
1 
 

The impact of water erosion on global maize and wheat 1 

productivity 2 

Tony W. Carr1*, Juraj Balkovič2,3, Paul E. Dodds1, Christian Folberth2 and Rastislav Skalský2,4 3 

 4 
1University College London, Institute for Sustainable Resources, London, United Kingdom 5 
2 International Institute for Applied Systems Analysis, Ecosystem Services and Management 6 
Program, Laxenburg, Austria 7 
3 Comenius University, Faculty of Natural Science, Bratislava, Slovakia 8 
4 National Agricultural and Food Centre, Soil Science and Conservation Research Institute, 9 
Bratislava, Slovakia 10 
 11 

* Correspondence to: Tony Carr (tony.carr.16@ucl.ac.uk) 12 
 13 
 14 

Keywords: water erosion, crop production change, global-gridded crop model, EPIC, fertilizer 15 
replacement costs 16 

 17 

Abstract 18 

Water erosion removes soil nutrients, soil carbon, and in extreme cases can remove topsoil 19 

altogether. Previous studies have quantified crop yield losses from water erosion using a 20 

range of methods, applied mostly to single plots or fields, and cannot be systematically 21 

compared. This study assesses the worldwide impact of water erosion on maize and wheat 22 

production using a global gridded modelling approach for the first time. The EPIC crop model 23 

is used to simulate the global impact of water erosion on maize and wheat yields, from 1980 24 

to 2010, for a range of field management strategies. Maize and wheat yields were reduced by 25 

a median of 3% annually in grid cells affected by water erosion, which represent approximately 26 

half of global maize and wheat cultivation areas. Water erosion reduces the annual global 27 

production of maize and wheat by 8.9 million tonnes and 5.6 million tonnes, with a value of 28 

$3.3bn globally. Nitrogen fertilizer necessary to reduce losses is valued at $0.9bn. As cropland 29 
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most affected by water erosion is outside major maize and wheat production regions, the 30 

production losses account for less than 1% of the annual global production by volume. 31 

Countries with heavy rainfall, hilly agricultural regions and low fertilizer use are most 32 

vulnerable to water erosion. These characteristics are most common in South and Southeast 33 

Asia, sub-Saharan Africa and South and Central America. Notable uncertainties remain 34 

around large-scale water erosion estimates that will need to be addressed by better integration 35 

of models and observations. Yet, an integrated bio-physical modelling framework - considering 36 

plant growth, soil processes and input requirements - as presented herein can provide a link 37 

between robust water erosion estimates, economics and policy-making so far lacking in global 38 

agricultural assessments. 39 

 40 

 41 

1. Introduction 42 

Soil erosion through rainfall and water runoff, washes away topsoil and degrades soil 43 

structure, which can reduce crop yields. Water erosion affects a variety of soil functions 44 

relevant for crop growth such as nutrient levels, pH, water-holding capacity, texture, infiltration 45 

rates and soil organic matter (den Biggelaar et al., 2001). The main factors determining the 46 

degree of water erosion are precipitation strength, slope steepness, soil structure and 47 

vegetation cover. Apart from precipitation, the primary factors influencing water erosion can 48 

be directly altered through field management such as the choice of crops, reducing tillage 49 

intensity, fallow and crop residue cover, and terracing and contour ploughing (Panagos et al., 50 

2016; Poesen, 2018).  51 

Productivity loss through water erosion and other processes, such as the depletion of soil 52 

nutrients, is defined as land degradation (Vogt et al., 2011). Although no clear consensus on 53 

the global extent of land degradation exists, it has become clear that a considerable amount 54 
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of cropland is degraded and threatened by productivity loss. In a review of most prominent 55 

land degradation assessments, Gibbs and Salmon (2015) estimated that 1–6 billion ha of ice-56 

free land surface (up to 66%) is degraded to varying degrees. Most studies agree that water 57 

erosion is one of the most serious land degradation processes, especially in developing 58 

countries (FAO and ITPS, 2015; Montanarella et al., 2016; Oldeman et al., 1991). 59 

Furthermore, several studies point out that land degradation disproportionately affects 60 

populations under social and economic pressures, who are more exposed to degraded land 61 

and are often forced to have an unsustainable reliance on available resources (Nachtergaele 62 

et al., 2011; Wynants et al., 2019). The negative effects of land degradation on social and 63 

economic well-being has been widely recognised. Yet its present and future impacts are not 64 

adequately quantified globally in physical and economic terms to inform major environmental 65 

and agricultural policies (Montanarella, 2007; Montanarella et al., 2016; Nkonya et al., 2011).  66 

Soil loss due to water erosion has been estimated at many sites worldwide and modelled 67 

globally (Borrelli et al., 2017; Doetterl et al., 2012; García-Ruiz et al., 2015; Montgomery, 68 

2007). However, from a food security standpoint, it is more relevant to quantify the impact of 69 

water erosion on crop productivity. There are substantial variations in the estimates of 70 

productivity losses from the few studies in the literature (Bakker et al., 2004, 2007; Den 71 

Biggelaar et al., 2004b; van den Born et al., 2000; De la Rosa et al., 2000; Lal, 1995; Larney 72 

et al., 2009; Oyedele and Aina, 1998). This variability is not surprising as erosion-productivity 73 

relationships are difficult to generalize due to the location-specific nature of soil erosion 74 

determined by soil properties, climate and management (Den Biggelaar et al., 2004a). 75 

Moreover, the choice of method to measure water erosion impacts on crops is one of the most 76 

important factors explaining variations between studies (Bakker et al., 2004). Hence, different 77 

methodological approaches in field studies can mask the impact of regional differences on 78 

water erosion impacts on crops.  79 

Previous global erosion impact assessments (Pimentel et al., 1995; Sartori et al., 2019) relied 80 

on simple linear assumptions about the impact of water erosion on crop yields, and neglected 81 
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differences between crops and regional characteristics. Crop models can facilitate the 82 

extrapolation of experimental and small-scale data across a range of environments and 83 

management strategies (Nelson et al., 1996). Moreover, models are essential to determine 84 

long-term effects of degradation processes, which are challenging to observe in short-term 85 

field experiments (Enters, 1998). Crop models combined with global gridded data 86 

infrastructure are increasingly used for climate change impact assessments, evaluations of 87 

agricultural externalities, and as input data providers for agro-economic models (Elliott et al., 88 

