solar PV with batteries (PV-EES) increases self-

consumption of solar energy onsite [7] and can offer significant cost savings to the private owner. 

For example, Zhang et al. [8] shows that paring solar PV with a home battery in California and 

Hawaii is a feasible investment with a payback period of less than 10 years for different building 

types, while others demonstrate possible cost savings for PV-battery owners in high latitude 

countries in Europe under different energy storage policies [9]. Also, from the system operator’s 

perspective, distributed EES devices can contribute toward balancing the (distribution) grid by 

reducing peak contingencies [10] and grid management costs [11]. This can offer the Transmission 

and Distribution (T&D) grid operator significant cost savings for postponing T&D investments and 

grid fortification measures at the low-voltage level [12,13]. 

                                                      

1 The terms EES, “electricity storage”, “energy storage”, and “storage” are interchangeably used in this paper for 

referring to technologies that can store electricity and discharge it back at a reasonable response time. Examples of such 

technologies include secondary electro-chemical batteries, flow batteries, pumped hydropower storage (PHS), etc. 
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However, the cost of batteries are still at the start of their learning curves [14], which diminishes 

the financial viability of investment in such technologies, from a private owner’s perspective [2]. 

Different studies show that a PV-EES system is not economically viable under current market 

conditions in different countries without additional financial supports [15]or policy incentives 

[16,17]. These policies are, for example, capital subsidies [8], enhanced time-of-use tariffs [18,19], 

peer to peer trading [20], or provision of revenue stacking2 [21]. Revenue stacking is considered as one 

of the most effective support mechanisms for enhancing economic profitability of EES systems [22], 

which can be possible by combining the onsite use of EES with offering grid services, such as 

balancing the load and/or ancillary services as shown in [23,24]. 

1.2 Coordination of distributed solar PV-storage systems 

Providing grid services in many power systems is regulated by the System Operator with some 

technical requirements for candidate technologies. These requirements are commonly specified as 

response time, availability, reliability, minimum capacity rating, etc. For example, the requirement 

for an energy technology for providing balancing services in Finland is a minimum power output 

of 5 MW [25]. These requirements leave many distributed technologies such as PV-EES systems with 

a typical size of a few Kilowatts unqualified for entering such marketplaces. To overcome such 

barriers of entry, the available capacity of many small-scale distributed technologies can be 

aggregated and coordinated by aggregators, which are typically third-party companies benefiting 

from control and transaction fees. Therefore, the owner of a PV-EES system can operate their asset 

either independently mainly for managing their own generation and demand or, alternatively, they 

could offer their available storage capacity to be coordinated with other small-scale EES units to 

participate in wholesale electricity markets through aggregators. 

Aggregators can offer the combined capacity of EES technologies in wholesale electricity 

markets, to meet the needs of the System Operator for load management and ancillary services, e.g., 

for Fast Frequency Response (FFR) [26]. Different studies have shown that the aggregation of small-

scale EES systems could reduce the risk of higher electricity prices at peak times [27], improve social 

welfare [28], and increase the integration of renewable energy in the grid [29], compared to 

uncoordinated, independent management of such assests by their owners. As consumers are 

unlikely to be able to provide such services and exploit arbitrage benefits simultaneously, they may 

operate their resources in a way that minimizes their own electricity bills, irrespective of the 

potential system-level benefits they could offer through aggregation [27]. Figure 1 illustrates the 

main features of these two schemes for the operation of distributed energy storage, i.e., the 

uncoordinated operation of EES by multiple owners for their private benefits (a), versus a centrally 

coordinated operation of small EES systems through an aggregator. 

                                                      

2 Revenue stacking or aggregation of benefits means using an EES device for offering multiple services, such as 

energy arbitrage, balancing services, and T&D support; and receiving revenues for each service. 
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Figure 1 Schematic representation of uncoordinated (a) and centrally coordinated (b) operation of distributed 

electricity storage devices. The main characteristics of each mode of operation, including benefits for the system and the 

private owner is depicted under each scheme. 

1.3 Private and system-level value of solar PV and energy storage 

The private value of solar PV and EES to consumers is the financial gain that a consumer can 

obtain by reducing its electricity bills [30]. Wholesale electricity prices vary widely on an hourly or 

half-hourly basis and are typically the largest component of electricity costs of consumers, 

comprising nearly 40-60% of their electricity bills in Europe [20]. Most prosumers3 have been 

early adopters, environmental enthusiasts, looking for energy security by being independent from 

the grid, and/or motivated by social and peer effects; not necessarily motivated purely by cost-

benefit analysis [31,32]. Yet the savings that prosumers with EES could achieve is a key indicator to 

show if more widespread adoption of such distributed energy technologies is likely to occur in the 

future or not. 

Numerous studies have investigated the profitability of consumer investments in solar PV and 

EES. Many studies have derived the cost of electricity and assessed the profitability of investments 

by considering metrics such as the Net Present Value (NPV), Internal Rate of Return (IRR), or the 

Return on Investment (ROI) of the investment. Other work adopts the “grid parity” concept to 

evaluate the profitability of storage by considering the levelized cost of electricity [33]. These studies, 

                                                      

3 Prosumers are defined as consumers with the ability to produce electricity from solar PV. 

Jo
urn

al 
Pre-

pro
of



4 

 

however, do not take a whole electricity system approach for modelling the future electricity prices, 

on which the economic profitability of PV-storage systems depends. A recent study considers the 

impacts of a changing electricity system on the consumer savings, but does not account for potential 

impacts of the development of demand-side technologies on the system [2]. This paper extends the 

previous work by accounting for the impact of the EES on the system, which, if neglected, may 

overestimate the potential benefits of the EES for the owner. Because the larger the capacity of EES 

in the system offered by many private owners, the lower the value of arbitrage for each EES owner 

as the price gap between peak and off-peak will diminish. 

