1 Enriching social media data allows a more robust representation of cultural ecosystem services

2 Abstract

- 3 Images and textual metadata from social media sites such as Flickr have been used to understand
- 4 the drivers and distributions of cultural ecosystem services (CES). However, using all available data
- 5 from social media sites may not provide an accurate representation of individual services. For
- 6 example, an image of nature might be described negatively in the image's description. Here, we
- 7 present a novel approach to refining social media data to represent CES better, including filtering by
- 8 keywords, photograph content and enriching the data by including a measure of the sentiment
- 9 expressed in the textual metadata. We demonstrate that the distribution of an enriched dataset of
- 10 Flickr images representing hiking in the USA can contribute to different results and conclusions than
- 11 the full dataset. Furthermore, we classified the contents of these hiking images and, using latent
- semantic analysis, clustered the images into ten groups based on the similarity of their content. The
- 13 groups provide rich information, such as the importance of geodiversity and biodiversity in
- 14 supporting a positive hiking experience. The application of this method can help to enrich social
- 15 media data for CES studies, allowing researchers to further untangle the complex socio-ecological
- 16 interactions that drive CES distributions, benefits and values.
- 17 **Keywords**: Cultural ecosystem services, geosystem services, social media, Flickr, hiking

18 1 Introduction

- 19 Cultural ecosystem services (CES) are non-material benefits obtained from human-nature
- 20 interactions including through recreation, cognitive development, aesthetic views and spiritual
- 21 enrichment (Millennium Ecosystem Assessment 2005; Milcu et al. 2013). Though there are many
- 22 different definitions and classifications used for CES, most literature focuses on the links between
- 23 the biophysical environment and human wellbeing, while recognising that CES are intangible (Fish et
- al. 2016; Dickinson and Hobbs 2017). Here, we classify CES following Milcu et al., (2013), who divided
- 25 CES into 11 subcategories; recreation and tourism, aesthetic values, spiritual and religious values,
- 26 educational values, cultural heritage values, bequest, intrinsic and existence, inspiration, sense of
- 27 place, knowledge systems, social relations, and cultural diversity. Furthermore, we note that CES
- 28 benefits can be delivered through multiple pathways. King et al. (2017) identified six pathways to
- 29 CES benefits that reoccur across CES literature: cognitive (benefits from the development of
- 30 knowledge), creative (benefits from influences on aesthetic appreciation and artistic expression),
- 31 intuitive (benefits from the influence on instincts and senses), retrospective (benefits from reflecting
- 32 on past experiences), regenerative (benefits from opportunities for recreation, leisure and tourism)
- and communicative (benefits from social relations, cultural identity, and sense of place). However,
- 34 for these pathways to be actualised, there is a need for people to first recognise the potential
- benefits of biophysical features and then utilise these potential benefits (Spangenberg et al. 2014).
- 36 Therefore, CES, as with other ecosystem services (ES), are not provided by ecosystems
- 37 independently of humans but are co-produced through our interactions with them (Fischer and
- 38 Eastwood 2016).
- 39 Though the value of ES is generally provided by an economic metric, ES values can also be measured
- 40 by its societal and cultural values and therefore the value of CES is often non-monetary (Haines-
- 41 Young and Potschin, 2018; Reynaud and Lanzanova, 2017; Small, Munday and Durance, 2017). There
- 42 are multiple methods of assessing CES value both, monetary (e.g. travel cost or willingness to pay)
- 43 and non-monetary (photograph analysis or ranking methods) (Hirons et al. 2016). However,
- 44 quantifying the benefits and values of CES are more difficult due to the perceptions of CES benefits

- 45 being unique to individuals based on their social and cultural norms (Daniel et al. 2012; Havinga et
- 46 al. 2020). Therefore, CES have been comparably under-researched compared to other ES and we,
- 47 therefore, need to develop our understanding of the human-nature interactions that provide these
- 48 services (Milcu et al. 2013; Dickinson and Hobbs 2017).

49 Previous literature assessing CES relationships, as well as wider ES relationships, tend to focus on the 50 role of nature on CES production (Fischer and Eastwood 2016). Because people, culture and nature 51 are so inherently interlinked, it can be difficult to disentangle what constitutes nature in the context 52 of ES (Plumwood 2006; Hirons et al. 2016). Here, we view nature as the biophysical features of an 53 ecosystem (Haines-Young and Potschin 2018), comprised of the interactions of biodiversity and 54 geodiversity (Gray 2012; Gordon and Barron 2013; Fox et al. 2020a). There has been a particular 55 focus on the role of biodiversity in CES production, with the role of geodiversity often omitted from 56 studies (Fox et al. 2020a). Geodiversity can be viewed as the abiotic equivalent to biodiversity, 57 representing the diversity of geological structures and processes, including rocks and minerals; 58 geomorphology, including landforms and topography; sediments and soils, including formation 59 processes; and hydrology, including marine, surface and subsurface waters (Gray 2004; Hjort et al. 60 2015; Fox et al. 2020a). Geodiversity can also provide CES in the absence of biodiversity. These 61 "geosystem services" include CES such as recreational activities (e.g. water-based sports, rock 62 climbing and caving), spiritual sites (e.g. Uluru, Australia and the Torres del Paine, Chile), as well as 63 providing opportunities for advancing scientific knowledge (e.g. the record of past climates and 64 ecosystems contained in sediment, rock and ice cores) (Gray 2012; Kiernan 2014; Fox et al. 2020a). 65 Often geodiversity is only assessed through landscapes types which are prescribed a general CES 66 value, however, CES are not distributed randomly within a landscape, but are concentrated in 67 hotspots that have specific features of biodiversity (e.g. forests and hedgerows) and geodiversity 68 (waterbodies and geological formations) (Plieninger et al. 2013; van Berkel and Verburg 2014). It is 69 therefore important that the relationship of the individual features of biodiversity and geodiversity

- to CES be assessed.
- 71 There is also a need to recognise that CES are co-produced and co-created by people and therefore
- only arise from the interaction of people with the biophysical environment (Chan et al. 2011; Fish et
- al. 2016). Though CES are inherently co-produced through human-nature interactions, these
- relationships are often omitted from studies in favour of assessing the links between biophysical
- 75 nature and ES (Fischer and Eastwood 2016). CES are co-produced through a variety of different
- 76 pathways including human, financial and manufactured capital (Raymond et al. 2018). For example,
- 77 CES can be co-produced through the influences of culturally important buildings (e.g. places of
- worships), managed landscape (e.g. agricultural land), organisations (e.g. museums, parks and
 gardens), or purpose-built infrastructure (e.g. hiking trails) (Plieninger et al. 2013; van Berkel and
- Verburg 2014; Fischer and Eastwood 2016; Minkiewicz et al. 2016). There is a need to acknowledge
- 81 the implications of the co-production for quantifying ES, and CES in particular, as a holistic approach
- 82 to an understanding of these complex human-nature interactions can help to better shape their
- 83 sustainable management (Bennet et al. 2015; Palomo et al. 2016).
- 84 To understand CES there is a need to for suitable datasets that can assess the complex relationship
- 85 between biodiversity, geodiversity and society. However, globally, datasets on ES are sparse,
- 86 meaning services are often mapped through proxies (Stephens et al. 2015), with the primary sources
- 87 of data for CES mostly coming from either monetary assessments, social surveys such as stated
- 88 preferences, or onsite surveys (Tenerelli et al. 2016; Figueroa-Alfaro and Tang 2017; Mayer &
- 89 Woltering, 2018). Due to labour-intensive methods and high financial costs, implementing these
- 90 over large spatial and time scales is not always feasible (Wood et al. 2013; Kim et al. 2019).

- 91 Furthermore, management decisions need to be better informed through methods that reliably
- 92 understand, identify, quantify and map CES (Tenerelli et al. 2016; Byczek et al. 2018). As CES are
- 93 dynamic, methods also need to be able to reliably investigate changes over time (Figieroa-Alfaro and
- 94 Tang 2017).

95 The potential of social media sites such as Flickr, Twitter and Facebook as a source of data for CES 96 questions is starting to be realised (Kim et al. 2019). In contrast to social surveys, social media data is 97 inexpensive, quick to gather and provides a means of mapping the distribution of CES and assessing 98 changes over space and time (Fox et al. 2020b). Social media data has been used for CES studies, 99 such as wildlife watching (Mancini et al. 2019), recreational services (Graham and Eigenbrod 2019; 100 Sinclair et al. 2020a), aesthetic views (Van Berkel et al. 2018) and visitation rates in protected areas 101 (Tenkanen et al. 2017, Kim et al. 2019; Sinclair et al. 2020b), providing key information for both 102 tourism and conservation. However, social media data is often messy (Ghermandi and Sinclair 2019; 103 Chen et al. 2020). Issues such as unknown or inaccurate spatial references (Figieroa-Alfaro and Tang 104 2017), unreliable image contents due to mistagged images or a mismatch between the content of a 105 photograph and the location it was taken (Oteros-Rozas et al. 2018), and biases introduced by user 106 groups (Langemeyer et al. 2018; Chen et al. 2020) therefore need to be accounted for.

107 To address the issues introduced by the vast volume of data on social media sites, CES studies tend 108 to filter the returned results through several different approaches. For example, some studies filter

- 109 results based on the geographic location the images were taken in e.g. studies using the InVEST
- 110 recreational model (Sharp et al. 2020). Searching for images within a given study site alone may
- return a large number of images not relevant to the specific ES of interest, or even to any ES at all.
- 112 Other studies filter out images based on land cover types. For example, Tenerelli et al. (2019)
- excluded images of photographs found in urban areas. This method overlooks the fact that a
- 114 photograph's location does not always represent the subject of the image (Yan et al. 2019). A
- photograph taken within an urban area may be a long-distance image of a CES such as an aesthetic
- 116 natural view, whilst photographs taken in a natural land cover may not be of a CES e.g.
- 117 photographs of a car's interior. Furthermore, CES are not confined to specific land cover types and
- so excluding on this basis may exclude relevant services such as those provided by urban green
- 119 spaces and trees (Kondo et al. 2018).
- 120 Another approach to deciding which images to include is to search for photographs based on a set of
- 121 criteria e.g. a study looking for photographs of hiking may limit returned photographs to those
- 122 containing the word "hiking" in the textual metadata (Graham and Eigenbrod 2019). However,
- 123 limiting images based on text alone does not guarantee that the image itself represents an ES. For
- 124 instance, a search for photographs of "biking" may return photographs of equipment such as bikes
- and helmets. It therefore cannot be assumed that an image containing textual metadata related to
- 126 the use of an ES is relevant for assessing CES.
- Some authors are starting to acknowledge this, for example, Havinga et al. (2020), who used the
 distribution of photographs from Flickr to assess the aesthetic quality of landscapes, suggest that not
 all photographs may have relevance to the study. They therefore recommended assessing
- 130 photograph contents. To ensure that photographs are suitable for their studies, researchers have
- analysed the contents of images and refined them to those that meet relevant criteria. Image
- 132 classification can be either manual (subjective) or automatic through machine learning techniques
- 133 (objective). For example, Oteros-Rozas et al. (2018), manually classified the contents of images,
- 134 labelling them with landscape features and CES. These labels were then used to identify bundles of
- 135 landscape features and CES. One method of automatic tagging is the Google Cloud Vision API, a
- 136 machine learning algorithm that can identify the contents of images. Richards and Tuncer (2018)

137 used the Google Cloud Vision API to label the contents of Flickr images and subsequently used this

- information to map the distribution of plants and animals, whilst Gosal et al. (2019) labelled
- 139 photograph contents using the Google Cloud Vision API to find groups of recreational beneficiaries.