2014; Mueller et al., 2017; Nelson et al., 2014). However, most of the global gridded crop 89 

modelling (GGCM) studies have so far neglected soil erosion and its impact on crop yield and 90 

production. 91 

In this study, we use a GGCM platform to quantify global potential crop productivity losses due 92 

to water erosion for the first time. We examine maize and wheat as representative staple 93 

crops, due to their wide distribution in global agriculture and their contrasting soil cover 94 

patterns. We assess the overall impact of water erosion on global maize and wheat production, 95 

for a variety of field management techniques, and identify the most vulnerable regions based 96 

on environmental conditions and fertilizer use. Finally, we consider the uncertainties in our 97 

assessment. 98 

2. Methods 99 

We use the gridded crop model EPIC-IIASA (Balkovič et al., 2014), which combines the 100 

biophysical Environmental Policy Integrate Climate (EPIC) model with global data on soil, 101 

climate and crop management, to simulate the daily growth of maize and wheat with and 102 

without the impact of water erosion on a global scale. This approach enables us to assess, 103 

based on a globally consistent method, the impact of water erosion on maize and wheat 104 

productivity relative to a reference scenario where water erosion is excluded from simulations 105 

and has no impact on crop growth. In both cases, the simulations account for a variety of 106 

environmental drivers, farming techniques and farm inputs such as fertilizers and irrigation. 107 
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Importantly, this approach enables us to identify regions which are vulnerable to water erosion, 108 

and to quantify a production volume that is under threat due to water erosion. Our simulation 109 

results reflect long-term impacts of water erosion following continuous cultivation for 31 years, 110 

based on daily weather data for the period 1980–2010. In addition, we use a range of field 111 

management scenarios to address the highly influential impact of farming techniques on water 112 

erosion impact assessments, which are among the main sources of uncertainty at the global 113 

scale (Carr et al., 2020). 114 

1.1 The EPIC model 115 

EPIC can simulate a wide range of crops and relevant soil and hydrological processes 116 

controlling carbon, nutrient and water dynamics (Izaurralde et al., 2006). The relevant model 117 

processes to simulate crop growth and water erosion presented in the following are based on 118 

their description in the EPIC model documentation (Sharpley and Williams, 1990). 119 

Phenological development of a crop is based on the heat unit (HU) approach. This involves a 120 

base temperature providing a crop-specific threshold under which no growth occurs, and the 121 

sum of daily HUs (˚C) accumulated during crop growth stages needed to determine when a 122 

crop reaches maturity. In our study, the potential HUs determining crop maturity are based on 123 

long-term climate data and reported growing seasons provided for different global 124 

environments by Sacks et al. (2010). Daily potential biomass growth is determined by 125 

intercepted photosynthetically active radiation based on the leaf area index (LAI) and solar 126 

radiation. The LAI of wheat and maize increases exponentially during early vegetative growth, 127 

after a plateauing it reaches a maximum at maturity, and continuously decreases afterwards. 128 

A dormancy period is considered in case of autumn-sown wheat cultivars. LAI is calculated as 129 

a function of heat units, crop stress, and crop development stages. Total biomass is split 130 

between above- and below-ground biomass. At maturity, crop yield is calculated by multiplying 131 

the total above-ground biomass with a harvest index, which is affected by heat units. Potential 132 

crop growth and crop yields are constraint mainly by water, nutrients (N and P), temperature 133 
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and aeration stress. The most severe stress factor on a given day limits biomass 134 

accumulation, root growth and yield by a fraction ranging from 0 to 1. 135 

EPIC includes seven empirical equations to calculate water erosion (Wischmeier and Smith, 136 

1978). The basic equation is: 137 

𝐸𝐸 = 𝑅𝑅 ∗𝐾𝐾 ∗ 𝐿𝐿𝐿𝐿 ∗ 𝐶𝐶 ∗ 𝑃𝑃 (1) 138 

where E is soil erosion in t ha-1 (mass/area), R is the erosivity factor (erosivity unit/area), K is 139 

the soil erodibility factor in t MJ-1 (mass/erosivity unit), LS is the slope length and steepness 140 

factor (dimensionless), C is the soil cover and management factor (dimensionless) and P is 141 

the conservation practices factor (dimensionless). In this study, we use the MUSS equation 142 

(Williams, 1995), which is adapted for small watersheds:  143 

𝑅𝑅 = 0.79 ∗ (𝑄𝑄 ∗ 𝑞𝑞𝑝𝑝)0.65 ∗𝑊𝑊𝐿𝐿𝑊𝑊0.009  (2) 144 

where Q is runoff volume (mm), qp is peak runoff rate (mm h-1) and WSA is watershed area 145 

(ha). In a comparison of the seven water erosion equations included in EPIC, simulated water 146 

erosion values based on the MUSS equation match closest with observed water erosion rates 147 

from 606 measurements on arable land around the world (Carr et al., 2020) (For a summary 148 

of the comparison of simulated erosion rates with field measurements, see Text S1.). In EPIC, 149 

the main impact of water erosion on crops is driven by nutrient stress through the export of 150 

organic carbon, nitrogen and phosphorus from the topsoil layer through sediment runoff. The 151 

soil organic matter model in EPIC is based on the Century model (Izaurralde et al., 2006). The 152 

system interacts directly with soil moisture, temperature, erosion, tillage, soil density, soil 153 

texture, leaching, and translocation functions. 154 

1.2 Global gridded EPIC model 155 

The EPIC-IIASA GGCM has 131,326 grid cells with a resolution varying between 5’ x 5’ and 156 

30’ x 30’ (approximately 9 km and 56 km, respectively, at the equator). The smallest spatial 157 

elements of the grid cells are global datasets of soil and topography with a resolution of 5’ x 158 

5’. Soil information includes soil type, texture, bulk density and organic carbon concentration 159 
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from the Harmonized World Soil Database (FAO/IIASA/ISRIC/ISSCAS/JRC, 2012), and 160 

topography data is taken from USGS GTOPO30 (USGS, 1997). Within a domain of 30’ x 30’ 161 

grids, the elements belonging to identical topography and soil texture classes, and falling 162 

within the same country, are spatially aggregated to grid cells. Each grid cell is represented 163 

by a single field characterized by the prevailing combination of topography and soil conditions 164 

found in the landscape. Slope length (20 – 200m) and field size (1 – 10ha) are allocated to 165 

each representative field based on a set of rules for different slope classes (Table S1). The 166 

slope of each representative field is determined by the slope class covering the largest area 167 

in each grid cell (Table S1). Slope classes are taken from a global terrain slope database 168 

(IIASA/FAO, 2012) and are based on a high-resolution 90 m SRTM digital elevation model. 169 

Weather data, including daily precipitation (mm), minimum and maximum temperatures (°C), 170 

solar radiation (MJ m-2) and relative humidity (%), are used at a spatial resolution of 0.25° x 171 

0.25°. We use historic bias-corrected daily weather data combining data from the MERRA 172 

reanalysis model, station data, and remotely sensed datasets, covering the years 1980–2010 173 

(AgMERRA, Ruane et al., 2015). Rainfed and irrigated maize and wheat production areas for 174 

each grid cell are taken from Portmann et al. (2010)  We base crop management on reported 175 

growing seasons (Sacks et al., 2010) and spatially explicit nitrogen and phosphorus fertilizer 176 

application rates (Mueller et al., 2012). 177 

1.3 Field management scenarios 178 

Maize and wheat have contrasting soil cover densities. Maize is typically cultivated in wide 179 

rows, which leaves the soil surface less protected than in wheat fields, where crops are grown 180 

in a higher density. We simulate each crop for six field management scenarios (three tillage x 181 

two cover crop scenarios), each influencing soil properties, water erosion and plant growth 182 

differently. In grid cells in which several of these scenarios coincide (see below), simulation 183 

results are subsequently averaged. The tillage management scenarios represent 184 

conventional, reduced and no-tillage, which differ by tillage depth, mixing efficiency of tillage 185 

and sowing mechanizations, surface roughness and the amount of plant residues left on the 186 
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field after crop harvest (Table 1). In addition, we alter the runoff curve numbers for each tillage 187 

scenario to account for different runoff intensities for the cover treatment classes presented in 188 