The value of solar PV-EES to consumers is different from the value they may offer to the wider 

electricity system. Solar PV-EES and other distributed energy technologies could provide the 

electricity system with different services, while offering energy security and cost savings to the 

owner. However, maximizing the private value of distributed technology may not simultaneously 

offer the highest system-wide value. Energy security has a private value to the consumer, whereas 

the flexibility it offers to the system has a social value. The social (system) value of these resources 

will depend on whether these resources are being operated to reduce electricity system costs, a 

benefit for all consumers, or to minimize private electricity costs. Solar PV may reduce electricity 

demand if it is subject to individual coordination by cost minimizing consumers, which would 

reduce prices for all consumers in the system [27]. Privately coordinated EES could increase 

electricity prices as there is potential that most of EES owners charge simultaneously at low price 

hours resulting in significant increase of electricity demand and prices in those hours, affecting all 

electricity consumers. But private EES devices could also reduce peak demand, hence prices, if they 

were optimally operated in coordination, lowering electricity prices for all consumers [34]. 

Several studies focusing on EES in different countries have concluded that centralized 

coordination of distributed energy resources could offer numerous system-level advantages. For 

example, central coordination of EES can offer required flexibility in matching load and supply, 

reducing the cost of procuring flexible capacity for the system [35,36]. The value of aggregation to 

an electricity system has been shown to increase as more consumers are aggregated [37], with small 

contributions by each customer leading to large reductions in electricity costs for all consumers [38]. 

It is also argued that distributed energy devices could improve social welfare under efficient 

aggregation and coordinated operation of technologies [28]. Castagneto Gissey et al. [27] 

investigated the impact of centralized and distributed scheduling of EES on electricity prices, 

highlighting that a centralized coordination offers 7% lower mean electricity price and 60% lower 

price volatility in the system. Sousa et al. [39] compares a peer-to-peer (P2P) versus a community 

market for energy trade, concluding that P2P trade offers the highest social welfare. It is further 

shown that the aggregator can control the capacity of distributed EES to manage the frequency 

deviations in the grid in a more effective way [40]; another system-level benefit for all consumers. 

In a recent study [41], a whole-system comparison of centralized versus decentralized electricity 

planning is carried out, showing that coordinated planning can save between 7% and 37% of the 

total system costs. Last but not the least, Ahmadi et al. [42] applies a two-stage optimal coordination 
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of central and local EES for showing the impact on system cost reduction and voltage profile 

enhancement. 

However, none of the reviewed studies investigate the impact of the aggregation of distributed 

energy technologies (here PV-EES) on the private value of such technologies, i.e., the additional cost 

or benefit that the owner bears for letting the aggregator coordinate their PV-EES. This is an 

important question as the deployment of EES by consumers might be affected by the way the 

technology is operated throughout the system. Answering this question could reduce the 

uncertainty consumers face when investing in battery storage, thereby facilitating further 

deployment of storage resources when needed. This would help the electricity system to reduce 

costs and improve security of supply by making such resources available to provide multiple other 

system services. In this respect, it is crucial to understand how the deployment of EES resources by 

consumers could be affected as more EES is aggregated throughout the electricity system. Our study 

investigates this too. 

1.4 Objectives of this study 

As mentioned earlier, pairing solar PV with EES can maximize the self-consumption of PV 

electricity for consumers who adopt the technology and minimize their electricity costs. Yet it 

remains unclear how the savings that these consumers can expect from their storage device might 

be affected by the way of coordination of EES in the electricity system. This paper investigates how 

aggregator-led and consumer-led operation of EES capacity might affect the private economic value 

of solar PV and EES for a UK electricity consumer with typical domestic electricity consumption. 

Different future developments of the energy system are explored to analyse the economic savings a 

consumer can achieve from investing in PV and batteries. Finally, it is shown that how these savings 

will be affected when more EES capacity is integrated into the electricity system through 

aggregation. By identifying these three gaps in the literature, this paper aims to answer the following 

research questions: 

1. How would aggregator-led and consumer-led operations of EES in the electricity system 

affect savings to a typical consumer who pairs solar PV with storage? 

2. Which system evolutions or energy pathways are likely to explain the process by which EES 

aggregation could affect savings to a consumer pairing solar PV with storage? 

3. What is the relationship between savings from pairing solar PV with storage to a private 

electricity consumer and the level of electricity system-wide storage aggregation? In other 

words, how would additional aggregation of EES affect the savings to a typical consumer 

pairing solar PV with storage? 