140 However, we argue that a combination of textual metadata confirming the presence of a targeted service (for example, an image tagged "hiking"), and an image containing features of the natural 141 142 environment (for example, an image of a mountain), still does not confirm that the service user 143 experienced a positive benefit indicating a CES. Indeed, it may have been a negative experience - e.g. a user could caption the image with a complaint about a boring walk. Furthermore, as sharing 144 145 photographs is influenced by societal pressures, photographs shared may not show the user's 146 preferred features of nature (Moreno-Llorca et al. 2020). The textual metadata can contain "text-147 private" information that can convey emotions and opinions which could not be elicited from the 148 image contents. By contrast, the image contents will often contain "image-private" information, 149 such as features of the image and colours not mentioned in the text (Huang et al. 2019). In 150 particular, a dichotomy between the textual metadata and image contents can exist as the textual 151 metadata tends to be more heterogeneous and contain non-descriptive terms and phrases, whereas 152 the classification methods used to label the content of images provides more homogenous single 153 descriptive terms (Yan et al. 2019). Here, we suggest that by assessing the sentiment expressed in 154 the textual metadata we can get additional information about the quality of the experience, 155 meaning one can enrich the CES data. As the different types of data from Flickr contain different 156 information (image content, spatial, temporal and textual metadata), studies could combine all 157 these data sources to obtain more information about the benefits received.

- 158 We suggest that social media data can be enriched to better understand user experience, elicited 159 through sentiment analysis of the textual metadata, and may provide a more robust dataset for CES 160 assessments. Lexicon-based sentiment analysis is a natural language processing technique used to 161 calculate the semantics, opinions or emotions of words or phrases from text (Wilson et al. 2019). 162 One form of analysis is polarity classification, which classifies text as either positive or negative and 163 can be used to assess social media datasets (Koto and Adriani 2015). Sentiment analysis for ES 164 assessment has been broadly applied to social media datasets from Twitter (e.g. Becken et al. 2017; 165 Wilson et al. 2019) and Instagram (e.g. Do 2019). There has also been some limited application of 166 sentiment analysis to Flickr textual metadata. For example, Brindley et al. (2019) used sentiment 167 analysis on Flickr textual data to assess the perception of green space.
- 168 Though the position of recreation as a final service has been questioned (Haines-Young and 169 Potschin, 2018), recreational activities provide restorative benefits (e.g. increased physical 170 wellbeing) and are therefore generally considered a CES (Millennium Ecosystem Assessment 2005; 171 Milcu et al. 2012; Plieninger et al. 2013; King et al. 2017; Balzan and Debono 2018). In this article we 172 will focus on hiking, a recreational activity that involves walking over an extended period, typically 173 through natural or rural areas (Mitten et al. 2016). We consider hiking a CES here as it can directly 174 provide restorative benefits, however, as the benefits from recreation may also be indirect (Balzan 175 and Debono 2018), we recognize hiking could also be considered as a pathway to other CES (King et 176 al. 2017) through co-production between human-nature interactions (Fischer and Eastwood 2016). 177 For example, hiking may be undertaken for spiritual and religious motivations such as a pilgrimage, 178 to experience aesthetic qualities of nature, or as a social activity with a sense of belonging (Collins-179 Kreiner and Kliot 2017; Wilcer et al. 2019). From this viewpoint, hiking can also provide multiple 180 pathways to other CES benefits, for example, providing a means of access to aesthetic views 181 (creative pathway) or providing a sense of place (communicative pathway) (King et al. 2017). Hiking is one of the most popular recreational activities, both in the USA and worldwide, with participants 182

- 183 from all age categories (Wilcer et al. 2019). Despite its popularity, research on the drivers of hiking
- remains limited (Wilcer et al. 2019). Hiking, as with other ES, is driven by co-production between
- ecosystems and people, such as the influences of cultural landmarks and landscapes or through the
- 186 provision of infrastructure such as signposted trails (Plieninger et al. 2013; Fischer and Eastwood
- 187 2016).
- 188 In this article, we present an analysis that refines social media data from Flickr using content analysis
- and enriches the data using a measure of sentiment value expressed in the textual metadata,
- 190 particularly for mapping the distribution and understanding the drivers of CES. We then
- demonstrate the use of our method for a more differentiated analysis of hiking as a CES, focusing on
- 192 understanding which of geodiversity, biodiversity and human features contribute to a positive hiking
- 193 experience.

194 2 Methods

195 2.1 Data collection

196 A reproducible R file for the data collection methods has been included in the supplementary material

- 197 (S1). To comply with API terms and privacy policies all data sets were anonymised, stored with
- 198 multiple layers of security and any unnecessary metadata was deleted.
- 199 We queried the Flickr API for photographs containing the text "hiking" in a photograph's title,
- description or tag metadata, in the contiguous 48 states of the USA, between 2015-01-01 and 2020-
- 201 01-01. To ensure consistency and reproducibility in the study we used the photosearcher package
- 202 (Fox et al. 2020b) within the R environment (R Core Team 2020). The photosearcher package allows
- searches of Flickr to be constrained by a shapefile. Here the search was limited to photographs taken
- and geotagged in the contiguous 48 states using a modified shapefile from the USAboundaries R
- 205 package (Mullen and Bratt 2018). As the number of posts meeting these criteria can change over
- time (e.g. new photographs were taken during the study period but uploaded at a later date), we
- limited photographs to those uploaded before 2020-06-01 to increase the reproducibility of thesearch.
- 209 2.2 Content analysis
- To ensure an image captures human-nature interactions, we categorized the contents of images to 210 211 help filter out images that do not contain any biophysical features in their contents (e.g. indoor 212 images). Here, the features within each image were automatically labelled using the Google Cloud 213 Vision API (Google Cloud Vision 2020), accessed through the imgrec R package (Schwemmer 2019). 214 The Google Cloud Vision API is a pre-trained machine learning model that can detect image contents 215 including objects, faces and text. For each image, we requested the API to identify and label the 10 216 most dominant features of the image. The generated labels had an associated confidence score 217 between 0 and 1. Here we only kept labels with a confidence score of >0.6 (Gosal et al. 2019). We 218 assessed each unique label identified by the Google Cloud Vision API and categorized them as either 219 biophysical nature or not. Here, we identified non-biophysical nature words as synthetic objects (e.g. 220 buildings and cars), relating to people (e.g. a person), and descriptive terms (e.g. black, text), as well 221 as non-biophysical aspects of nature such as weather phenomenon (e.g. sky and sun). Biophysical 222 nature labels were any label that was a feature of biodiversity (e.g. tree or bird of prey), geodiversity 223 (e.g. lake or geology), or an ecosystem (e.g. rainforest or grassland). Furthermore, we included 224 generic descriptions of landscapes (e.g. wilderness and natural landscape) as biophysical nature. 225 Supporting Information (Tables S2.1, S2.2) provides a full list of how each word was categorized. For 226 each image, we calculated the percentage of labels categorized as a biophysical feature of nature.

227 2.3 Sentiment analysis

- To ensure an image captures a positive human-nature interaction, and therefore a CES, we calculate
- the sentiment value expressed in the textual metadata. Here, we used the AFINN dictionary (Nielsen
- 230 2011) to summarise the sentiment of the textual metadata. The dictionary ranks words on a scale of
- -5 (the most negative words) to +5, (the most positive words), and can be an effective method for
 assessing social media datasets (Koto and Adriani 2015). For each image, the associated textual
- 233 metadata was analysed using the AFINN dictionary and the overall sentiment value was calculated as
- the sum of all the positive and negative sentiment scores for that image. Each image was then
- categorized into two groups, (1) positive images those with an overall positive sentiment score, (2)
- non-positive images those with an overall negative sentiment score, an overall neutral sentiment
- 237 score or where no sentiment was expressed in the textual metadata.

238 2.4 Impacts of refining the data

- 239 To understand the ramifications of refining data by contents and sentiment, we carried out two
- 240 filtering processes: first selecting all images where the percentage of labels classified as biophysical
- 241 nature exceeded a given threshold (e.g. 25% of the Google Vision Cloud API labels were of
- biophysical nature features), and second filtering only images with positive sentiment to ensure
- images were associated with a positive experience (Fig. 1). The final part of the analysis applied both
- filters, resulting in a final dataset representing images of human-natural interactions AND reflecting
- a positive experience. We extracted a random sample of 100 images from each category
- 246 (confirmedNature, nonNature, confirmedPositive, nonpositive) to manually validate the automated
- 247 process.

248

- 249 Figure 1. Processes applied to refining the Flickr dataset.
- 250 First, the full Flickr dataset was refined to images that were *confirmedNature* (thus removing any
- 251 images that, whilst including the relevant activity in the associated textual data, were not taken

252 within a natural or semi-natural setting and therefore did not represent an ES, for example, an image 253 of somebody indoors with the caption "I wish I were hiking"). Two rasters were generated 254 representing the number of uploads per pixel, one raster from the full dataset and one from the 255 refined dataset. A moving window was used to assess localised differences in the two rasters (Figure 256 2). The moving window assesses a square of pixels (3 x 3 pixels) and calculates the deviance of their 257 values from a 1:1 line. To do this, the values of two rasters within the window are normalized 258 between 0 and 1 and the absolute difference between the two pixels at the same location within the 259 window was calculated. If the two sets of images have a perfect correspondence in the distribution 260 within the window, the standardised upload values would fall along a 1:1 line. The deviance score is 261 calculated as the mean of the absolute values of these differences (to account for negative deviations from the 1:1 line, following Willcock et al. (2019)). The moving window approach allowed 262 263 us to represent spatial differences in deviance by calculating the deviance value for the number of uploads within the window and creating a new raster in which the deviance value was assigned to 264 265 the central pixel of the window (e.g. the pixel in the middle of the 3 x 3 moving window). If the full 266 dataset is a good proxy for images of nature, we expect the local deviance (defined by the window 267 size) value to be less than 0.3 (Willcock et al. 2019); indicating that the refined and full datasets 268 share similar distributions and that the filtering is not necessary. Where the deviance value is greater 269 than 0.3 there is not a good fit between the two datasets (Willcock et al. 2019).