Table 1. Runoff curve numbers indicate the runoff potential of a hydrological soil group, land 189 

use and treatment class and allow to take the impact of different tillage practices on the 190 

hydrologic balance into account (Chung et al., 1999). The different tillage intensities account 191 

for the impact of gradually changing surface cover and roughness on water erosion rates. We 192 

simulate each tillage scenario with and without cover crop (grass-type green fallow) in between 193 

growing seasons. 194 

The field management scenarios reflect a range of potential impacts occurring due to different 195 

farming techniques on erosion–crop yield relationships. To account for geographic variations 196 

in field management, we construct a baseline wheat and maize management scenario from 197 

the six alternatives based on the climatic and country-specific indicators as follows: 198 

• As the only global statistical data on the type of tillage systems are provided for the extent 199 

of Conservation Agriculture area at the national scale (FAO, 2016), we assign only the 200 

lowest tillage intensity scenario to specific countries in our baseline scenario. Therefore, 201 

conventional and reduced tillage are simulated in each grid cell globally, whereas the 202 

additional no-tillage scenario is simulated only for countries in which at least 5% of cropland 203 

is cultivated under conservation agriculture according to AQUASTAT (2007–2014) (FAO, 204 

2016), including Argentina, Australia, Bolivia, Brazil, Canada, Chile, China, Colombia, 205 

Finland, Italy, Kazakhstan, New Zealand, Paraguay, Spain, USA, Uruguay, Venezuela, 206 

Zambia, and Zimbabwe (Figure S7).  207 

• The simulation of green fallow in between growing seasons is determined by the main 208 

Köppen-Geiger regions (Kottek et al., 2006). In tropical regions, we simulate cover crops in 209 

between maize and wheat seasons to represent soil cover from a year-round growing 210 

season. In arid regions, we do not simulate cover crops in between growing seasons due 211 

to limited water supply. In temperate and snow regions, we use average simulation results 212 

from both cover crop scenarios (Figure S7). 213 
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• Irrigation and conservation practices in all field management scenarios are based on the 214 

underlying slope class of each grid cell (Table S1). On slopes steeper than 5%, we consider 215 

only rainfed agriculture, as hilly cropland is irrigated predominantly on terraces that prevent 216 

water runoff. 217 

• P-factors can be used to simulate conservation practices. These are static coefficients 218 

ranging between 0 and 1, where 0 represents conservation practices that prevent any 219 

erosion and 1 represents no conservation practices. Whilst we introduced conservation 220 

practices implicitly through various crop growth assumptions as presented in Table 1, we 221 

showed in a previous study (Carr et al., 2020) that P-factors (i.e., additional, or more 222 

efficient conservation practices) should be used on steep slopes to prevent EPIC from 223 

overestimating water erosion. As there is presently no globally consistent information on 224 

the distribution of conservation practices, we assigned P-factors <1 to slopes > 16% 225 

assuming that conservation practices are most likely implemented on steep slopes. On 226 

slopes steeper than 16%, we assign a P-factor of 0.5, and on slopes steeper than 30%, we 227 

assign a P-factor of 0.15 to simulate contouring and terracing based on the range of P-228 

values presented in Morgan (2005).  229 

To determine the impact of water erosion on maize and wheat yields, we simulate all field 230 

management scenarios additionally with no erosion (P=0). The comparison of crop yields 231 

simulated with a P-factor value of zero with crop yields simulated under higher P-factor values 232 

can be used to identify grid cells where crop yields are reduced by water erosion. We use the 233 

simulation outputs at those grid cells to quantify the reduction of maize and wheat production 234 

and the relative reduction of crop yields due to water erosion. 235 

1.4 Uncertainties in the cultivated slope and field management data 236 

Assumptions about land topography and field management have a significant impact on 237 

estimated water erosion rates. This is particularly important because global data on land use 238 

is uncertain and the use of different farming techniques are not well understood, and this could 239 

introduce errors into our analysis. 240 
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While we know the range of slopes and the fraction of cropland in each grid cell, we do not 241 

know how much land in each slope class is cultivated. We therefore assume the cropland in 242 

each grid cell is on the slope class that is most common in the grid cell, as this represents the 243 

prevailing topographical conditions. This assumption is likely to introduce spatially-varying 244 

uncertainty as the fraction of each grid cell containing the dominant slope category varies from 245 

20% to 100%, with an average share of 48%. The share of land covered by cropland in each 246 

grid cell also varies greatly, from 1% to 100%, with an average share of 14% (Figure S6). 247 

Therefore, the extrapolation of our simulation outputs to the entire cultivated area in a grid cell 248 

can provide only a rough estimate of the global differences in maize and wheat production 249 

losses due to water erosion. 250 

We explore the implications of this assumption by comparing our simulation results to a 251 

second set of simulation outputs based on an ideal cropland distribution scenario, in which the 252 

flattest terrain available rather than the most common slope in each grid cell is cultivated. This 253 

assumes that farmers would prefer to cultivate flatter land where possible. As this requires a 254 

large number of additional model runs for various combinations of slope assumptions and field 255 

management scenarios per grid cell, we use an example region to reduce computational time. 256 

We examine Italy, as it is susceptible to water erosion and includes large and heterogenous 257 

maize and wheat cultivation areas on flat terrain in the north and mountainous regions in the 258 

south. 259 

We address field management uncertainties by examining the range between minimum and 260 

maximum water erosion impacts on crops simulated with all field management scenarios for 261 

each grid cell and country. 262 

1.5 Crop yield and production impact aggregation 263 

Simulated maize and wheat yields, which are calculated in t ha-1 dry matter, are converted to 264 

fresh matter assuming a net water content of 12% following Wirsenius (2000), so that they 265 

can be compared with yields reported by FAOSTAT (FAO, 2020). To determine the impact of 266 
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water erosion on maize and wheat yields by the end of the simulation period, we average crop 267 

yields generated with all relevant field management scenarios selected under the baseline 268 

scenario assumptions for the years 2001–2010. We weight mean crop yields by the irrigated 269 

and rainfed cultivation area (Portmann et al., 2010) of the respective crop per grid cell 270 

(Equation 3). The difference between average maize and wheat yields, simulated with and 271 

without the impact of water erosion, are used to filter grid cells where water erosion reduces 272 

crop yields (i.e. the area where crop yields are vulnerable to water erosion). Subsequently, 273 

the relative reduction of maize and wheat yield due to water erosion is calculated on grid cell 274 

level (Equation 4).  275 

𝑌𝑌𝑌𝑌𝑐𝑐𝑝𝑝𝑐𝑐 = 𝑌𝑌𝑌𝑌𝑌𝑌(𝑟𝑟)𝑐𝑐𝑝𝑝𝑐𝑐 ∗ 𝑊𝑊𝐴𝐴(𝑟𝑟)𝑐𝑐𝑐𝑐 + 𝑌𝑌𝑌𝑌𝑌𝑌(𝑖𝑖)𝑐𝑐𝑝𝑝𝑐𝑐 ∗ 𝑊𝑊𝐴𝐴(𝑖𝑖)𝑐𝑐𝑐𝑐   (3) 276 