The remainder of this paper is structured as follows. Section 2 provides the methodology and 

describes the data used in this study. Section 3 reports our main results, which are discussed in 

Section 4. Conclusions are drawn in Section 5. 
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2 Methods 

Onsite, small-scale batteries and electric vehicle-to-grid storage are some examples of 

distributed EES technologies for private consumers. The ever-growing electrification of transport, 

heating and other sectors are expected to change the pattern and magnitude of electricity demand 

over the coming decades [43]. Accurate modelling of electricity demand over such extended periods, 

i.e., 20-30 years, is crucial to understand how consumer electricity prices will vary in the future and 

how investment in distributed technologies will return economically. Also, transitions in the 

electricity supply side will affect wholesale electricity prices. Higher shares of wind and nuclear 

capacity in the power system will offer different electricity prices and price volatility compared to a 

thermal power system relying on coal and gas. Hence, assessing the financial feasibility of 

investment in distributed energy technologies with 20-30 years of lifetime needs to be informed by 

a quantitative model of the overarching energy system for representing the increase in the use of 

non-conventional energy resources and possible transitions in the energy system. 

2.1 A multi-level modelling framework 

The modelling approach is based on soft-linking a national-level, electricity system 

management model (ESMA) to a consumer cost optimization model. The input data of ESMA, i.e., 

electricity demand, power capacity mix, and fuel prices are based on the UK “future energy 

scenarios” developed by the national energy regulatory, National Grid [44]. The electricity system 

model ESMA is designed for evaluating the operation and dispatch of a given power system mix for 

a time-period of one year (8760 h). It is ideally suited to generate wholesale prices under different 

scenarios for EES and the rest of the system. Wholesale electricity prices are then converted into 

retail electricity tariffs based on different tariff designs, i.e., time of use (ToU), static, and dynamic 

tariffs. These tariffs are fed into an electricity private cost minimization model that optimizes the use 

of solar PV and EES for a consumer with a typical electricity consumption profile. This framework 

accounts for possible future evolutions of the energy system considering how EES deployments are 

likely to affect savings of consumers. The electricity generation costs, e.g., future capital cost of 

different power plants, are based on the output of the UKTM energy system model [45]. 

The modelling framework including the linkage between different models and modules to 

derive consumer savings is illustrated in Figure 2. This framework has been previously applied to 

calculate solar PV-battery consumer investments [2] and value of storage aggregation to the system 

and electricity prices [27]. This is extended in this study by iterating electricity demand of 

prosumers, which itself is based on the optimal scheduling of PV-EES according to retail prices, back 

to the electricity dispatch model. With the updated electricity demand, the electricity dispatch model 

generates a new set of hourly electricity prices, which will affect the retail price for all consumers, 

both with and without onsite energy technologies. This process, highlighted in red in Figure 2, 

continues until electricity prices converge in two consecutive iterations.  
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The ESMA model has been validated on an hourly basis against both the historical data and 

future energy scenario developed by National Grid. The results of validation suggest that the hourly 

demand curve modelled by ESMA stays within an acceptable level of agreement with historical data, 

e.g., with an average correlations coefficient of 0.92 for 8760 hourly demand data points for the 

reference year 2015. Similarly, the analysis of hourly electricity prices simulated by ESMA in 

different season shows a high degree of agreement with historical spot prices, with an average 

correlation of 0.83 in winter, while 0.91-0.93 correlation on other seasons. The comparison of the 

ESMA’s future scenarios with those modelled by National Grid shows a very high degree of 

agreement, yet some slight differences exist due to different modelling assumptions and limitations 

of ESMA. A detailed analysis on validation of the model is represented in Chapter 5 in [46]. 

The applied modelling work has some limitations and shortcomings. Assuming fixed, average 

fuel prices throughout each year, i.e., fixed gas or biomass prices, may not conform with reality 

where fuel prices change by season. ESMA does not include electricity consumers under the 

Economy 7 tariff who benefit from a lower night tariff, which may result in a slight demand and 

price difference in winter. ESMA represents each technology as a large power plant which is 

different from the strategy that each single power plant may adopt. 

 

 

 

Figure 2. Relationship between different models used in this analysis  

The model is run over a 26-year period, 2015–2040, initially with the objective to optimize the 

consumer’s utility based on the lifetimes of distributed PV-EES systems. ESMA minimizes electricity 

costs and calculates wholesale electricity prices under the assumption of centralized and distributed 

coordination of demand-side EES technologies. Additional information on the modelling 
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framework and formulation is provided in the Supporting Information (Appendix A-C). Appendix 

H summarizes main data sources and assumptions of the model. 

Retail electricity prices are calculated by adding a time-dependent mark-up over the wholesale 

prices, which is assumed to account for the electricity network management and distribution fees 

[47] (see Appendix F for calculation of prices). Static and dynamic ToU electricity tariffs are 

calculated based on retail prices, calibrated to historical tariff data (assuming same ratios between 

tariffs and retail prices as today for future years). 

2.2 Future energy scenarios 

The evolution of the energy system over time will impact wholesale electricity prices, and hence, 

consumer retail prices. A whole systems approach is adopted to account for these future transitions 

systematically and consistent with the National Grid scenarios, which are based on a broad 

stakeholder engagement and modelling. Four possible evolutions of the energy system are 

considered according to National Grid’s Future Energy Scenarios [44]. These scenarios are chosen 

as the basis of our analysis as they cover a wide range of future energy pathways represented across 

two axes for green ambition and prosperity. The GB Office of Gas and Electricity Markets (Ofgem), 

the National Regulatory Authority, has reviewed these scenarios, which gives them more merit for 

our analysis.  