270 As landscape characteristics can drive recreational activities at a range of scales, and Flickr is a good 271 proxy for recreation at a range of scales up to 50km (Graham and Eigenbrod 2019), here we map the 272 difference in distribution when the number of uploads is aggregated to 25km². We also map the 273 differences in distribution using a 3 x 3-pixel window (where a pixel is the size of one pixel of the 274 underlying raster as determined by the spatial resolution), a standard size for aggregating fine-scale 275 data (Graham et al., 2019). Furthermore, we map the differences based on refining by a threshold of 276 25% biophysical labels. This threshold was chosen to ensure that the refined set of images captured 277 human-nature interactions, without completely excluding images containing human features as 278 these could help to provide insight into the co-production of CES. However, as any changes in 279 distribution may be a facet of the filtering method, or the method of mapping and calculating the 280 deviance, we conducted a sensitivity analysis using all possible combinations of three thresholds for considering an image to be of nature (images with 25%, 50% and 75% labels classed as biophysical 281 nature), three different spatial resolutions (5km², 10km² and 25km²), and three sizes of moving 282 283 window (3 x 3 pixels, 5 x 5 pixels and 7 x 7 pixels). This resulted in 27 datasets.

Figure 2. Methods for calculating the difference in distributions between the unrefined and refineddatasets.

- 287 If there is a spatial pattern to the data (e.g. if all pixels that have high deviance values are spatially
- clustered such as in urban areas), the full data may be an applicable proxy if areas of anomalous data
- are accounted for in any analysis. However, if the distribution of deviance values is random the full
- 290 dataset may not be a suitable proxy. We calculated the Moran's I for the local deviance maps.
- Moran's I can have a value of -1 to 1, with values closer to -1 showing a uniform distribution, values
- closer to 0 a random distribution and values closer to 1 a clustered distribution (Sankey 2017).
- 293 Second, we followed a similar process, filtering by the sentiment expressed in the textual metadata
- 294 (thus removing any images that were not about a positive experience and therefore did not
- represent an ES, for example, an image with the caption "boring view"). In this case, we compared
- the number of images with positive sentiment, *confirmedPositive*, against the full dataset. In this
 case, we tested the sensitivity of the results to the chosen parameters by considering all
- case, we tested the sensitivity of the results to the chosen parameters by considering all
 combinations of the same three different pixel resolutions and three sizes of moving window (9
- 299 datasets in total). In this example, if the full dataset is a good representation of a positive
- experience, the local deviance values should be close to 0. We also tested for spatial patterns in local
 deviance using the Moran's I.
- 302 Finally, we refined the original dataset to images containing biophysical features and positive textual
- 303 sentiment (thus capturing CES as images of positive experiences occurring within a natural, or semi-
- natural setting). Here, we mapped the distribution of these *confirmedCES* images versus the full
- number of images and calculated the local deviance values of the two datasets, again using all the 27
- 306 possible combinations of three thresholds for considering an image to be of nature (images with
- 307 25%, 50% and 75% labels classed as nature), three different spatial resolutions (5km², 10km² and
- 25km²), and three sizes of moving window (3 x 3 pixels, 5 x 5 pixels and 7 x 7 pixels). Here, if the
- 309 original full dataset was a good proxy for CES we would expect deviance values to be closer to 0
- between the *confirmedCES* images versus all the images. We also tested the spatial uniformity of the
 local deviance values using Moran's I.

312 2.5 Mapping distributions and sentiment

- 313 The point locations of the *confirmedCES* images were aggregated to a raster layer using a pixel size
- of 25km², a suitable size for assessing spatial relationships based on Flickr data (Graham and
- 315 Eigenbrod 2019). We also mapped the mean sentiment score of images falling within each pixel. To
- test the relationship between the number of uploads of *confirmedCES* images and the mean
- 317 sentiment score of *confirmedCES* images in an area we calculated Pearson's correlation between the
- 318 two raster maps. If a high number of uploads is related to a high sentiment value, we would expect a
- 319 Pearson's correlation value to be closer to one.

320 2.6 Assessing human-nature interaction in images

- 321 To assess the relationship between biodiversity and geodiversity we carried out latent semantic
- analysis (LSA) on the content labels (Fig. 3). LSA was carried out in the R environment, primarily
- using the Isa R package (Wild 2015). LSA is a natural language processing technique that is used to
- 324 assess the relationship between a collection of documents (in this case a user's photographs from
- 325 one day) and the terms used in them (in this case Google Vision Cloud API labels) as a term-
- document matrix (TDM) and can be used to examine how closely terms are related in use (Gefen et
- al. 2017). LSA on a TDM has been previously used to help describe recreational activities (Monkman
- et al. 2018; Gosal et al. 2019). Here, where the LSA shows terms are more closely related, this
- indicates that those Google Vision Cloud API labels are more commonly photographed together, forexample, one might expect the labels "forest" and "tree" to be frequently photographed together.

332 Figure 3. Example workflow for the methods of clustering photographs.

333 As LSA can be used to assess individual CES preference, we grouped all the labels from all images from a single user of a single day into a single document, building upon the photograph user-days 334 335 (PUD) metric introduced by Wood et al. (2013). These new groupings were transformed into a term-336 document matrix (TDM) (Gosal et al. 2019). The TDM, M, contains the grouped photograph by a single user on a single day as the columns and the Google Vision Cloud API labels as the rows, with 337 338 cells representing the frequency of the label appearing in that users photographs for that day. 339 During the creation of the TDM we carried out several common LSA pre-processing procedures to 340 ensure that only relevant words were kept (Evangelopoulos 2013; Gefen et al. 2017). First, we 341 removed stop words, a list of around 400 common English words such as "the", "of" and "them". 342 Second, to assess which features are most commonly photographed in association with hiking, we 343 only selected labels that appear in at least 5% of the documents (the labels from each image, including non-nature labels). Third, we applied the "Term Frequency-Inverse Document Frequency" 344 345 (TF-IDF) weighting to the TDM. The TF-IDF is one of the most commonly used weightings for LSA, 346 where locally more weighting is given to terms that appear frequently in one document and globally 347 less weighting is given to common terms and is necessary to control for the fact that some words

appear far more frequently than others (Evangelopoulos 2013; Christian et al. 2016; Gefen et al.2017).

350 After pre-processing the LSA was carried out on the weighted TDM. The LSA procedure carries out a 351 singular value decomposition (SVD), a linear algebra method for the factorization of a matrix into a 352 product of matrices. Here, the SVD takes our matrix M (an m x n matrix with m representing all 353 images a user took in a day and *n* terms that the Google Vision Cloud API labelled in those images) 354 and transforms this into three new matrices: T_k , S_k and D_k . T represents a term vector matrix, S represent a diagonal matrix containing singular values in descending order, D represents a 355 356 document vector matrix and k the number of new dimensions (Gosal et al. 2019). The LSA process 357 represents the data in k-dimensional semantic space, by reducing the original dimensions whilst 358 preserving the most information. This method allows for the original space vector to be represented 359 in the lower-dimensional term and document vectors. Here the dimensionality reduction (k) was 360 automatically calculated using the standard "fraction of the sum of the selected singular values to the sum of all singular values" method (Gosal et al. 2019). This method selects the points on the 361 362 diagonal matrix of descending singular values where the sum of the S singular values divided by the sum of all the S singular values are equal or greater than 0.5 (Gefen et al. 2017). From the new 363 364 matrices, we calculated a term weighted matrix (S_kT_k). The term weighted matrix represents each

term as a row and each dimension (or latent semantic factor) as a column (Evangelopoulos 2013).

By carrying out the SVD, the terms can now be projected in multidimensional space and the

- 367 similarity between Google Vision Cloud API labels can be calculated using cosine similarity
- 368 (Evangelopoulos 2013). Cosine similarity measures the angle between vectors in multi-dimensional
- 369 space, with the resulting values ranging from 0 to 1, with 1 representing total similarity. The diagonal
- in the matrix will always be 1 as a word is always the same as itself. Here we calculated the cosine
- 371 similarity between all terms. Cosine similarity of 1 means that the labels always appear together and
- 372 0 means they never appear together.

373 To understand what features (including biophysical and non-biophysical nature as well as human

- 374 features) are most often taken in the same images, we used hierarchical clustering to group the
- 375 Google Vision Cloud API labels based on their cosine similarity. As hierarchical clustering uses a
- distance measure, we calculated cosine *dissimilarity* (1 cosine similarity). We then carried out
 hierarchical clustering using Ward's D method, which has previously been shown to create
- 377 Interarchical clustering using ward's Diffethold, which has previously been shown to create
- 378 unambiguous clusters for labels generated by the Google Cloud Vision API (Gosal et al. 2019). The
- Ward's D method builds a dendrogram through a bottom-up approach to clustering. Each element in the tree starts as an individual cluster, two clusters are then merged so that variance within clusters
- is minimized. This process is repeated until all elements are clustered on the tree.

382 A dendrogram can then be cut at a chosen height to provide the final clusters, with the choice of 383 height resulting in the selection of different final clusters. Though studies can choose an arbitrary 384 height to cut the dendrogram and select the clusters, indices such as the silhouette index can be 385 used to find the optimal number of clusters based on the given dendrogram (Wang and Xu 2019). 386 Here, the dendrogram was cut into x clusters, based on the silhouette index, where each element is 387 assigned a value between -1 and 1. Elements with higher numbers are closer to the other elements 388 in their cluster than elements in other clusters (Pagnuco et al. 2016). The value of x with the highest 389 silhouette index was chosen to be the number of clusters.

We summarised the types of images photographed when hiking based on the clusters. For each
 user's daily images, we calculated the number of Google Vision Cloud API labels belonging to each
 cluster then categorised the users daily images as which cluster was the most dominant (where

labels of two or more clusters appear equally dominant in an image, that image was classified as a
 combination of those clusters). The mean sentiment of the images belonging to each cluster or
 combination of clusters was calculated.