𝑑𝑑𝑌𝑌𝑟𝑟𝑑𝑑𝑑𝑑𝑐𝑐𝑐𝑐 = 𝑌𝑌𝑌𝑌(𝑒𝑒0)𝑐𝑐𝑐𝑐−𝑌𝑌𝑌𝑌(𝑒𝑒1)𝑐𝑐𝑐𝑐
𝑌𝑌𝑌𝑌(𝑒𝑒0)𝑐𝑐𝑐𝑐

 ; 𝑖𝑖𝐴𝐴 𝑌𝑌𝑌𝑌(𝑑𝑑0)𝑐𝑐𝑐𝑐 >  𝑌𝑌𝑌𝑌(𝑑𝑑1)𝑐𝑐𝑐𝑐 (4) 277 

Ywcpg is area-weighted mean crop fresh matter yield (t ha-1) for crop c, P-factor value p and 278 

grid cell g; Yav is yield averaged across the tillage and cover crop scenarios selected in each 279 

grid following the baseline scenario assumptions and for the years 2001–2010 simulated 280 

under irrigated (i) and rainfed (r) conditions; Af(r) is the rainfed area fraction; and Af(i) is the 281 

irrigated area fraction. dYrel is the relative loss of the yield of crop c, at grid cell g; Yw is 282 

weighted average yield simulated with a P-factor value of 0 (e0) and a P-factor value greater 283 

than 0 (e1). 284 

To calculate the loss of crop production in each country, we first estimate the absolute 285 

reduction of crop yields as the difference in the mean yield for the years 2001–2010 simulated 286 

without and with water erosion (e0 and e1, respectively) (Equation 5). We then multiply this 287 

yield reduction by the total area of irrigated and rainfed cropland of each grid cell in the country 288 

(Equation 6).  289 

𝑑𝑑𝑌𝑌𝑌𝑌𝑑𝑑𝑑𝑑𝑐𝑐𝑌𝑌𝑐𝑐 = 𝑌𝑌𝑌𝑌𝑌𝑌(𝑑𝑑0)𝑐𝑐𝑌𝑌𝑐𝑐− 𝑌𝑌𝑌𝑌𝑌𝑌(𝑑𝑑1)𝑐𝑐𝑌𝑌𝑐𝑐; 𝑖𝑖𝐴𝐴 𝑌𝑌𝑌𝑌(𝑑𝑑0)𝑐𝑐𝑝𝑝𝑐𝑐 >  𝑌𝑌𝑌𝑌(𝑑𝑑1)𝑐𝑐𝑝𝑝𝑐𝑐  (5) 290 

𝑑𝑑𝑃𝑃𝑙𝑙𝑐𝑐 = ∑ 𝑑𝑑𝑌𝑌𝑌𝑌𝑑𝑑𝑑𝑑(𝑖𝑖)𝑐𝑐𝑐𝑐 ∗ 𝑊𝑊(𝑖𝑖)𝑐𝑐𝑐𝑐 + 𝑑𝑑𝑌𝑌𝑌𝑌𝑑𝑑𝑑𝑑(𝑟𝑟)𝑐𝑐𝑐𝑐 ∗ 𝑊𝑊(𝑟𝑟)𝑐𝑐𝑐𝑐𝑛𝑛
𝑐𝑐=1  (6) 291 
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dYabscwg is the absolute yield loss for crop c, irrigation scenario w and grid cell g; Yav is yield 292 

averaged across the tillage and cover crop scenarios selected in each grid cell following the 293 

baseline scenario assumptions and for the years 2001–2010 with P=0 (e0) and a P>0 (e1); 294 

dPlc is the loss of production (in tonnes) of crop c in country l; n is the number of grid cells in 295 

country l; dYabs(i) is the absolute decline in irrigated yields and dYabs(r) is the absolute 296 

decline in rainfed yields; A(r) is the rainfed area (in ha); and A(i) is the irrigated area (in ha). 297 

We use the national market prices of crops from the FAOSTAT producer price (average 2013–298 

2018, or the last five annual records available) to calculate the economic maize and wheat 299 

production losses (in $) due to water erosion per country and globally. Two-tailed T-tests are 300 

used to filter countries with significant differences between average yields simulated with and 301 

without water erosion. 302 

1.6 Evaluation of the quality of the modelled crop yields 303 

We evaluate modelled maize and wheat yields (Figure S5) against FAOSTAT reported yields 304 

using the baseline crop management scenario. We convert modelled dry-matter crop yields to 305 

fresh matter and aggregate yields for each country using the same approach as for grid cell-306 

level aggregation in Equation 3. We average irrigated and rainfed crop yields (generated with 307 

all P-factor values, tillage and cover crop scenarios selected for the baseline scenario and the 308 

years 2001 and 2010) for each country and weight them by the cultivated area of the 309 

respective irrigated or rainfed crop per country (Portmann et al., 2010) (Equation 7). We use 310 

average maize and wheat yields per grid cell to summarise the total maize and wheat 311 

production for each country (Equation 8). 312 

𝑌𝑌𝑌𝑌𝑐𝑐𝑙𝑙 = 𝑌𝑌𝑌𝑌𝑌𝑌(𝑟𝑟)𝑐𝑐𝑙𝑙 ∗ 𝑊𝑊𝐴𝐴(𝑟𝑟)𝑐𝑐𝑙𝑙 + 𝑌𝑌𝑌𝑌𝑌𝑌(𝑖𝑖)𝑐𝑐𝑙𝑙 ∗ 𝑊𝑊𝐴𝐴(𝑖𝑖)𝑐𝑐𝑙𝑙 (7) 313 

𝑃𝑃𝑐𝑐𝑙𝑙 = ∑ 𝑌𝑌𝑌𝑌𝑌𝑌(𝑟𝑟)𝑐𝑐𝑐𝑐 ∗ 𝑊𝑊(𝑟𝑟)𝑐𝑐𝑐𝑐 + 𝑌𝑌𝑌𝑌𝑌𝑌(𝑖𝑖)𝑐𝑐𝑐𝑐 ∗ 𝑊𝑊(𝑖𝑖)𝑐𝑐𝑐𝑐𝑛𝑛
𝑐𝑐=1  (8) 314 

Ywcl is weighted yield for crop c in country l; Yav is yield averaged for the years 2001–2010, 315 

with all P-factor values and all tillage and cover crop scenarios selected under the baseline 316 

scenario assumptions simulated under irrigated (i) and rainfed (r) conditions; Af(r) is the 317 
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rainfed area fraction and Af(i) is the irrigated area fraction; Pcl is the total production (in tonnes) 318 

of crop c in country l; g is any grid cell in country l; n is the number of grid cells in country l; 319 