These four energy transition pathways include: (i) Gone Green, which is the most ambitious 

renewable expansion scenario, where the UK meets its renewable targets; (ii) Consumer Power, a 

consumer-centred scenario with energy security and costs as main drivers of decisions; (iii) Slow 

Progression, a scenario with low ambitions for decarbonization; and (iv) No Progression, where the 

status quo persists and there is a negligible deployment of renewables and EES. Gone Green has the 

highest ambition on renewables and storage capacity, while No Progression is similar to the present-

day energy system and has the lowest capacity of renewables from all four scenarios. Table A3 in 

Supplementary Material shows the key developments of the power sector in 2030 under these future 

scenarios. Figure 3 portrays the installed power capacities for each of the future energy scenarios. 

More details of the share of each generation mode are provided in Appendix H, Table A4. 
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Figure 3. Electricity generation mix in each future energy scenario [44].  

2.3 Consumer electricity cost optimization 

Two cases of EES scheduling are examined, in which consumers respond to either distributed 

or centralized coordination. Under the former, demand-side storage resources are autonomously 

optimized by consumers. In a centralized scheduling system, an aggregator coordinates electricity 

dispatch from EES by iterative negotiation with consumers, whose resources it does not know, 

enabling them to participate in the wholesale market. Centralized coordination mimics the current 

arrangements for large-scale EES technologies in the UK and major worldwide liberalized markets, 

such as for PHS. Transaction costs relating to aggregation are neglected for simplicity. Distributed 

coordination reflects the behaviour of consumers who individually schedule their flexible resources 

to smoothen their own demand profiles and minimize their own electricity bills. More information 

on our coordination algorithms is provided in Appendix E. 

The financial viability of different combinations of investments in solar PV and EES for a typical 

UK domestic electricity user4 are examined under different energy scenarios. The household’s 

electricity bill is dependent on the consumer’s load profile, and on the electricity generated from 

solar PV, which exhibit intra-day, monthly and seasonal variations. 

End users with onsite generation from PV are entitled for feed-in tariffs (FiTs) of £0.049 kWh-1 

for electricity generation [47] and an export-to-grid tariff of £0.043 kWh-1. FiT payments are assumed 

to cease after 20 years and to increase with the retail price index (RPI) of 3.4% p.a. [48]. An average 

retail electricity tariff is considered based on UK National Statistics: a static tariff of £0.15 kWh-1 and 

                                                      

4 This user is represented by a three-bedroom dwelling with a load profile displaying mean percentage night 

consumption of 30% and 55% under static and Economy7 ToU tariffs, respectively [47].  
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dynamic ToU tariff including on-peak £0.16 kWh-1 during the day (7:00-23:59) and off-peak tariff of 

£0.07 kWh-1 at nights (0:00-6:59) [48]. Future developments of static tariffs are estimated based on 

the average of wholesale electricity price in each season. We use the static tariff as the basis to derive 

future values for day and night ToU tariffs (see Appendix H for more details). 

The objective of a residential PV, EES, or PV-EES owner is to minimize the private costs of 

electricity bills. Under ToU tariffs, the lower rate during the off-peak period is suitable for charging 

the storage system. When the consumer operates PV, a 4-kW PV system is considered; and for EES, 

a 6.4 kWh–3.3 kW battery, with a lifetime of 13 years or 5,000 cycles (Li-ion batteries) [49]. The battery 

capacity degradation and efficiency losses are taken into account as described in Appendix B. A 

discount rate of 5% p.a. is assumed, based on the recommendations of the UK Committee on Climate 

Change. Appendix G reports the details on the consumer PV-EES optimization model and the data 

used for modelling PV-EES technologies.  

The electricity costs are calculated for four consumer technology combinations: (i) no 

technology; (ii) an EES system (EES-only); (iii) a solar PV system (PV-only); and (iv) both a solar PV 

and an EES system (PV-EES). We show the value of EES, which is derived by comparing annual 

electricity costs in the PV-EES scenario relative to the PV-only scenario. The base case scenario for 

deriving the relative savings of other scenarios is the no-technology case with static electricity tariffs. 

3 Results 

Two types of energy storage coordination, i.e., coordinated and distributed, are considered for 

calculations. The results are based on the data of annual electricity costs and savings, averaged over 

the modelling period of 2015–2040. The results are reported relative to a base case scenario, i.e., the 

No Progression scenario under static tariff and with no onsite energy technology investments. 

The results show that the evolution of the energy system and the scheduling coordination 

regime have meaningful impacts on annual savings by the consumer. Distributed coordination 

generally induces 4–11% lower savings than centralized coordination, whereas the system’s 

evolution accounts for changes in savings by 1–27%. The largest savings occur in scenarios with high 

storage and renewable capacity. The impact of additional storage capacity in the electricity system 

on the savings to the consumer when aggregated to participate in the wholesale market is explored 

too. 

3.1 Private savings under centralized and distributed coordination 

The results of the centralized coordination is presented in Table 1. The annual electricity bills 

and potential savings in the electricity bill are compared for consumers whose EES capacity in the 

electricity system is coordinated by an aggregator and scheduled centrally. The results are illustrated 

for four different technology options under static and ToU tariffs and for each future energy 

scenario.  

Table 1. Annual electricity bills and possible savings (£ p.a.) for a typical consumer under centralized coordination.  
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Centralized 

coordination 
No Progression Slow Progression Consumer Power Gone Green 

Tariff Technology 
Bill 

(£ p.a.) 