396 3 Results

397 *3.1 Full and enriched datasets*

There were 179,700 geotagged photographs containing the text "hiking" in a photograph's title, 398 399 description or tag metadata for the years 2015-2020 in the USA. The distribution of hiking images 400 was largely concentrated in the west, the northeast, and some southern states (Fig. 4a). Here, the 401 final refined dataset chosen to represent confirmedCES were images containing more than 25% of the image content labels being classified as nature and a positive sentiment expressed in textual 402 403 metadata. There were 43,427 images that met these selection criteria, 24.17% of the full hiking 404 dataset. The distribution of these confirmedCES images follows some similar patterns to the full 405 dataset with the largest concentration of uploads along the west coast of the US in states such as 406 Washington, southwest states, such as Arizona and Utah, northeastern states around the Great 407 Lakes and along the Appalachians (Fig. 4b). Though there are similarities in the distribution of the 408 confirmedCES images and the full dataset images, there are also areas where the distributions have 409 different patterns for example, particularly with many regions having fewer uploads, such as 410 southern California, Arkansas and the west coast of Florida.

412

Figure 4. Number of images from Flickr in the USA between 2015-2020 with the term "hiking" in the images title, tag or description, results were normalized (spatial resolution 25km²). a) the full Flickr

- 415 dataset, b) images categorized as *confirmedCES* (images where the percentage of content labels
- 416 classified as nature were >25% and a positive sentiment was expressed in textural metadata).

- 417 The similarities in some of the large-scale distributions may be misinterpreted to mean that overall
- the distribution of uploads from *confirmedCES* and the full dataset images are similar. However, the
- local variation in the deviance from a 1:1 line differs spatially, with high and low deviance distributed
- 420 across the whole of the United States (Fig. 5). Here, 20.81% of pixels had a deviance value of > 0.3
- 421 indicating that these regions did not have a strong relationship between the number of uploads that
- 422 were *confirmedCES* and from the full dataset images. As the Moran's I value for the local deviance
- 423 distribution was 0.27, this indicates that the distribution is close to random, and therefore not
- 424 spatially uniform. It may therefore not be possible to use the full dataset alone to select areas that
- 425 represent a good proxy for a positive CES experience. The non-conformity between the full and
- filtered datasets is distributed across the US including in the northwestern states, around the Great
- 427 Lakes, areas of California and throughout Florida.

- 429 Figure 5. The local deviance in the scaled number of images from the full Flickr and *confirmedCES*
- images dataset (images where the percentage of content labels classified as nature were >25% and a
 positive sentiment was expressed in textural metadata) from the 1:1 line. Pixel size 25km²; window
 size 3 x 3; a break point of 0.3 was applied to indicate areas of high deviance.

433 The differences in the distribution of these local deviance values do not appear to be a facet of the 434 chosen mapping techniques as the deviance scores are similar across the full range of spatial 435 resolution, window size and nature threshold combinations (see supplementary material SI.3). When 436 two variables are held the same (e.g. the same nature threshold and window size) and the other 437 varies (e.g. differing pixel size), the deviance scores remain similar. We do note that there are some 438 small changes based on the selection of each, for example, the larger the pixel size the smaller the 439 overall deviance. However, this change is minimal and the overall deviance score remains similar, 440 suggesting that the selection of mapping technique has had limited influence on the results drawn 441 from the choices of aggregating to 25km², refining based on nature threshold of 25% and calculating deviance using a window size of 3 x 3. Therefore, although the absolute values of the deviance vary 442 443 based on the threshold, window size and pixel size values chosen, the conclusions which are drawn 444 are qualitatively the same.

446 3.2 Individual influence of filtering by content only

447 When filtering photographs by the percentage of nature labels based on a threshold of 25%, 160,873 448 images of nature remained, compared with 179,700 images before filtering. The deviance values 449 vary depending on the threshold, window size and spatial resolution, but again here the conclusions drawn are the same. From the moving window analysis, the distribution of the confirmedNature 450 images does not deviate greatly from the full dataset (Fig. 6). The deviance values are again not 451 452 spatially uniform with a Moran's I value of 0.26, indicating a random spatial pattern. Here, only 453 2.11% of the pixels are above a deviance value of 0.3 - indicating that images of hiking from Flickr 454 may generally be a good proxy for images of human-nature interactions. The patterns of positive 455 and negative local deviance values are similar overall for all combinations of the varied nature 456 threshold, spatial resolution and window size, indicating that these choices did not influence the 457 results when filtering by content alone (see supplementary material SI.4).

458

Figure 6. The local deviance in the scaled number of images from the full Flickr and *confirmedNature* images dataset (images where the percentage of content labels classified as nature were >25%) from the 1:1 line. Pixel size 25km²; window size 3 x 3; a break point of 0.3 was applied to indicate areas of high deviance.

463

464 3.3 Individual influence of filtering by sentiment only

Filtering out images with a non-positive sentiment removed a greater number of images than
filtering by image contents. From the 179,700 images in the full dataset, 61,091 (34.00%) contained
a non-null sentiment score, with 48,607 (27.05%) having a positive and 12,484 (6.95%) having a
negative associated sentiment value. There was some difference in the local deviance values
between the spatial distribution of the refined *confirmedPositive* and full dataset depending on the
window size and pixel size.

471 Here, 19.08% of the pixels have a deviance value of greater than 0.3, indicating that in these 472 locations, photographs of hiking on Flickr may not be a good proxy for positive images of hiking. 473 Furthermore, the deviation of uploads from the confirmedPositive and full dataset is not uniform 474 (Fig. 7), so it may not be possible to differentiate between areas where Flickr photographs are a 475 good proxy for a positive experience and those where they are not. The random structure to the 476 distribution (Moran's I = 0.27) suggests that there is no spatial structure to the distribution of the 477 locations which deviate between the full and filtered dataset. As with the previous examples, the 478 patterns of local deviance are similar across spatial resolution and window size and therefore the 479 choices in mapping the distribution have not impacted the results (see supplementary material 480 SI.5). As there was little to no difference in spatial distribution when refining by nature threshold alone, but a larger difference when refining by sentiment alone, this indicates that differences 481 482 observed in the analysis of the confirmedCES versus full dataset are primarily driven by the inclusion 483 of refining by sentiment.

484

485 Figure 7. The local deviance in the scaled number of images from the full Flickr and

confirmedPositive images dataset (images where a positive sentiment was expressed in textural
 metadata) from the 1:1 line. Pixel size 25km²; window size 3 x 3; a break point of 0.3 was applied to
 indicate areas of high deviance.

489 *3.4 Validation of methods*

490 The manual validation of the image content and textual sentiment analysis indicates that the 491 automated methods have high accuracy. When assessing images classified as presenting human-492 nature interactions we agreed with 98% of the images categorised this way at the 25% biophysical 493 nature label thresholds (confirmedNature): and 100% at 50% and 75% threshold (Table 1). However, 494 when assessing images deemed not to be focused on human-nature interactions (nonNature) the 495 method incorrectly included some images containing human-nature interactions, particularly when 496 using a threshold of 50% and 75% biophysical labels. When using a 25% threshold, the images that 497 were incorrectly labelled as confirmedNature were of artwork or indoors artificial water features. 498 For the images that were incorrectly included as *nonNature*, the images tended to be where the

- 499 biophysical nature features were out of focus (e.g. a photograph focused on a person in the 500 foreground, with a small amount of scenery in the background) or where the image had been edited 501 (e.g. in black and white or with text over the image). A threshold smaller than 25% would start to 502 include more images, that though contain biophysical nature labels, do not relate to human-nature 503 interactions as confirmedNature (e.g. images of pets, indoor plants or artificial water features). 504 There was a range of correctly identified *nonNature* images including indoor images (e.g. furniture), 505 non-hiking activities (e.g. indoor music events or an American football game inside a stadium), food 506 and drink (e.g. packets of food), photographs of an object (e.g. a photograph of another photograph) 507 or art (e.g. generated images), all having a biophysical nature label percentage of between 0 to 25%. 508 In general, using a threshold of 25% therefore provides a good balance of excluding most images not 509 related to human-nature interactions whilst not incorrectly excluding the large number of human-510 nature images that using thresholds of 50% and 75% did.
 - confirmedNature nonNature Both True-False-True-False-Overall Threshold positive positive negative negative accuracy 25% biophysical nature 98.00% 2.00% 70.00% 30.00% 84.00% labels 50% biophysical nature 100.00% 0.00% 39.00% labels 61.00% 69.50% 75% biophysical nature labels 100.00% 0.00% 26.00% 74.00% 63.00%

511 Table 1: Validation of automated filtering methods

512

For the positive expressed sentiment there was a 96% agreement between the automated process 513 514 and manual interpretation. Many posts contained positive sentiments (e.g. "beautiful", "exciting" or 515 "wonderful"). Where there were differences in our manual validation and the automated method, 516 the posts tended to include a location name that was inherently expressing a positive sentiment but 517 no indication of experience was given (e.g. "walk at Lucky Boy Vista") or a mixed sentiment 518 expressed in the text (positive and negative experience e.g. "nice view but overall the hike was 519 terrible"). For the non-positive textual sentiments, the automated process was 92% accurate. Many 520 posts contained no indication of sentiment, just simple descriptive phrases (e.g. "hiking along the 521 river"), though some positive post were incorrectly included as the place or feature has an inherently 522 non-positive connotation though the user expressed a positive view of it (e.g. "fun at Lost Creek 523 Lake" or "beautiful poison oak"), or where users used a double negative (e.g. "this view is not bad"). 524 Overall, the automated sentiment value provides a good indication of whether a positive sentiment 525 expressed in the text.

526 *3.5 Enriching spatial distribution*

527 Through enriching the social media data with the inclusion of textual sentiments, we were not only 528 able to plot the distribution of the number of uploads but assess which locations have the highest 529 associated sentiment value (Fig. 8). The Pearson's correlation between the *confirmedCES* uploads

- and *confirmedCES* mean sentiment raster maps indicates a weak to no correlation (R = -0.004, t = -
- 531 0.21, df = 2349, p-value = 0.83). This suggests that there is no correlation between areas with a high
- number of uploads and areas that have a high associated sentiment value.