A(r) is the rainfed area and A(i) is the irrigated area in hectares. 320 

We compare crop yields and total production per country against FAOSTAT statistics for the 321 

years 1995–2005. The years are chosen based on the years of reported fertilizer application 322 

rates that are used to simulate maize and wheat yields. The agreement between simulated 323 

and reported data is determined by the coefficient of determination (R2) and the relative error 324 

(%) between both datasets. Evaluation results are provided in the supplementary information 325 

(Text S2, Figure S3, Figure S4). 326 

2 Results 327 

2.1 The impact of water erosion on global maize and wheat yields 328 

In the last decade of our 31-year simulation period, the average annual maize and wheat 329 

yields were reduced due to water erosion at 58% and 62% of grids cells, respectively, by a 330 

global median of 3% for each crop. The affected grid cells represent 51% and 46% of global 331 

maize and wheat cultivation areas, respectively. Median annual soil loss at grid cells where 332 

crop yields are reduced is 11 t ha-1 and 6 t ha-1 on maize and wheat fields, respectively. The 333 

simulated relative reduction of average annual maize and wheat yields per grid cell at the end 334 

of the simulation period is illustrated in Figure 1. Most grid cells where high yield reduction is 335 

simulated represent fields with low fertilizer input on steep slopes exposed to intensive 336 

precipitation. 337 

The distribution of annual average crop yield losses for the 40 most vulnerable maize- and 338 

wheat-producing countries is plotted in Figure 2. Countries in which the median annual 339 

reduction of maize yields due to water erosion is higher than 5% by the end of the simulation 340 

period are most abundant in sub-Saharan Africa and across Asia. There are similarly high 341 

median maize yield losses for countries in Central America and the Caribbean, but only Chile 342 
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and Uruguay are badly affected in South America, and only Albania, Croatia and Greece in 343 

Europe. Median wheat yield losses per country are generally lower than for maize. Countries 344 

with median wheat losses higher than 5% are mostly in Asia and Europe. In Africa, annual 345 

median wheat yield losses higher than 5% are simulated in Ethiopia, Uganda and Tanzania, 346 

and in South America in Uruguay, Bolivia and Chile. These crop yield losses are modelled 347 

using the prevailing environment and management conditions in each country. Actual crop 348 

yield losses could only be determined based on an explicit spatial link between the extent of 349 

crop cultivation areas and areas vulnerable to water erosion, which would only be possible 350 

with on-site observations. 351 

The distribution of the magnitude of crop yield losses and the share of grid cells affected by 352 

water erosion needs to be considered to assess each countries vulnerability to water erosion. 353 

In some large countries, the majority of cropland is exposed to low water erosion despite 354 

extensive vulnerable areas within the country. For example, large areas in the United States, 355 

Brazil, India and China are affected by water erosion. However, as these regions are only a 356 

small part of the entire cropland area, overall median crop losses are low. On the other hand, 357 

in some countries a small number of grid cells with high water erosion cause high median crop 358 

productivity losses. Afghanistan, Pakistan and Iran are ranked among the most vulnerable 359 

countries even though less than half of the grid cells are affected by water erosion under all 360 

scenarios. 361 

In several countries, field management scenarios have a significant impact on the area 362 

affected by water erosion and on the magnitude of crop yield losses, as demonstrated by the 363 

uncertainty ranges in Figure 2. In most countries, the median maize and wheat yield losses 364 

are lowest with no tillage and cover crops and highest with conventional or reduced tillage and 365 

bare soil fallow. On a global scale, annual maize and wheat yield losses simulated under all 366 

field management scenarios range from 2–5% and 3–4%, respectively.  367 
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2.2 Fertilizer use and environmental drivers affect the impacts of water erosion 368 

The simulated impact of water erosion on crop yields is strongly influenced by fertilizer input 369 

and environmental drivers in each country such as slope inclination and precipitation amount. 370 

Figure 3a shows that median maize and wheat yield losses per country tend to be higher in 371 

countries with higher levels of water erosion. Losses are relatively lower in countries with high 372 

rates of fertilizer application, which replace nutrients lost through soil runoff (Figure S10). We 373 

simulate a global median rate of nitrogen runoff from maize and wheat fields of 7 kg ha-1 yr-1 374 

and 5 kg ha-1 yr-1, and a global median rate of soil organic carbon runoff from maize and wheat 375 

fields of 107 kg ha-1 yr-1 and 72 kg ha-1 yr-1 during the whole simulation period (global maps 376 

on soil, nitrogen and carbon runoff are provided in the supplementary information in Figures 377 

S11–S13).  378 

Slope steepness and precipitation strength are the most important environmental drivers 379 

influencing the impact of water erosion on crop yields. Figures 3b and 3c show how yield 380 

losses increase as a function of slope classes and rainfall erosivity classes1. The distribution 381 

of maize and wheat cropland in our grid cells per slope and rainfall erosivity classes is 382 

illustrated by the grey bars in the same plots. Around 73% of maize and wheat cropland is on 383 

slopes whose steepness does not exceed 5%. On those slopes, median global maize and 384 

wheat yield losses range from 0% to 1%. On steeper slopes, median yield losses range from 385 

3% to 9%. Similarly, 69% of maize and wheat land is exposed to rainfall erosivity below 3000 386 

MJ mm ha-1 h-1 yr-1, which is the average rainfall erosivity on global cropland. For those areas, 387 

median crop yield losses range from 1% to 2%. Median crop yield losses on fields exposed to 388 

higher rainfall erosivity range from 2% to 4%. 389 

 390 

The highest yield losses tend to occur in regions with low fertilizer input and high rates of water 391 

erosion. Figure 4 identifies agricultural regions susceptible to water erosion as indicated by 392 

 
1 Rainfall erosivity classes are taken f rom Panagos et al. (2017). 
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overlapping areas of slope steepness (IIASA/FAO, 2012) and rainfall erosivity (Panagos et al., 393 

2017), and shows the average fertilizer application rates for maize- and wheat-producing 394 

countries (Mueller et al., 2012). Each map layer is presented in Figures S13–S15. Dark areas 395 

highlight most vulnerable locations characterised by high abundance of steep slopes in 396 

regions of high rainfall erosivity. These are most common in South, East and Southeast Asia, 397 

sub-Saharan Africa, and Latin America. The cultivation on steep slopes is a common factor of 398 

vulnerability outside the tropics as well, but rainfall erosivity decreases there, reducing the 399 

energy of rainfall to erode soil. Fertilizer application per country varies significantly. In most 400 