Savings1  

(£ p.a.) 

Bill 

(£ p.a.) 

Savings  

(£ p.a.) 

Bill 

(£ p.a.) 

Savings  

(£ p.a.) 

Bill 

(£ p.a.) 

Savings 

(£ p.a.) 

Static 

No 

technology 
574 - 541 33 449 125 470 104 

EES 574 0 541 33 449 125 470 104 

PV 363 211 342 232 284 290 297 277 

PV-EES 107 467 98 476 78 496 82 492 

ToU 

No 

technology 
540 34 515 59 420 154 449 125 

EES 405 169 389 185 321 253 339 235 

PV 307 267 298 276 244 330 260 314 

PV-EES 92 482 87 487 68 506 73 501 

1 The savings are shown as difference relative to the base scenario, i.e., consumers having “No technology” onsite, static tariffs, and 

under the business-as-usual scenario (No Progression). 

The results show that the consumer savings is dependent on the future energy scenarios for the 

entire energy system. Consumer Power scenario, in which future policies are consumer-centred and 

promoting distributed generation offers the highest savings for all technology combinations. Gone 

Green and Consumer Power scenarios offer 18% and 22% annual savings, respectively, even in the 

case when the consumer has no investment in distributed technologies, i.e., “No technology”. This 

is due to higher renewable energy in these scenarios, larger share of electricity storage, and lower 

electricity prices compared to No Progression. 

Figure 4 compares the average annual savings in the electricity bill in the centralized 

coordination for two different types of tariffs. The results show that PV-battery offers the highest 

savings for consumers ranging between 81-86% depending on the future scenario.  
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Figure 4. Annual electricity bill savings for a typical consumer with different distributed energy technology options 

in centralized coordination, under (A) a static and (B) Time-of-use (ToU) tariff, and for different future energy scenarios. 

The values are the average of 2016-2040 and show % change in savings relative to the base case, which is “No-

technology” under a static tariff, and No Progression Scenario with the annual cost of 574£. 

However, battery alone offers no higher benefits compared to the no-technology case, as under 

the static tariff there will be no potential for price arbitrage by EES, as electricity prices are constant 

for the consumer. The annual savings of the consumer from investing in solar PV alone (without 

EES) varies between 37% and 51% of the base case costs, with the lower range for No Progression 

scenario and the highest savings for Consumer Power. 

The results for the battery-alone case show significant higher savings under a ToU tariff. When 

the consumer electricity prices differ between off-peak and peak hours, battery can offer electricity 

cost savings between 29-41%, depending on the future energy scenario. Moreover, investing on solar 

PV under the ToU tariff improves the annual cost savings by 6-10%-point compared to the static 

tariff (~ 56£ per year). A PV-battery system offers the highest savings under ToU as well, with a 

slight improvement compared to the static tariff (i.e., 1-3%-point). Also, the results show that the 

benefits of the PV-battery options are the least sensitive technology investment to future energy 

scenarios, offering savings ranging between 84% and 88% for the four energy scenarios. Table 2 

summarizes the results of centralized coordination for different tariffs, technology choices, and the 

future scenarios.  

Under centralized scheduling of the consumer’s energy technologies in the electricity system, 

the typical electricity consumer gains substantially larger annual savings compared with the 

decentralized scheduling. This is valid for all combinations of technologies, tariffs and future energy 

scenarios. The consumer is able to accumulate greater savings in the centralized case by between 4–

8% when operating no technology, by 3–11% with EES alone, by 2–5% with PV alone, and by 0–2% 

with both PV and EES. More notably, the higher savings in the centralized coordination compared 

to the distributed scheme decline as the consumer operates more onsite technologies. Operating 

more technologies implies greater electricity self-sufficiency, hence, a lower exposure to the risk of 

Jo
urn

al 
Pre-

pro
of



13 

 

changes in retail electricity prices, which itself is affected by the type of scheduling coordination of 

EES by other consumers in the system (see Figure 5).  

 

Figure 5. Centralized coordination versus distributed scheduling of consumers’ energy technologies under time-of-

use the (ToU) electricity tariff. The values show the % savings of centralized coordination minus that of distributed 

scheduling relative to the base case (hence, positive values show that centralized coordination offers greater savings).  

Consumers with “No technology” make higher electricity bill savings in the centralized 

coordination scheme due to the system operator being able to improve the balancing of load and 

flexibility resources, which results in lower peak electricity prices in the system. The lower wholesale 

electricity prices benefit all consumers, including those without investment in any distributed 

technology. Distributed storage scheduling results in substantially lower integration of EES capacity 

in the electricity supply. Through arbitrage, storage minimizes the differential between on- and off-

peak prices, thereby reducing electricity system costs. Less aggregated storage capacity implies a 

lower ability for the system operator to reduce electricity prices. Hence, in all scenarios, greater 

private electricity costs and lower private savings are observed relative to centralized scheduling. 

Table 2 summarizes the findings for the distributed scheduling. 

3.1.1 Consumer’s choice of technology and electricity tariffs 

The lowest electricity cost in the no-technology case occurs under centralized coordination, 

Consumer Power and ToU tariffs (£420 p.a.), while the highest costs occur under distributed 

scheduling, Slow Progression, and static tariffs (£569 p.a.). With ToU tariffs, the EES system can 

provide 2–3% greater savings relative to static tariffs under distributed coordination compared with 

centralized coordination. Under ToU, the savings in the EES-only case are £99–126 under centralized 

coordination versus £101–140 under distributed coordination compared to “No technology” in the 

respective future scenario. This shows approximately 7% larger savings in distributed scheduling. 