534 Figure 8. Mean sentiment value of *confirmedCES* images (images where the percentage of content

labels classified as nature were >25% and a positive sentiment was expressed in textural metadata),

536 results were normalized (pixel size 25km²)

537 3.6 Enriching content analysis

533

538 When grouping images by a single user in a single day, 67 labels appeared in at least 5% of these 539 confirmedCES images. From the cosine dissimilarity coefficient of the labels, the silhouette index 540 indicated that when using Ward's D clustering, ten categories for the labels are suitable (Table 2). The ten classes can be summarized as: "mountains and hills", "forests", "views of lakes", "snow 541 covered mountains", "vegetated trails and parks", "hydrological features", "geological or arid 542 543 landscapes", "human-geology interactions", "grasses" and "flowers". The individual clusters tend to only contain either biodiversity labels (e.g. "flowers") or geodiversity labels (e.g. "mountains and 544 hills"), indicating that the focus of images may only capture one aspect of biophysical nature. 545

546 Table 2. Google Vision Cloud API labels clustered into ten classes using Ward's D clustering method.

Cluster	Google Vision Cloud API labels
Mountains and hills	Cloud, highland, hill, hill station, mountain, mountainous landforms, sky,
	wilderness
Forests	Biome, branch, forest, green, leaf, nature reserve, natural environment,
	northern hardwood forest, old-growth forest, tree, tropical and subtropical
	coniferous forests, woodland, woody plant, trunk
Views of lakes	Lake, Canidae, natural landscape, nature, reflection
Snow covered	Alps, mountain range, ridge, snow, winter
mountains	
Vegetated trails	Adaptation, botany, landscape, plant, plant community, shrubland, soil,
and parks	state park, trail, vegetation, wildlife
Hydrological	Body of water, river, stream, water, watercourse, waterfall, water resources
features	
Geological or arid	Badlands, canyon, formation, geological phenomenon, geology, national
landscapes	park, rock wadi

Human-geology	Adventure, atmospheric phenomenon, bedrock, outcrop, recreation
interactions	
Grasses	Grass, grassland
Flowers	Flower, flowering plant

547 When categorising images based on which cluster's labels were most dominant in the photograph,
548 there were 165 different combinations of the most dominant cluster (Figure 8). The clusters that
549 were most frequently photographed were "mountains and hills", "forests", "geological or arid
550 landscapes" and "hydrological features". Many of the cluster combinations have large standard
551 deviations, though some combination of clusters (e.g. "views of lake/human-geology interactions")

have relatively low standard deviation values.

553 Though the most photographed cluster was "mountains and hills", this cluster has a relatively low 554 sentiment score when the sole dominant class in the photograph. However, there is a high relative 555 sentiment associated with images containing both geomorphological and hydrological features (e.g. 556 "mountains and hills/views of lakes" and "mountains and hills/hydrological features"), indicating 557 that interactions between these features may be important at driving a positive hiking experience. 558 The cluster of images containing "forests/vegetated trails and parks/geological or arid landscapes" 559 had the highest mean sentiment, suggesting that a combination of geodiversity, biodiversity and 560 human features can interact to provide a highly positive hiking experience. There is a relatively low 561 sentiment value associated with "forests" when on their own, however, there is a higher sentiment 562 in images containing both forests in combination with other clusters (e.g "mountains and 563 hills/forests/hydrological features" and "mountains and hills/forests/vegetated trails or parks"), 564 indicating that forests alone may not provide a relatively positive hiking experience, but forests in 565 combination with a trail or park, or with geomorphological features (such as mountains) may help to 566 increase a positive hiking experience. Other aspects of biophysical nature, such as "geological or arid 567 landscapes" and "hydrological features", are both highly photographed with a relatively high mean 568 sentiment score. Many of the cluster combinations have large standard deviations, though some 569 combination of clusters (e.g. "views of lakes/human-geology interactions") have relatively low 570 standard deviation values.

Number of images	Mean sentiment of images
Mountains and hills: 2750 9	Forests/Vegetated trails and parks/Geological or arid landscapes: 6.35 (SD 9.39)
Forests: 2705 9	Mountains and hills/Views of lakes: 6.07 (SD 6.44)
Geological or arid landscapes: 1292 9	Mountains and hills/Hydrological features: 6.05 (\$D 5.62)
Hydrological features: 1247	Mountains and hills/Forests/Vegetated trails and parks: 5.74 (SD 9.03)
Vegetated trails and parks: 618 q	Mountains and hills/Forests/Views of lakes: 5.73 (SD 5.37)
Views of lakes: 559 🤇	Hydrological features: 5.71 (SD 5.69)
Forests/Vegetated trails and parks: 330 9	Vegetated trails and parks/Flowers: 5.64 (SD 5.4)
Mountains and hills/Views of lakes: 262	Views of lakes/Hydrological features: 5.27 (SD 4.25)
Mountains and hills/Forests: 242 Q	Mountains and hills/Views of lakes/Hydrological features: 5.19 (SD 3.69)
Mountains and hills/Geological or arid landscapes: 236 q	Forests/Views of lakes: 5.14 (SD 4.48)
Forests/Views of lakes: 190	Weives of lakes: 5.07 (SD 5.04)
Flowers: 166 9	Geological or arid landscapes: 5.06 (SD 4.72)
Views of lakes/Hydrological features: 162	Forests/Vegetated trails and parks/Flowers: 5.05 (SD 4.63)
Mountains and hills/Snow covered mountains: 144	Mountains and hills: 4.94 (SD 5.26)
Vegetated trails and parks/Flowers: 142	Snow covered mountains: 4.59 (SD 4.31)
Snow covered mountains: 119	Mountains and hills/Geological or arid landscapes: 4.58 (SD 3.47)
Mountains and hills/Forests/Views of lakes: 990	Vegetated trails and parks: 4.47 (SD 5.05)
Mountains and hills/Vegetated trails and parks: 94 a	Mountains and hills/Snow covered mountains: 4.46 (SD 5.21)
Forests/Hydrological features: 92	o Forests: 4.38 (SD 4.35)
Mountains and hills/Hydrological features: 840	• Forests/Hydrological features: 4.33 (SD 3.85)
Mountains and hills/Forests/Vegetated trails and parks: 720	Mountains and hills/Forests: 4.29 (SD 5.28)
Mountains and hills/Views of lakes/Hydrological features: 63	Forests/Vegetated trails and parks: 4.29 (SD 3.88)
Forests/Vegetated trails and parks/Geological or arid landscapes: 60	Flowers: 4.07 (SD 4.04)
Forests/Vegetated trails and parks/Flowers: 57	Mountains and hills/Vegetated trails and parks: 3.56 (SD 2.79)
Views of lakes/Human-geology interactions: 56 9	Views of lakes/Human-geology interactions: 3.32 (SD 1.57)

572 Figure 8. Count of images, their mean sentiment value and standard deviation of sentiment value for

573 the 25 most frequently photographed clusters, where a user's images from a single day were

574 categorised based on which cluster most of their assigned Google Vision Cloud API labels belonged

575 to.

576 4 Discussion

577 Metadata from social media websites such as Flickr provide a source of big data for many CES 578 applications. Being able to use the full dataset as a proxy for images of human-nature interactions 579 may benefit researchers looking at general patterns by removing the need to manually or 580 automatically tag image contents, which can be time-intensive or financially expensive (Richards and 581 Tuncer 2018). However, this data may not accurately represent the CES and studies therefore need 582 to refine data from social media and remove posts that are inappropriate for CES analysis (e.g. 583 Oteros-Rozas et al. 2018). These studies assume that the content of the image is representative of a 584 user's interactions with CES (Langemeyer et al. 2018). Therefore, content analysis alone provides 585 incomplete information and does not allow one to fully untangle the human-nature relationship that 586 drives CES. Furthermore, filtering based on textual analysis can be useful to subset CES images 587 (Ghermandi et al. 2020), but refining based on sentiment alone results in a dataset that includes 588 non-CES images. Refining social media datasets by text alone also does not provide a complete and 589 valid CES dataset (Chen et al. 2020). Through enriching the filtered images of nature with their 590 associated textual sentiment value, we can start to provide a more robust understanding of CES 591 distributions, and the aspects of nature that provide a positive experience.

592 For the content analysis, we aimed to refine our dataset to represent images of human-nature 593 interactions, we therefore included images containing any aspects of biophysical nature. Studies 594 with different aims should filter their images accordingly, for example, Oteros-Rozas et al. (2018) 595 chose to include only images of landscapes in their study and removed images that featured animals. 596 Some CES studies have stated a preference for using images from Panoramio as it prevents uploads 597 of images of people and synthetic objects and therefore did not need to be refined (Casalegno et al. 598 2013; Pastur et al. 2016). However, as of 2016 Panoramio is no longer available. Here, we found little 599 difference in the distribution of the confirmedNature and full datasets, with low deviance between 600 the two groups for most of the US. This suggests that Flickr may therefore be a good proxy for 601 images of biophysical features across a range of spatial scales. However, studies that use Flickr, or 602 other social media sources, need to acknowledge that the returned dataset may contain images that 603 are unsuitable for their specific CES assessment and should ensure these images are refined out 604 accordingly. Overall, we found that a threshold of 25% of biophysical nature labels has provided a 605 suitable set of images representing human-nature interactions, while generally excluding images 606 that are not of CES. By not omitting all human features (e.g. Panoramio), a threshold of 25% 607 biophysical nature labels can provide results that allow for more robust recommendations for 608 improving the sustainable management of these complex human-nature interactions (Bennet et al. 609 2015; Palomo et al. 2016).

610 Overall, refining by sentiment value has a larger impact on the spatial distribution and size of the

611 dataset than refining by image content. This suggests that the full Flickr dataset, at least for hiking,

- 612 may be sufficient to show overall patterns of the distribution of images of human-nature
- 613 interactions, but not necessarily a positive CES experience. Though there are some areas of low

614 deviance between the number of uploads between the full Flickr and *confirmedCES* datasets, there

- are many areas of disagreement. Furthermore, as the spatial distribution of these areas is random it
- 616 means that it may be difficult to account for the areas of high disagreement without refining the

dataset. For example, if the distribution of high deviances were clustered, it may be appropriate to

- use the full dataset but filter out only the areas of high disagreement. The results for the
 confirmedPositive set of images were parallel to the *confirmedCES* images, with areas of high
- 620 deviance randomly distributed across the US. The inclusion of sentiment therefore has implications
- 621 for the number and distribution of images, (e.g. in the north western states where there was high
- 622 deviance between the number of confirmedCES and the full number of images). To better
- 623 understand positive human-nature interactions, we recommend that social media data be refined in
- 624 a two-step process, filtering by content and enriching with sentiment value.

625 A more robust method of mapping CES occurrences, such as the one presented here, could help to 626 inform policy and decision-makers (Clemente et al. 2019). For example, when the number of uploads 627 is aggregated to a given location to understand visitation rates (e.g. national park, land cover or state 628 level), it could be interpreted that these regions provide the largest supply of CES and are therefore 629 the most important for future management strategies (e.g. Figueroa-Alfaro and Tang 2017). Here, 630 we have highlighted a discrepancy between the number of images uploaded and the mean 631 sentiment value expressed by textual metadata of the images in the area. Higher uploads of images 632 taken in each area may indirectly be influenced by accessibility (Richards and Tuncer 2018), and 633 therefore may not necessarily represent the sites with the highest sentiment value. By enriching the 634 data with sentiment value, we can evaluate the distribution of CES in ways other than purely 635 measuring the number of visitors. For example, as areas with a higher number of uploads are potentially more vulnerable to damage (Hausmann et al. 2019), mapping areas of high sentiment in 636 637 combination with visitation rates means management decisions can be better targeted to alleviate 638 pressure from overused locations (Clemente et al. 2019). Furthermore, the textual sentiment value

639 could be used in conjunction with the temporal metadata to assess changes in visitor opinions over640 time (Becken et al. 2017).