African countries and in several countries in Asia and Latin America, the fertilizer use is 401 

substantially lower than in the rest of the world.  402 

2.3 The impact of water erosion on total maize and wheat production  403 

By extrapolating average absolute maize and wheat yield losses across the entire irrigated 404 

and rainfed cultivation area of each crop in a grid cell, we sum the total annual production loss 405 

per country (Figure 5). We estimate that water erosion reduces the global production of maize 406 

and wheat by 9 million tonnes and 6 million tonnes annually. This accounts for less than 1% 407 

of the global average maize and wheat production of 1,091 million tonnes and 739 million 408 

tonnes, respectively, from 2013–2018 reported by FAOSTAT. Market values of the national 409 

maize and wheat production losses, derived by multiplying production losses with the average 410 

market prices ($ t-1) in each country, add up to an annual global loss of approximately $2bn in 411 

maize production, and $1.3bn in wheat production. Highest production losses in absolute 412 

terms are in countries with the largest maize and wheat cultivation areas rather than in the 413 

most vulnerable countries. Tables 2 and 3 list the 20 countries with the highest annual 414 

reduction in maize and wheat production due to water erosion. These countries account for 415 

84% and 77% of the global maize and wheat production. 416 

We estimate the largest maize production declines for the most important producers such as 417 

Mexico, Brazil, United States, India, China and Indonesia. Nevertheless, losses in the United 418 

States and China are only 0.2% of their national production, but reach 5% of Mexico’s 419 
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production. Few countries with the highest absolute losses have low shares of global 420 

production (e.g. Guatemala; Nicaragua; Nepal; Myanmar). 421 

Similarly, the modelled loss of wheat production due to water erosion in absolute terms is 422 

highest for India and China as they produce nearly a third of global wheat production, but is 423 

less than 1% of their total production. High production losses in absolute terms for small 424 

producers are rarer than for maize. Countries with lowest production losses in absolute terms 425 

are most abundant in Africa, Southeast Asia and Latin America.  426 

2.4 The Impact of uncertainty in field management and slope modelling 427 

The impact of our assumption that the most common slope represents the whole grid cell is 428 

examined for Italy in Figure 6. The plots compare the distribution of modelled maize and wheat 429 

yield losses due to water erosion for cases in which all cropland is either on the most common 430 

slope class or on the flattest terrain in each grid cell. Median annual maize and wheat yield 431 

losses for the flattest terrain assumption are 0.2% and 1.2%, respectively, leading to annual 432 

maize and wheat production losses of 0.01 million tonnes and 0.04 million tonnes, 433 

respectively. For the most common slope scenario, median annual maize and wheat yield 434 

losses are 2.1% and 4.1%, with substantially higher annual maize and wheat production 435 

losses of 0.05 million tonnes and 0.1 million tonnes, respectively. 436 

The uncertainty due to lacking field management information varies around the globe and is 437 

most pronounced in erosion-sensitive areas, where soil conservation techniques can reduce 438 

extreme water erosion rates considerably. In those areas, contrasting field management 439 

scenarios generate a large range of values with varying degrees of water erosion impacts on 440 

crop yields (Figure S17). We reduced this large uncertainty range in our baseline scenario by 441 

identifying and removing field management practices that are unlikely to be used in specific 442 

regions. However, due to the large variety of field management practices worldwide, we can 443 

only partly narrow down this uncertainty. 444 
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3 Discussion 445 

3.1 Erosion-induced crop yield losses and fertilizer requirements for 446 

compensation 447 

Previous studies suggest that soil loss rates up to 11 t ha-1 are tolerable to maintain crop 448 

productivity for soils in the United States (Schertz and Nearing, 2006) and in Europe (Panagos 449 

et al., 2018) based on the assumption that fertilizer will compensate for nutrient runoff. On 450 

fields with higher water erosion rates, Panagos et al. (2018) assumed that crop productivity 451 

would reduce by 8%, based on a review of relevant studies on erosion-crop productivity 452 

relationships. Similarly, our model outputs generate a median global reduction of maize and 453 

wheat yields of 6% for grid cells with water erosion of at least 11 t ha-1. In fields with water 454 

erosion below 11 t ha-1 we simulate a considerably lower median crop yield reduction of 1%. 455 

However, large variations in fertilizer input between countries affect the impact of water 456 

erosion on crop yields. If fertilizer were not sufficiently supplied to compensate for nutrient 457 

losses in certain countries, their crop yield losses may be higher than in countries with both 458 

higher water erosion and fertilizer application rates (Balkovič et al., 2018). Although synthetic 459 

fertilizers can quickly compensate for nutrient loss, the recovery of lost organic matter and the 460 

consequent damage to soil structure can take decades (Poulton et al., 2018). Therefore, 461 

acceptable soil loss rates should not consider only the extent to which fertilizer application can 462 

replenish soil fertility. An assessment should also consider soil formation rates and off-site 463 

concerns such as the proximity to sensitive areas (Montgomery, 2007; Schertz and Nearing, 464 

2006).  465 

The additional fertilizer costs to compensate for water erosion can be higher than the loss of 466 

income due to production losses (Graves et al., 2015). Global median nitrogen runoff of 7 kg 467 

ha-1 yr-1 in maize fields and 5 kg ha-1 yr-1 in wheat fields, from our simulation outputs, would 468 

cost $1.7 ha-1 yr-1 and $1.2 ha-1 yr-1 2. The global annual nitrogen fertilizer replacement costs 469 

 
2 based on global urea price for the period 2015–2019 taken f rom World Bank (2020a). 
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for maize and wheat fields would be $642m and $255m, respectively. Although this is lower 470 

than the estimated annual maize and wheat production losses ($2.0bn and $1.3bn), 471 

replacement costs for lost nutrients would be considerably higher if we were to also account 472 

for phosphorus and potassium runoff. In addition, carbon runoff of median 107 kg ha-1 yr-1 and 473 

72 kg ha-1 yr-1 in maize and wheat fields might add additional costs through nutrient 474 

replacement efforts such as manure application. On a global scale, the relative fertilizer 475 

replacement costs might be too low to incentivise farmers to introduce soil conservation 476 

measures, but they can be considerably higher for vulnerable areas (Hein, 2007). For a 477 

comprehensive assessment of water erosion impacts, off-site impacts on surrounding 478 

environments such as the pollution of surface water and emission of greenhouse gases also 479 

need to be considered (Chappell et al., 2016; Tilman et al., 2001). Several studies estimate 480 

higher costs of off-site impacts due to erosion than on-site costs through production losses 481 

and fertilizer replacement (Görlach et al., 2004; Graves et al., 2015). Further, we did not 482 

account for sediment re-distribution as we currently rely on simple water erosion models for 483 

global assessments. Topsoil accumulation in deposition areas may improve nutrient 484 

availability and soil properties and can offset the negative effects on crops in eroded areas 485 

(Bakker et al., 2007; Duan et al., 2016). 486 

Due to the high fertilizer use in major maize and wheat production areas, which are mostly 487 

located on flat terrain and in regions with lower rainfall erosivity than the global average, water 488 

erosion has had a low impact on annual global production losses in absolute terms. Vulnerable 489 

regions with potentially high crop yield losses are mostly outside major production regions and 490 

therefore they hardly affect changes in global maize and wheat production. Den Biggelaar et 491 

al. (2004a) also estimated a low impact of water erosion on a global scale, and concluded that 492 

the small losses would likely be masked over the short term by market fluctuations, weather, 493 

and other environmental perturbations. Furthermore, market mechanisms such as trade flows 494 

can considerably reduce production losses. Sartori et al. (2019) used a global market 495 

simulation model that accounted for market impacts of soil erosion, which reduced direct 496 
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production losses by three times. Nevertheless, as erosion impacts are cumulative, they may 497 

cause more serious losses if erosion continues unabated over a long period of time (Den 498 