As the distributed coordination scenario implies a less smoothened system demand, this leaves a 

greater ability for the consumer to take advantage between peak and off-peak price differentials. 

Table 2. Annual electricity bills and possible savings (£ p.a.) for a typical consumer under distributed scheduling. 

The savings are relative to the base case: No technology, static tariff, and No Progression scenario. 
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Distributed scheduling 
No 

Progression 

Slow 

Progression 

Consumer 

Power 
Gone Green 

Tariff Technology 

Bill 

(£ 

p.a.) 

Savings 

(£ p.a.) 

Bill 

(£ p.a.) 

Savings 

(£ p.a.) 

Bill 

(£ 

p.a.) 

Savings 

(£ p.a.) 

Bill 

(£ p.a.) 

Savings  

(£ p.a.) 

A. 

Static 

No technology 588 0 569 19 476 112 516 72 

EES 588 0 569 19 476 112 516 72 

PV 378 210 359 229 301 287 327 261 

PV-EES 116 472 103 485 83 505 91 497 

B. 

ToU 

No technology 559 29 541 47 442 146 491 97 

EES 419 169 406 182 341 247 370 218 

PV 321 267 309 279 256 332 281 307 

PV-EES 101 487 91 497 71 517 80 508 

 

The largest savings recorded in the EES-only case occurs under centralized coordination, 

Consumer Power, and ToU tariffs (£321 p.a.). Conversely, the lowest savings arise under distributed 

coordination, Slow Progression, and static tariffs (£569 p.a.). 

If the consumer operates solar PV without EES (PV-only), the electricity bill will decline by 37-

57% compared to the no-technology case, and by between 13-37% relative to EES-only. The lowest 

electricity costs for PV-only relate to centralized scheduling, Consumer Power and ToU tariffs (£244 

p.a.), whereas the largest costs arise under distributed scheduling, Slow Progression, and static 

tariffs (£359 p.a.). 

The combination of solar PV with EES implies a reduction in annual electricity costs by 81-88%, 

or by £476-506 annually. Therefore, the consumer reduces electricity costs by at a substantial rate of 

60% compared to the PV-only case (£176-256 further savings annually). On average across the future 

energy system scenarios, ToU tariffs imply 12% larger savings relative to static tariffs for the 

consumer. In this case, annual electricity costs are between £68-73 p.a. and £71-80 p.a. in the 

centralized and distributed cases, respectively. When operating a PV-EES system, the consumer 

achieves maximum savings under centralized coordination, Consumer Power and ToU tariffs (£68 

p.a.), whereas the lowest savings occur when scheduling occurs on a distributed basis, under Slow 

Progression and static tariffs (£103 p.a.). 

Overall, for different technology mixes, a distributed coordination of energy storage in the 

electricity system, as well as Slow Progression, and static tariffs tend to minimize annual savings by 

the consumer. Conversely, central energy storage coordination, Consumer Power and ToU tariffs 

maximize savings.  

3.2 Future energy scenarios 

The results suggest that the centralized coordination of EES resources in the electricity system 

is always lead to greater savings (up to 11%) for a typical consumer, irrespective of the future 

evolution of the energy system. Yet the order of magnitude by which savings under centralized 

coordination are larger depends on the relationship between variable renewable energy capacity – 

mostly includes wind and PV generation – and flexible supply capacity, such as gas plants. If 
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resources are mostly centrally coordinated, consumers can reduce annual electricity costs by 8–11% 

in Gone Green, by 4–5% in Slow Progression, and by 4–6% in Consumer Power, relative to 

distributed coordination. 

The impact of centralized coordination of storage resources on the consumer’s annual electricity 

costs generally increases with the level of variable renewable generation capacity in the electricity 

system while inversely related to level of flexible supply capacity. Savings to the consumer under 

centralized coordination are double in Gone Green relative to Slow Progression due to the higher 

variable renewable generation in the former case, which requires an aggregated storage for 

balancing variations. 

Table 3 reports the ratio of variable renewable capacity to each unit of flexible generation 

capacity, as well as the change in the consumer’s annual electricity costs (%) resulting from storage 

aggregation in the electricity system. There is a positive relationship between the share of variable 

renewables in the system, and the change in electricity prices due to centralized coordination. By 

dividing the latter by the former, a relatively constant relationship is observed, between 3–4%. 

Demand-side flexibility will be most valuable when supply is inflexible, leading to greater savings 

in the consumer’s annual electricity cost under a more system-efficient coordination of storage 

resources. Yet the change in the electricity cost from coordination is small relative to the ratio 

between renewables and flexible supply. 

Table 3. Ratio of variable renewable to flexible supply capacity (excluding storage), and relationship with savings 

from demand coordination. 

Future energy 

scenario 

Ratio of renewable energy capacity to  

flexible supply capacity 

Change in annual electricity costs 

under central coordination (% p.a.) 