641 Some of the clusters of image contents identified as being frequently photographed or having a high 642 associated sentiment have already been widely explored in CES literature. For example, Van Zanten 643 et al., (2016) found that some of the best predictors of recreational value at a landscape scale were 644 geomorphological features such as hills and mountains and Oteros-Rozas et al. (2018) found that 645 mountains are particularly associated with hiking. Furthermore, the impact of being close to water 646 and vegetation on hiking has also been widely explored (e.g. Pastorella et al. 2017; Schirpke et al. 647 2018; Aiba et al. 2019). Photographs that contain a combination of clusters can provide information 648 on the interactions between different biophysical features which give rise to CES. For instance, some 649 hikers may prefer natural mountainous areas with forest cover and others may prefer natural 650 mountainous areas closer to water (Pastorella et al. 2017; Schirpke et al. 2018).

By including a measure of sentiment we can start to understand how the interactions between

biophysical and human features influence the hiking experience. For example, the high sentiment

value associated with the cluster "forests/vegetated trails and parks/geological or arid landscapes"

654 further demonstrates that a positive experience of CES may be enhanced through its co-production

655 with people (Fischer and Eastwood 2016). The high standard deviations in sentiment value between

656 images classified as different combination of clusters are unsurprising as CES experience is unique

and varies between individuals (Daniel et al. 2012; Havinga et al. 2020). For example, the

relationship between geomorphological features and hiking is complex, often with factors such as

elevation, slope and landforms having site-specific influences on hiking experiences depending onpeople motivations for hiking (Chhetri 2015; Wilcer et al. 2016).

661 Some of the clusters identified here, particularly those relating to geodiversity features such as the 662 geological features class, are not as well explored in CES literature, (Fox et al. 2020a). For example, the labels in the clusters associated with "geological or arid landscapes" resemble those of 663 664 landscapes in southwestern states, such as Arizona and New Mexico, where there is a high number 665 of confirmedCES images. For example, the Grand Canyon National Park in Arizona is dominated by 666 iconic geodiversity landscapes and is one of the most visited tourist attractions, not just in the USA, 667 but worldwide (Gray 2008). These landscapes are often dominated by canyons with exposed strata, 668 a variety of slope morphologies and talus and scree on the canyon floor and are popular hiking 669 destinations (Gray 2008). By enriching the social media data with the textual sentiment value we can 670 start to understand the relative importance of these features to a positive hiking experience. Here, 671 "geological or arid landscapes" were frequently photographed, they were less frequent than 672 "forests". It does however provide a relatively more positive hiking experience than "forest" when 673 either was the sole dominant cluster. This suggests that within the USA, though hiking in vegetated 674 areas may be more common than through geological landscapes, they both can provide a positive 675 recreational experience. In other countries where geological or arid landscapes are the prevailing 676 ecosystem, the relationship between geodiversity and biodiversity on the hiking experience may be 677 different. Future work should therefore aim to quantify the relationship of these underrepresented 678 landscape features to CES experience across different study sites.

Here, our analysis has shown that the grouped images (based on a single user's photographs on a
single day) can contain multiple different content label clusters. We note that here the individual
clusters of labels focus on biodiversity and geodiversity features separately, though this may be a
facet of the clustering procedure or the method in which the machine learning classifier labels
images. As with other studies which clustered photograph content (e.g. Lee et al. 2019) photographs
were frequently assigned multiple equally dominant clusters, indicating an interaction between

- 685 geodiversity, biodiversity and human features. It may not always be possible to include features of
- the multiple clusters in a single image. For example, a hiker may be interested in photographing
- large scale vegetation such as a forest from the top of a mountain (Aiba et al. 2019), but these
- images may omit the mountain itself. We suggest that these relationships may not be properly
 captured by assessing single photographs and therefore, recommend that future studies assess each
- 690 Flickr user's images from a single day, such as used here, or by grouping all photographs from a
- 691 smaller study site as a collective.
- 692 Refining by different nature thresholds, spatial resolution and window size all had some impact on
- the deviance between the refined dataset and the remaining dataset. However, across all
 combinations of refined datasets, there were no major changes in the spatial distribution and range
- 695 of values expressed by the local deviance values. The smaller deviance associated with decreasing
- resolution (increasing pixel size) is down to the aggregation of data aggregation of data at the
- 697 coarser resolution loses the spatial structure of the distribution and the pixel values become more
- 698 homogenised (Bian and Butler 1999). This relationship is also true for larger moving windows
- 699 producing lower deviances (Graham et al. 2019). We recommend that researchers be aware of the
- impacts of their mapping decision if data aggregation is to be carried out researchers need to
- 701 choose a suitable scale for the study (Graham and Eigenbrod 2019).
- 702 This study further demonstrates that social media data can easily provide large spatial-temporal 703 dataset compared to traditional methods (Fox et al. 2020b), however, future work could implement 704 this over small spatial scales to assess regional or local trends. One limitation of social media data is 705 that not all demographics are well represented (Oteros-Rozas et al. 2018) and management and 706 policy decisions should acknowledge this. Studies could therefore combine results of social media 707 studies with other datasets such as survey data (Graham and Eigenbrod 2019; Moreno-Llorca et al. 708 2020; Sinclair et al. 2020). A further potential limitation of this multi-faceted filtering process is that 709 although we can be more confident that the images we are assessing represent CES, there are 710 substantially fewer suitable images in the refined dataset compared to the original dataset 711 downloaded from Flickr. However, we still had a large sample size of 43,427 images for one activity 712 over 5 years. Other studies have found success when using smaller subsamples of the full dataset
- 713 (e.g. Langemeyer et al. 2018; Chen et al. 2020). We recommend that social media data can best
- capture CES when researchers refine their dataset by the content of the images and enrich the data
- with a measure of sentiment, which can provide a reliable representation of CES.

716 **5 Conclusion**

- 717 The method tested combining the analysis of the contents of social media (Flickr) images and the 718 sentiment value expressed in their textual metadata reduces the amount of available data but 719 provides a robust measure of CES for large scale spatio-temporal studies. Through the application of 720 the refined dataset, images of hiking in the USA were clustered into groups representing the 721 interactions between people and biophysical nature. Hiking as a CES is driven and maintained by 722 complex interactions between biodiversity and, geodiversity and people, and by refining data on two 723 levels, our methods allow us to start to unpack which feature contribute to a positive experience. 724 The results of this study encourage future social media and CES studies to acknowledge that the full 725 social media dataset may not be suitable for their chosen study, as though it may be a good proxy 726 for images of nature it may not be a good proxy for a positive experience. It is suggested that future 727 work enrich their social media datasets with a measure of textual sentiments to provide a more 728 robust representation of positive human-nature interactions.
- 729 6 References

- Aiba, M., Shibata, R., Oguro, M. and Nakashizuka, T., 2019. The seasonal and scale-dependent
- associations between vegetation quality and hiking activities as a recreation service. *Sustainability Science*, *14*(1), pp.119-129. <u>https://doi.org/10.1007/s11625-018-0609-7</u>
- 733 Becken, S., Stantic, B., Chen, J., Alaei, A.R. and Connolly, R.M., 2017. Monitoring the environment
- and human sentiment on the Great Barrier Reef: assessing the potential of collective sensing. *Journal* of environmental management, 203, pp.87-97. https://doi.org/10.1016/j.jenvman.2017.07.007
- Bian, L. and Butler, R., 1999. Comparing effects of aggregation methods on statistical and spatial
 properties of simulated spatial data. *Photogrammetric engineering and remote sensing*, *65*, pp.7384.
- Balzan, M.V. and Debono, I., 2018. Assessing urban recreation ecosystem services through the use of
 geocache visitation and preference data: a case-study from an urbanised island environment. One
 Ecosystem, 3, p.e24490.
- 742 Bennett, E.M., Cramer, W., Begossi, A., Cundill, G., Díaz, S., Egoh, B.N., Geijzendorffer, I.R., Krug, C.B.,
- 743 Lavorel, S., Lazos, E. and Lebel, L., 2015. Linking biodiversity, ecosystem services, and human well-
- being: three challenges for designing research for sustainability. Current opinion in environmentalsustainability, 14, pp.76-85.
- 746 Brindley, P., Cameron, R.W., Ersoy, E., Jorgensen, A. and Maheswaran, R., 2019. Is more always
- 747 better? Exploring field survey and social media indicators of quality of urban greenspace, in relation
- to health. *Urban Forestry & Urban Greening, 39*, pp.45-54.
- 749 <u>https://doi.org/10.1016/j.ufug.2019.01.015</u>
- 750 Byczek, C., Longaretti, P.Y., Renaud, J. and Lavorel, S., 2018. Benefits of crowd-sourced GPS
- information for modelling the recreation ecosystem service. *PloS one*, *13*(10), p.e0202645.
 https://doi.org/10.1371/journal.pone.0202645
- 753 Casalegno, S., Inger, R., DeSilvey, C. and Gaston, K.J., 2013. Spatial covariance between aesthetic
- value & other ecosystem services. *PloS one*, *8*(6), p.e68437.
- 755 <u>https://doi.org/10.1371/journal.pone.0068437</u>
- 756 Chan, K.M., Goldstein, J., Satterfield, T., Hannahs, N., Kikiloi, K., Naidoo, R., Vadeboncoeur, N. and
- 757 Woodside, U., 2011. Cultural services and non-use values. Natural capital: Theory and practice of 758 mapping ecosystem services, pp.206-228.
- 759 Chen, Y., Caesemaecker, C., Rahman, H.T. and Sherren, K., 2020. Comparing cultural ecosystem
- 760 service delivery in dykelands and marshes using Instagram: A case of the Cornwallis (Jijuktu'kwejk)
- River, Nova Scotia, Canada. *Ocean & Coastal Management*, 193, p.105254.
- 762 https://doi.org/10.1016/j.ocecoaman.2020.105254
- 763 Chhetri, P., 2015. A GIS methodology for modelling hiking experiences in the Grampians National
- 764 Park, Australia. *Tourism Geographies*, *17*(5), pp.795-814.
- 765 https://doi.org/10.1080/14616688.2015.1083609
- 766 Christian, H., Agus, M.P. and Suhartono, D., 2016. Single document automatic text summarization
- vising term frequency-inverse document frequency (TF-IDF). *ComTech: Computer, Mathematics and*
- 768 *Engineering Applications*, 7(4), pp.285-294.
- Clemente, P., Calvache, M., Antunes, P., Santos, R., Cerdeira, J.O. and Martins, M.J., 2019. Combining
- social media photographs and species distribution models to map cultural ecosystem services: The