Biggelaar et al., 2004a), and could ultimately lead to total topsoil loss and the land being 499 

abandoned. Moreover, water erosion could be self-reinforcing, by decreasing the protective 500 

cover through reduced crop cover and residues on the soil surface (Ponzi, 1993). 501 

Slope inclination and precipitation intensity are the dominant environmental characteristics 502 

affecting water erosion. Soil types are generally relevant in GGCM crop yield simulations 503 

(Folberth et al., 2016) and for erosion-productivity relationships (den Biggelaar et al., 2001; 504 

Lal, 1995), but on a global scale their impact on water erosion is small compared to slope 505 

steepness and precipitation. This means water erosion impacts are highest in hilly areas, in 506 

the tropics and in other regions with heavy precipitation. In countries with diverse 507 

environmental conditions, the variation in water erosion impacts is usually wide ranging and 508 

therefore a comparison of the extent of cropland vulnerable to water erosion should be further 509 

analysed on a sub-national scale.  510 

3.2 Potential impacts of water erosion on livelihoods 511 

High production losses from water erosion on a national or regional scale can severely impact 512 

livelihoods of farmers (Wynants et al., 2019). The agricultural sector of both sub-Sahran Africa 513 

and South Asia contributes roughly 16% to their GDP, compared to a worldwide share of 514 

approximately 4% (World Bank, 2020b). Moreover, food security is a pressing issue in those 515 

regions (von Grebmer et al., 2012). Whilst in some of these regions water erosion was recently 516 

reduced through programs improving land management (Nyssen et al., 2015), increasing crop 517 

demand through population growth and market effects led to re-cultivation of tropical steep 518 

slopes (Turkelboom et al., 2008) or soils prone to degradation (Wildemeersch et al., 2015). 519 

Pressures are likely to increase through climate change impacts on agriculture, which are 520 

projected to decrease agricultural productivity highest in low latitudes (Iizumi et al., 2017; 521 

Rosenzweig et al., 2014), which will likely enhance food security issues (Knox et al., 2012; 522 

Wheeler and Von Braun, 2013). The impact of climate change on water erosion impacts is still 523 
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unclear but projected increases in rainfall intensity (Olsson et al., 2019; Wang et al., 2014) 524 

and diminishing vegetation cover through increasing temperature (Zhao et al., 2017) may 525 

accelerate water erosion and its impacts on crop yields (Li and Fang, 2016). Our simulation 526 

results indicate that several countries in regions most affected by food security issues today 527 

and projected to be under high pressure by population growth and climate change in the future 528 

are among the most affected by high relative production losses due to water erosion. 529 

3.3 Uncertainties in water erosion estimates 530 

The large spatial resolution of global-gridded crop models cause uncertainty from various input 531 

sources including climate, soil, field management, distribution of crop cultivars and cropland, 532 

irrigation area, growing seasons, model structure and model parameterization, most of which 533 

have been addressed by prior studies (Folberth et al., 2016, 2019; Mueller et al., 2017; 534 

Porwollik et al., 2017). In this study, we focus on the uncertainty from cultivated slope and field 535 

management data, as both are critical for estimating water erosion and its effect on crop yields 536 

and production.  537 

3.3.1 Uncertain slopes of modelled fields 538 

Slope data is the most critical parameter for estimating water erosion. However, the 539 

uncertainty of global land use datasets (Fritz et al., 2015; Lesiv et al., 2019) does not enable 540 

us to establish explicit spatial links between maize and wheat cultivation areas and slopes 541 

without on-site observations. Instead, we use the slope covering the largest area in a grid cell 542 

to capture the slope most likely covered by most of the cropland. This approach represents 543 

the prevailing topographic differences of global crop production regions but cannot capture 544 

the heterogeneity of fields in certain areas. In an ideal situation where all cultivated areas are 545 

concentrated on the flattest terrain available, simulated water erosion impacts on crop yields 546 

are reduced substantially. However, the distribution of cropland is based on more factors than 547 

the topography of land, such as the suitability of soil, climate and socio- economic 548 

circumstances or limitations such as land tenure and competing land use (Hazell and Wood, 549 

2008; Nyssen et al., 2019).  550 
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3.3.2 Uncertainties in field management 551 

Field management can vary substantially between regions, farming systems and farmers, and 552 

is based on a complex web of factors (Pannell et al., 2014). While our management scenarios 553 

bracket the range of field management intensities and soil surface coverage, our baseline 554 

scenario narrows down prevailing field management by selecting or excluding scenarios 555 

based on environmental- and country-specific indicators. Apart from similar approaches (e.g. 556 

Porwollik et al., 2019), no detailed representation of the diversity in global field management 557 

currently exists. Moreover, our field management scenarios are constant for every season and 558 

we do not account for the farmer’s actions to mitigate soil erosion, which might significantly 559 

reduce water erosion impacts (Tiffen et al., 1994). 560 

Yet an advantage of simulating constant field management is that it enables us to detect the 561 

impact of water erosion on soil resources in the long term, which might otherwise have been 562 

masked by technological advances such as higher yielding crop varieties, herbicides, 563 

insecticides, new planting technologies, and increased fertilizer input to compensate for 564 

sediment runoff (Littleboy et al., 1996). Moreover, we can address the likely differences in 565 

water erosion impacts with different intensities of field management, as our model outputs 566 

reflect the ability of cover crops, crop residues and low tillage intensity to decrease water 567 

erosion rates and to maintain and replenish soil nutrients. Although this reduces crop yield 568 

losses due to water erosion, it does not necessarily translate into higher crop yields due to 569 

other growth constraints being influenced by the choice of farming techniques. Since field 570 

management practices greatly influence crop yields in general, and water erosion in particular, 571 

improving their representation and understanding the decision processes of farmers 572 

responding to changing physical conditions in their fields would help to improve our 573 

understanding of water erosion impacts on crop yields. 574 

3.3.3 Data requirements to improve global erosion impact assessments 575 

Future global studies on water erosion impacts may benefit from current efforts to compile 576 

spatial data on representative management practices such as tillage systems (Porwollik et al., 577 
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2019), and remote sensing products for spatial attribution of field management practices 578 

(Hively et al., 2018; Zheng et al., 2014). In addition, the increasing availability of high-579 

resolution data through improvements in remote sensing techniques will benefit future global 580 

water erosion assessments (Buchhorn et al., 2020). However, due to the current uncertainties 581 

in global land use maps (Lesiv et al., 2019) and spatial field management data (Folberth et al., 582 