Gone Green 2.62 -8.8% 

Consumer Power 1.97 -5.3% 

Slow Progression 1.81 -4.5% 

3.3 Impact of additional storage deployments on private savings 

Figure 6 shows how additional electricity storage capacity is likely to affect savings from storage 

to a consumer with EES. In this specific analysis, we consider ToU tariffs only as they are shown to 

maximize the savings that storage can provide to consumers with solar PV. Additional (aggregated) 

storage capacity operating in the electricity system can decrease the differential between on- and off-

peak electricity wholesale prices, which could in turn reduce the retail tariff on- and off-peak 

differential. 
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Figure 6. Savings to the typical consumer due to their electricity storage relative to the installed electricity storage 

capacity in the electricity system. This analysis considers the centralized case with ToU tariffs. 

There is a quasi-exponential fall in the private savings as more electricity storage is installed 

and aggregated in the wider electricity system. An increase in aggregated storage capacity from 3 

GW to 17 GW implies a 20% reduction in the private annual cost savings from storage to the 

consumer. These results do not hold if considering distributed coordination, as non-aggregated 

storage capacity has no effect on the marginal savings from private storage capacity.  

4 Discussion 

4.1 Private savings from storage and control scheme 

This paper shows that the savings that a typical UK electricity consumer can achieve from their 

EES device could increase if most consumers in the electricity system allow an aggregator to 

coordinate their storage resources. When consumers’ storage capacity is operated to minimize the 

private costs of these consumers, herding behaviour occurs, leading to charging the consumer EES 

devices at the same time of the day leading to higher electricity prices relative to centralized 

coordination. These results are shown to hold true for different types of technologies and evolutions 

of the energy system. 

Our findings confirm those of [50], [28], and [35] who reported that social welfare increases if 

storage resources are centrally scheduled. Similarly, Castagneto Gissey et al. [27] compared 

centralized and distributed coordination and suggested that consumers could be nudged into giving 

away control of their storage devices to provide system benefits. They found that aggregation of EES 

has a lower electricity system cost compared to private operation by consumers. Our study enhances 

this work by considering how the private savings that consumers can expect from investing in 

storage could be affected by the way other consumers operate their storage devices. 
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The results also show the distributional effect of the centralized coordination on consumers. 

Those consumers owning flexible technologies such as EES and providing the aggregator with the 

capacity of their device for load balancing, make relatively lower bill savings compared to those 

consumers with “No technology”. For example, PV-EES owners make 0-2% additional savings in 

the centralized scheme while consumers with no technology 2-10%. This is mainly due to the lower 

electricity prices for all consumers in the centralized coordination compared to a distributed 

scheduling, which benefits the most consumers under static tariffs with no technology. Therefore, 

the regulator should put a policy in place for redistributing some of the system-level benefits back 

to the EES providers in the centralized coordination. In other words, the positive externality of 

aggregating distributed EES can be calculated, including lower electricity prices at peak times and 

lower grid congestion management fees, and a part of that can be used to incentivize EES owners 

participating in the aggregation scheme. The lack of such incentives can deteriorate the economic 

attractiveness of centralized coordination schemes for consumers [51–53]. 

4.2 Potential impact of system variables on the consumer savings 

EES could provide numerous services to the electricity system [54,55], and the possibility for 

storage capacity to be aggregated can reduce the cost of electricity systems by decreasing peak 

demand and the need for expensive peaking plants. A few studies have shown the value of storage 

in high-renewable, inflexible power systems [12,34,56]. Studies considering the role of storage in the 

electricity system generally do not make a distinction between private and system benefits from EES, 

which we instead consider by considering the impacts of distributed and centralized coordination. 

Our work suggests that storage will be more valuable to energy storers if variable renewable 

capacity is on average larger than the capacity of flexible supply resources such as gas power plants 

in the power system. When variable renewable capacity is large relative to flexible supply capacity, 

there is a shortage of flexibility on the supply-side, meaning that a system able to centrally 

coordinate more demand-side storage resources will be more valuable, and would produce more 

savings to consumers from their storage technology. Yet these insights must be checked against the 

possibility of distributed energy storage coordination to account for the likely scenario in which 

storage resources belonging to consumers are operated in a way that does not necessarily benefit the 

system, so long as it benefits the cost-minimizing consumer. 

Many consumers would prefer to dispatch their storage resources to reduce their own electricity 

bills rather than to reduce costs to the wider system. Hence, previous studies may have tended to 

overestimate the utility of storage in reducing electricity prices by assuming large amounts of 

demand-side energy storage aggregation. As additional storage capacity is deployed, the lower gap 

in peak and off-peak electricity prices diminishes the potential benefits, sending a discouraging 

signal to the market for new investments. Hence, policymakers should closely monitor the flexibility 

requirements of the system and the willingness of consumers to provide flexibility services to the 

system. This can be done by internalizing the system-level benefits of EES, through introducing 

incentives for investment in EES. From modelling method perspective, this implies that models of 
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the electricity system should account for the trade-offs between private and system benefits of 

energy storage aggregation. 

Yet it is unlikely that consumers will allow an aggregator to control their resources at all unless 

they are paid a financial incentive to do so [57]. The decision by consumers to forego control of their 

storage resources could meaningfully reduce electricity wholesale prices [27]. This also entails the 

installation of smart meters and the access to the energy consumption data of private consumers, 

which they might be unwilling to share. The ability of aggregators and the System Operator to nudge 

consumers into providing such information could be key to the successful operation of aggregators. 