- case of a Natural Park in Portugal. *Ecological Indicators, 96*, pp.59-68.
- 772 <u>https://doi.org/10.1016/j.ecolind.2018.08.043</u>
- 773 Collins-Kreiner, N. and Kliot, N., 2017. Why Do People Hike? Hiking the Israel National
- Trail. *Tijdschrift voor economische en sociale geografie*, *108*(5), pp.669-687.
- 775 <u>https://doi.org/10.1111/tesg.12245</u>
- Daniel, T.C., Muhar, A., Arnberger, A., Aznar, O., Boyd, J.W., Chan, K.M., Costanza, R., Elmqvist, T.,
- Flint, C.G., Gobster, P.H. and Grêt-Regamey, A., 2012. Contributions of cultural services to the
- ecosystem services agenda. Proceedings of the National Academy of Sciences, 109(23), pp.8812-
- 779 8819. <u>https://doi.org/10.1073/pnas.1114773109</u>
- 780 Do, Y., 2019. Valuating aesthetic benefits of cultural ecosystem services using conservation
- 781 culturomics. *Ecosystem Services*, *36*, p.100894. <u>https://doi.org/10.1016/j.ecoser.2019.100894</u>
- Fixed Science, 4(6), pp.683-692. https://doi.org/10.1002/wcs.1254
- 784 Figueroa-Alfaro, R.W. and Tang, Z., 2017. Evaluating the aesthetic value of cultural ecosystem
- 785 services by mapping geo-tagged photographs from social media data on Panoramio and
- 786 Flickr. Journal of Environmental Planning and Management, 60(2), pp.266-281.
- 787 https://doi.org/10.1080/09640568.2016.1151772
- 788 Fischer, A. & Eastwood, A. (2016). Coproduction of ecosystem services as human-nature
- 789 interactions—An analytical framework. Land Use Policy 52, 41-50.
- 790 doi:10.1016/j.landusepol.2015.12.004
- 791 Fish, R., Church, A. and Winter, M., 2016. Conceptualising cultural ecosystem services: A novel
- framework for research and critical engagement. Ecosystem Services, 21, pp.208-217.
 https://doi.org/10.1016/j.ecoser.2016.09.002
- 100 <u>mtps.//doi.org/10.1010/j.cc05c1.2010.05.002</u>
- Fox, N., Graham, L.J., Eigenbrod, F., Bullock, J.M. and Parks, K.E., 2020a. Incorporating geodiversity in
- 795 ecosystem service decisions. *Ecosystems and People*, *16*(1), pp.151-159.
 706 https://doi.org/10.1080/26205016.2020.1758214
- 796 <u>https://doi.org/10.1080/26395916.2020.1758214</u>
- Fox, N., Mancini, F., Graham, L.J., Sutter, L., August, T., 2020. photosearcher: Photo Searcher. R
 package version 1.0. <u>https://docs.ropensci.org/photosearcher</u>
- 799 Gefen, D., Endicott, J.E., Fresneda, J.E., Miller, J. and Larsen, K.R., 2017. A guide to text analysis with
- 800 latent semantic analysis in R with annotated code: Studying online reviews and the stack exchange
- 801 community. *Communications of the Association for Information Systems*, *41*(1), p.21.
- 802 <u>https://doi.org/10.17705/1CAIS.04121</u>
- 803 Ghermandi, A., Camacho-Valdez, V. and Trejo-Espinosa, H., 2020. Social media-based analysis of
- 804 cultural ecosystem services and heritage tourism in a coastal region of Mexico. *Tourism*
- 805 *Management*, 77, p.104002. <u>https://doi.org/10.1016/j.tourman.2019.104002</u>
- 806 Ghermandi, A. and Sinclair, M., 2019. Passive crowdsourcing of social media in environmental
- 807 research: A systematic map. *Global environmental change*, *55*, pp.36-47.
- 808 https://doi.org/10.1016/j.gloenvcha.2019.02.003
- 809 Google Cloud Vision, 2020. Documentation for the Google Cloud Vision API [WWW Document]. URL
- 810 www.cloud.google.com/vision/.

- 811 Gordon, J.E. and Barron, H.F., 2013. The role of geodiversity in delivering ecosystem services and
- benefits in Scotland. Scottish Journal of Geology, 49(1), pp.41-58. <u>https://doi.org/10.1144/sjg2011-</u>
 465
- 814 Gosal, A.S., Geijzendorffer, I.R., Václavík, T., Poulin, B. and Ziv, G., 2019. Using social media, machine
- 815 learning and natural language processing to map multiple recreational beneficiaries. *Ecosystem*
- 816 Services, 38, p.100958. https://doi.org/10.1016/j.ecoser.2019.100958
- 817 Graham, L.J. and Eigenbrod, F., 2019. Scale dependency in drivers of outdoor recreation in
- 818 England. *People and Nature*, 1(3), pp.406-416. <u>https://doi.org/10.1002/pan3.10042</u>
- Gray, M., 2008. Geodiversity: developing the paradigm. *Proceedings of the Geologists' Association*, 119(3-4), pp.287-298. <u>https://doi.org/10.1016/S0016-7878(08)80307-0</u>
- 821 Gray, M., 2004. *Geodiversity: valuing and conserving abiotic nature*. John Wiley & Sons.
- 822 Gray, M., 2012. Valuing geodiversity in an 'ecosystem services' context. *Scottish Geographical*
- 823 Journal, 128(3-4), pp.177-194. <u>https://doi.org/10.1080/14702541.2012.725858</u>
- 824 Havinga, I., Bogaart, P.W., Hein, L. and Tuia, D., 2020. Defining and spatially modelling cultural
- 825 ecosystem services using crowdsourced data. *Ecosystem Services*, *43*, p.101091.
 826 https://doi.org/10.1016/j.ecoser.2020.101091
- Hirons, M., Comberti, C. and Dunford, R., 2016. Valuing cultural ecosystem services. Annual Review
 of Environment and Resources, 41, pp.545-574.
- Hjort, J., Gordon, J.E., Gray, M. and Hunter Jr, M.L., 2015. Why geodiversity matters in valuing
 nature's stage. *Conservation Biology*, *29*(3), pp.630-639. <u>https://doi.org/10.1111/cobi.12510</u>
- Hausmann, A., Toivonen, T., Fink, C., Heikinheimo, V., Tenkanen, H., Butchart, S.H., Brooks, T.M. and
- Di Minin, E., 2019. Assessing global popularity and threats to Important Bird and Biodiversity Areas
- using social media data. *Science of the Total Environment, 683*, pp.617-623.
- 834 <u>https://doi.org/10.1016/j.scitotenv.2019.05.268</u>
- 835 Huang, F., Zhang, X., Zhao, Z., Xu, J. and Li, Z., 2019. Image-text sentiment analysis via deep
- 836 multimodal attentive fusion. *Knowledge-Based Systems*, *167*, pp.26-37.
- 837 <u>https://doi.org/10.1016/j.knosys.2019.01.019</u>
- 838 Kiernan, K., 2015. Landforms as sacred places: implications for geodiversity and
- 839 geoheritage. Geoheritage, 7(2), pp.177-193. https://doi.org/10.1007/s12371-014-0128-6
- 840 Kim, Y., Kim, C.K., Lee, D.K., Lee, H.W. and Andrada, R.I.T., 2019. Quantifying nature-based tourism in
- protected areas in developing countries by using social big data. *Tourism Management*, 72, pp.249-
- 842 256. <u>https://doi.org/10.1016/j.tourman.2018.12.005</u>
- 843 King, H.P., Morris, J., Graves, A., Bradbury, R.B., McGinlay, J. and Bullock, J.M., 2017. Biodiversity and
- cultural ecosystem benefits in lowland landscapes in southern England. Journal of environmental
- 845 psychology, 53, pp.185-197. <u>https://doi.org/10.1016/j.jenvp.2017.08.002</u>
- 846 Kondo, M.C., Fluehr, J.M., McKeon, T. and Branas, C.C., 2018. Urban green space and its impact on
- human health. *International journal of environmental research and public health*, 15(3), p.445.
 <u>https://doi.org/10.3390/ijerph15030445</u>

- 849 Koto, F. and Adriani, M., 2015, June. A comparative study on twitter sentiment analysis: Which
- 850 features are good?. In International Conference on Applications of Natural Language to Information
- 851 *Systems* (pp. 453-457). Springer, Cham. <u>https://doi.org/10.1007/978-3-319-19581-0_46</u>
- Langemeyer, J., Calcagni, F. and Baro, F., 2018. Mapping the intangible: Using geolocated social
- media data to examine landscape aesthetics. *Land use policy*, 77, pp.542-552.
- 854 <u>https://doi.org/10.1016/j.landusepol.2018.05.049</u>
- Lee, H., Seo, B., Koellner, T. and Lautenbach, S., 2019. Mapping cultural ecosystem services 2.0–
- Potential and shortcomings from unlabeled crowd sourced images. *Ecological Indicators*, *96*, pp.505515. <u>https://doi.org/10.1016/j.ecolind.2018.08.035</u>
- 858 Mayer, M. and Woltering, M., 2018. Assessing and valuing the recreational ecosystem services of 859 Germany's national parks using travel cost models. Ecosystem services, 31, pp.371-386.
- 860 Mancini, F., Coghill, G.M. and Lusseau, D., 2019. Quantifying wildlife watchers' preferences to
- 861 investigate the overlap between recreational and conservation value of natural areas. Journal of
- 862 *Applied Ecology*, *56*(2), pp.387-397. <u>https://doi.org/10.1111/1365-2664.13274</u>
- 863 Milcu, A.I., Hanspach, J., Abson, D. and Fischer, J., 2013. Cultural ecosystem services: a literature
- 864 review and prospects for future research. Ecology and society, 18(3).
- 865 <u>https://www.jstor.org/stable/26269377</u>
- Millennium Ecosystem Assessment., 2005. Millennium Ecosystem Assessment. Washington, DC: NewIsland Press, 13, p.520.
- 868 Minkiewicz, J., Bridson, K. and Evans, J. (2016), "Co-production of service experiences: insights from
- the cultural sector", Journal of Services Marketing, Vol. 30 No. 7, pp. 749-761.
- 870 https://doi.org/10.1108/JSM-04-2015-0156
- Mitten, D., Overholt, J.R., Haynes, F.I., D'Amore, C.C. and Ady, J.C., 2018. Hiking: A low-cost,
- accessible intervention to promote health benefits. *American Journal of Lifestyle Medicine*, 12(4),
 pp.302-310. https://doi.org/10.1177/1559827616658229
- 874 Monkman, G.G., Kaiser, M.J. and Hyder, K., 2018. Text and data mining of social media to map
- 875 wildlife recreation activity. *Biological Conservation*, 228, pp.89-99.
- 876 <u>https://doi.org/10.1016/j.biocon.2018.10.010</u>
- 877 Moreno-Llorca, R., Méndez, P.F., Ros-Candeira, A., Alcaraz-Segura, D., Santamaría, L., Ramos-Ridao,
- A.F., Revilla, E., García, F.J.B. and Vaz, A.S., 2020. Evaluating tourist profiles and nature-based
- 879 experiences in Biosphere Reserves using Flickr: Matches and mismatches between online social
- surveys and photo content analysis. *Science of The Total Environment*, p.140067.
- 881 <u>https://doi.org/10.1016/j.scitotenv.2020.140067</u>
- 882 Mullen, L.A., Bratt, J., 2018. "USAboundaries: Historical and Contemporary Boundaries of the United
- 883 States of America," Journal of Open Source Software 3(23), p.314.
- 884 <u>https://doi.org/10.21105/joss.00314</u>
- 885 Nielsen, F.Å., 2011. A new ANEW: Evaluation of a word list for sentiment analysis in microblogs. arXiv 886 preprint arXiv:1103.2903.
- Oteros-Rozas, E., Martín-López, B., Fagerholm, N., Bieling, C. and Plieninger, T., 2018. Using social
- 888 media photos to explore the relation between cultural ecosystem services and landscape features