The private savings that consumers can gain from their storage device will depend on the 

evolution of the electricity and energy systems. Consumers contemplating to invest in EES should 

not only be aware of the quantity of storage capacity deployed in the electricity system but should 

also monitor the level of renewables that this aggregated storage capacity is likely to meet. This 

information is important because it affects the operational savings from storage by consumers, hence 

the probability of them investing in the technology. This could also be a reason for the complexity 

of cost-benefit calculations by consumers and hence the current lack of EES deployments by 

domestic users [17,58].  

Providing consumers with an understanding of how savings from their storage devices could 

be affected by numerous energy system conditions could improve consumer confidence in the 

technology and might facilitate deployments. It is more likely for such information to be useful if 

provided in the form of a software integrated into an easily accessible website that calculates savings 

from storage based on high temporal and spatial resolution models of the electricity system. Such a 

model would consider where on the system the consumer is based, as well as the consumer’s 

electricity consumption patterns, among other factors. This would help inform the consumer’s 

decision as to whether a financial case to invest in storage exists in their specific case, and to 

understand the relationship between their investment on distributed technologies and their overall 

support for any future energy pathway. 

4.3 Additional storage in the electricity system and consumer savings 

We demonstrate that a consumer could expect lower savings from their storage technology if a 

large amount of storage installed throughout the electricity system. Yet this only occurs if this 

capacity is subject to aggregation. Annual electricity cost savings from storage to a typical UK 

consumer could fall by more than 20% if EES capacity were to increase from 3 GW to 17 GW in the 

system. 

The policy implication here is that the system operator should provide the data of the existing 

capacity of storage in the system, planned new storage installations, and the level of aggregation of 

these assets. This information should ideally be made public together with statistics about the 

fraction of these resources that are centrally coordinated as this is likely to impact the savings of 

consumers, lowering that compared to the case no storage deployments or aggregation occurred.  
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4.4 Drawbacks and future work 

This paper focused on arbitrage using EES, and the value of storage to consumers in providing 

non-economic benefits such as energy security has not been considered. Similarly, the value that 

consumers could extract from their storage device by providing balancing or ancillary services to 

the grid have also been neglected. As electricity systems evolve, it will become increasingly 

important to assess the value of security and the potential provision of grid services through 

aggregation, as these are effectively substitutes to one another, while having synergies with energy 

arbitrage [23]. We simplified the representation of domestic consumers by considering a typical 

domestic electricity consumer with a representative solar PV production and electricity 

consumption pattern. Yet these factors may largely vary across consumers and geographical areas. 

Furthermore, we focused on the role of coordination in the determination of wholesale electricity 

prices. Yet to uncover the changes in retail tariffs, our modelling work would benefit from an 

analysis where prices are made depending on capital, fuel, and networks costs in relation to each 

consumer in the electricity system.  

5 Conclusions 

This study investigates the potential economic savings to a UK electricity consumer as a 

function of energy storage coordination scheme, i.e., central vs. distributed, as well as the system-

wide impact of deployment of such storage devices. As more consumers, and the wider electricity 

system, adopt electricity storage technologies, herding behaviour could occur: many cost-

minimizing consumers with an incentive to shift electricity demand to the same periods of low 

electricity prices, which will ultimately lead to an increased electricity demand and price peaks. 

Storage technologies already face multiple market barriers today. Hence, it is crucial to understand 

the impact of electricity market design on potential financial benefits of a storage owner (storer).  

This paper examines the possible economic impact of owning a demand-side energy storage on 

the savings to a typical domestic consumer equipped with a solar PV microgeneration system. We 

conclude that pairing solar PV with storage could reduce electricity bills for a typical UK consumer 

by 80-88%. Yet the value of storage device is likely to increase if most electricity consumers allow an 

aggregator to coordinate their storage resources, thereby, reducing peak electricity demand 

resulting in more affordable electricity for all consumers. Our study shows that the benefits of 

consumers investing in energy storage is partly dependent on the ratio of variable renewable energy 

capacity to flexible supply capacity in the system. This ratio tends to improve savings from storage 

when the need for flexibility grows in the system. 

This paper further investigates the relationship between savings to a typical UK electricity 

consumer using energy storage only for arbitrage versus the amount of aggregated storage capacity 

deployed by the electricity System Operator. A five-fold increase in the level of aggregated storage 

capacity can potentially lead to 20% lower savings to the consumer from their energy storage device. 

We show that consumers should expect diminishing marginal savings to the private utility of their 

Jo
urn

al 
Pre-

pro
of



20 

 

storage device because of additional aggregated storage capacity if they pay time-dependent 

electricity tariffs, such as dynamic ToU tariffs. To maximize the value of the storage resources, the 

system operator should reduce the uncertainty in investing in storage by providing the consumers 

with the information about amount of deployed storage resources in the system, either centrally or 

individually coordinated. The scale of reduction in electricity bills of consumers depends on future 

electricity system evolutions too. 
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  1 

Highlights 

 Centralized coordination vs. distributed operation of residential solar PV-battery is 

discussed. 

 Centralized coordination offers greater savings to prosumers, especially, under time of use 

tariffs. 

 Value of home batteries is dependent on the need for flexibility in the energy system in long 

term. 

 Consumers with no energy technology benefit more from coordination compared to battery 

owners. 

 Benefits of storage aggregation drops by 20% if aggregated storage devices increase five-fold. 
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