- across five European sites. *Ecological Indicators*, *94*, pp.74-86.
 https://doi.org/10.1016/j.ecolind.2017.02.009
- Pagnuco, I.A., Pastore, J.I., Abras, G., Brun, M. and Ballarin, V.L., 2016, April. Analysis of genetic
- association in Listeria and Diabetes using Hierarchical Clustering and Silhouette Index. In *Journal of Physics: Conference Series* (Vol. 705, p. 012002). <u>https://doi.org/10.1088/1742-6596/705/1/012002</u>
- Palomo, I., Felipe-Lucia, M.R., Bennett, E.M., Martín-López, B. and Pascual, U., 2016. Disentangling
 the pathways and effects of ecosystem service co-production. Advances in ecological research, 54,
 pp.245-283.
- Pastorella, F., Giacovelli, G., De Meo, I. and Paletto, A., 2017. People's preferences for Alpine forest
 landscapes: results of an internet-based survey. *Journal of Forest Research*, 22(1), pp.36-43.
 https://doi.org/10.1080/13416979.2017.1279708
- 900 Pastur, G.M., Peri, P.L., Lencinas, M.V., García-Llorente, M. and Martín-López, B., 2016. Spatial
- 901 patterns of cultural ecosystem services provision in Southern Patagonia. Landscape Ecology, 31(2),
- 902 pp.383-399. https://doi.org/10.1007/s10980-015-0254-9
- 903 Plieninger, T., Dijks, S., Oteros-Rozas, E. and Bieling, C., 2013. Assessing, mapping, and quantifying
- 904 cultural ecosystem services at community level. Land use policy, 33, pp.118-129.
 905 <u>https://doi.org/10.1016/j.landusepol.2012.12.013</u>
- R Core Team (2019). R: A language and environment for statistical computing. R Foundation for
 Statistical Computing, Vienna, Austria. URL <u>https://www.R-project.org/</u>.
- Raymond, C.M., Giusti, M. and Barthel, S., 2018. An embodied perspective on the co-production of
 cultural ecosystem services: toward embodied ecosystems. Journal of Environmental Planning and
 Management, 61(5-6), pp.778-799.
- Richards, D.R. and Tunçer, B., 2018. Using image recognition to automate assessment of cultural
 ecosystem services from social media photographs. *Ecosystem services*, *31*, pp.318-325.
- 913 https://doi.org/10.1016/j.ecoser.2017.09.004
- Sankey, T., 2017. Statistical Descriptions of Spatial Patterns. In: Shekhar S., Xiong H., Zhou X. (eds)
 Encyclopedia of GIS. Springer, Cham. <u>https://doi.org/10.1007/978-3-319-17885-1_1351</u>
- 916 Schirpke, U., Meisch, C., Marsoner, T. and Tappeiner, U., 2018. Revealing spatial and temporal
- patterns of outdoor recreation in the European Alps and their surroundings. *Ecosystem services*, *31*,
- 918 pp.336-350. <u>https://doi.org/10.1016/j.ecoser.2017.11.017</u>
- Schwemmer, C., 2019. imgrec: An Interface for Image Recognition. R package version 0.1.1.
- 920 https://github.com/cschwem2er/imgrec
- 921 Sharp, R., Douglass, J., Wolny, S., Arkema, K., Bernhardt, J., Bierbower, W., Chaumont, N., Denu, D.,
- 922 Fisher, D., Glowinski, K., Griffin, R., Guannel, G., Guerry, A., Johnson, J., Hamel, P., Kennedy, C., Kim,
- 923 C.K., Lacayo, M., Lonsdorf, E., Mandle, L., Rogers, L., Silver, J., Toft, J., Verutes, G., Vogl, A. L., Wood,
- 924 S, and Wyatt, K. 2020, InVEST 3.8.7.post9+ug.ga50c7f5 User's Guide. The Natural Capital Project,
- 925 Stanford University, University of Minnesota, The Nature Conservancy, and World Wildlife Fund.
- 926 <u>https://storage.googleapis.com/releases.naturalcapitalproject.org/invest-</u>
- 927 <u>userguide/latest/index.html</u>

- 928 Sinclair, M., Mayer, M., Woltering, M. and Ghermandi, A., 2020a. Valuing nature-based recreation
- 929 using a crowdsourced travel cost method: A comparison to onsite survey data and value transfer.
- 930 Ecosystem Services, 45, p.101165. <u>https://doi.org/10.1016/j.ecoser.2020.101165</u>
- 931 Sinclair, M., Mayer, M., Woltering, M. and Ghermandi, A., 2020b. Using social media to estimate
- 932 visitor provenance and patterns of recreation in Germany's national parks. Journal of Environmental
- 933 Management, 263, p.110418. <u>https://doi.org/10.1016/j.jenvman.2020.110418</u>
- 934 Spangenberg, J., von Haaren, C. & Settele, J. (2014). The ecosystem service cascade: Further
- 935 developing the metaphor. Integrating societal processes to accommodate social processes and
- planning, and the case of bioenergy. Ecological Economics 104, 22-32.
- 937 doi:10.1016/j.ecolecon.2014.04.025
- 938 Stephens, P.A., Pettorelli, N., Barlow, J., Whittingham, M.J. and Cadotte, M.W., 2015. Management
- by proxy? The use of indices in applied ecology. *Journal of applied ecology.*, *52*(1), pp.1-6.
 <u>https://doi.org/10.1111/1365-2664.12383</u>
- 941 Tenerelli, P., Demšar, U. and Luque, S., 2016. Crowdsourcing indicators for cultural ecosystem
- services: A geographically weighted approach for mountain landscapes. *Ecological Indicators*, *64*,
 pp.237-248. <u>https://doi.org/10.1016/j.ecolind.2015.12.042</u>
- 944 Tenkanen, H., Di Minin, E., Heikinheimo, V., Hausmann, A., Herbst, M., Kajala, L. and Toivonen, T.,
- 945 2017. Instagram, Flickr, or Twitter: Assessing the usability of social media data for visitor monitoring
- 946 in protected areas. *Scientific reports*, 7(1), pp.1-11. <u>https://doi.org/10.1038/s41598-017-18007-4</u>
- 947 Van Berkel, D.B., Tabrizian, P., Dorning, M.A., Smart, L., Newcomb, D., Mehaffey, M., Neale, A. and
- 948 Meentemeyer, R.K., 2018. Quantifying the visual-sensory landscape qualities that contribute to
- 949 cultural ecosystem services using social media and LiDAR. Ecosystem services, 31, pp.326-335.
- 950 <u>https://doi.org/10.1016/j.ecoser.2018.03.022</u>
- 951 Wang, X. and Xu, Y., 2019, July. An improved index for clustering validation based on silhouette
- 952 index and Calinski-Harabasz index. In *IOP Conference Series: Materials Science and Engineering* (Vol.
- 953 569, No. 5, p. 052024). IOP Publishing.
- 954 Wilcer, S.R., Larson, L.R., Hallo, J.C. and Baldwin, E., 2019. Exploring the Diverse Motivations of Day
- Hikers: Implications for Hike Marketing and Management. *Journal of Park & Recreation Administration*, *37*(3). <u>https://doi.org/10.18666/JPRA-2019-9176</u>
- Wild, F. 2015. Isa: Latent Semantic Analysis. R package version 0.73.1. <u>https://CRAN.R-</u>
 project.org/package=Isa
- 959 Willcock, S., Hooftman, D.A., Balbi, S., Blanchard, R., Dawson, T.P., O'Farrell, P.J., Hickler, T., Hudson,
- 960 M.D., Lindeskog, M., Martinez-Lopez, J. and Mulligan, M., 2019. A continental-scale validation of
- 961 ecosystem service models. *Ecosystems*, 22(8), pp.1902-1917. <u>https://doi.org/10.1007/s10021-019-</u>
- 962 <u>00380-y</u>
- 963 Wilson, T., Lovelace, R. and Evans, A.J., 2019. A path toward the use of trail users' tweets to assess
- 964 effectiveness of the environmental stewardship scheme: an exploratory analysis of the Pennine Way
- 965 National Trail. *Applied spatial analysis and policy*, *12*(1), pp.71-99. <u>https://doi.org/10.1007/s12061-</u>
 966 016-9201-7
- 967 Wood, S.A., Guerry, A.D., Silver, J.M. and Lacayo, M., 2013. Using social media to quantify nature-
- based tourism and recreation. *Scientific reports*, *3*(1), pp.1-7. <u>https://doi.org/10.1038/srep02976</u>

- 969 Yan, Y., Schultz, M. and Zipf, A., 2019. An exploratory analysis of usability of Flickr tags for land
- 970 use/land cover attribution. *Geo-spatial Information Science*, *22*(1), pp.12-22.
- 971 https://doi.org/10.1080/10095020.2018.1560044

973