2019), global studies cannot replace field-scale assessments based on precise information on 583 

management practices and site characteristics. Due to higher spatial detail, field-scale 584 

assessments can be based on more complex water erosion models, which may include 585 

special elements such as channels and ponds to identify potential sources and sinks of 586 

sediments and associated nutrients within a field (Jetten et al., 2003). By including depositional 587 

areas within the spatial unit studied, positive effects of topsoil accumulation on crop 588 

productivity can be considered (Bakker et al., 2007). In addition, studies based on data with a 589 

higher temporal resolution can consider the impact of individual rainfall events on sediment 590 

runoff instead of focusing on average erosion rates as it is common in global studies. In other 591 

words, smaller-scale studies can more precisely inform about actual water erosion impacts on 592 

a field to support effective anti-erosion measures on-site. However, studies on erosion-593 

productivity relationships cannot normally be scaled-up as the robustness of locally observed 594 

relationships need to be re-evaluated for different environmental and socioeconomic 595 

conditions in each location. Given the current lack of consistent field studies representing all 596 

global environments, a bottom-up approach to deliver large-scale indicators on erosion rates 597 

and impacts to inform agricultural and environmental policy programs is not currently feasible 598 

(Alewell et al., 2019). 599 

The limited availability of global experimental field-scale data means that only simple erosion 600 

models are appropriate for global studies. For this reason, USLE-based models have been 601 

chosen in this study and by most other recent global studies to estimate water erosion rates 602 

at large scales (Borrelli et al., 2017; Naipal et al., 2018). In a previous study, we tested the 603 

robustness of our modelling approach and concluded that water erosion rates simulated with 604 
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EPIC-IIASA largely overlapped with experimentally-measured erosion rates in most global 605 

cropland environments, while water erosion rates simulated at locations with steep slopes and 606 

strong precipitation were overestimated (Carr et al., 2020). A major challenge in the evaluation 607 

of simulated water erosion rates was the limited amount of appropriate field data, which do 608 

not represent all needed regions and field management scenarios, as well as the 609 

inconsistency in field experiment setups. Whilst the robustness of spatial patterns of crop 610 

yields simulated with EPIC-IIASA has been evaluated using regional yield statistics and other 611 

global crop and land use models as a part of ISI-MIP and GGCMI model inter-comparison 612 

initiatives (Mueller et al., 2017), similar comprehensive evaluation and benchmarking 613 

techniques to improve global water erosion models are hampered by a lack of appropriate 614 

field data. Recent efforts to collate erosion measurements and metadata from existing studies 615 

may improve the global coverage of appropriate field data in the future (Benaud et al., 2020; 616 

Borrelli et al., 2020). In addition to the need for more spatial data on representative 617 

management practices and higher-resolution datasets on land use patterns and topography, 618 

a more consistent approach to field-based data collection to evaluate model outputs would 619 

enable such studies to be used in future large-scale water erosion assessments. 620 

 621 

4 Conclusion 622 

We used a global gridded crop model to analyse the vulnerability of maize and wheat 623 

producing regions to water erosion. Locations that are highly vulnerable to water erosion are 624 

concentrated in regions combining hilly terrain, strong precipitation and low fertilizer inputs. 625 

But water erosion has only a small impact on global maize and wheat production, because the 626 

major maize and wheat production areas are on relatively flat terrain and nutrient losses 627 

through water erosion are offset by high fertilizer applications. However, this compensation of 628 

soil loss with fertilizers to maintain crop yields hides the negative impacts of water erosion on 629 

soil resources and surrounding environments.  630 
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We have performed a globally-consistent and transparent analysis of water erosion impacts 631 

on maize and wheat production. The most crucial data requirements to improve the robustness 632 

of simulated water erosion impacts on global crops include well-defined field data covering all 633 

global regions to evaluate water erosion estimates, higher-resolution global land use datasets 634 

and detailed information on field management patterns. Improving our understanding of soil 635 

conservation and anti-erosion measures used in each region when cultivating slopes would 636 

enable us to improve our representation of vulnerable regions. As these datasets are currently 637 

not available in higher detail at the global scale, further research on water erosion impacts 638 

could focus on the most vulnerable regions by analysing land use patterns and all 639 

environmental circumstances on-site at a finer resolution. The high vulnerability to water 640 

erosion in sub-Saharan Africa, and parts of South Asia and Latin America, where future 641 

changes in population growth and climate could amplify land degradation processes, are 642 

priorities for further research. 643 
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 944 

Figure 1: Maize (a) and wheat (b) yield loss due to water erosion (% yr-1) simulated with the baseline scenario and 945 

averaged for the years 2001 – 2010. Each grid cell is represented by one representative field capturing the most 946 

common site characteristics. Cropland areas are not considered in grid cell size. 947 
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 949 

Figure 2: Maize (a) and wheat (b) yield losses due to water erosion (% yr-1) for the 40 most vulnerable countries 950 

estimated with the baseline scenario. Countries contributing less than 0.01% to global maize and wheat production 951 

are excluded. The countries are ranked by median crop yield losses. Boxes include values from the 25th to the 952 

75th percentiles and whiskers bracket values between the 10th and the 90th percentiles. The points illustrate 953 

minimum and maximum median crop yield losses generated from all field management scenarios. Medians and 954 

percentiles are converted to logarithmic scale. Grey barplots on the right illustrate the share of grid cells affected 955 

by water erosion impacts in each country, and errorbars indicate the variability of affected grid cells due to all 956 

management scenarios. The distributions of all relevant maize and wheat producing countries are provided in 957 

Figure S8 and Figure S9. 958 

 959 
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 960 

Figure 3: (a) Modelled median maize and wheat yield loss plotted against median soil loss through water erosion 961 

for each country. The linear relationship between national soil loss and crop yield loss is illustrated by the dashed 962 

regression line. Colours indicate the rate of fertilizer application per country. (b,c) Maize and wheat yield losses, 963 

respectively, per grid cells classified by slope steepness and rainfall erosivity. Grey bars illustrate the share of 964 

cropland in grid cells summarised for the different slope and rainfall erosivity classes. 965 

 966 

 967 

Figure 4: water erosion vulnerability on global cropland indicated through the most important environmental drivers, 968 

rainfall erosivity (MJ mm ha-1 h-1 yr-1) and slope steepness (%), and the average sum of Nitrogen, Phosphorous 969 

and Potassium fertilizer application rates (kg ha-1yr-1) per country represented by the red bars. To improve the 970 
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overview of the map, fertilizer application from countries contributing less than 0.1% to global maize and wheat 971 

production have been excluded, and fertilizer application from all relevant EU27 countries has been averaged. 972 

 973 

 974 

Figure 5: The impact of water erosion on national maize (a) and wheat (b) production based on the sum of estimated 975 
production losses in all grid cells in each country. NA marks countries without maize or wheat production area. 976 
Estimates of production losses in each grid cell assume uniform site characteristics for the entire cropland in each 977 
grid cell. 978 

 979 
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 980 

Figure 6: Range of simulated maize and wheat yield losses (% yr-1) in Italy simulated with different cropland 981 

distribution scenarios for maize (a) and wheat (b). Boxes illustrate medians and 25th and 75th percentiles, whiskers 982 

illustrate values between the 10th and the 90th percentiles. Grey bars mark the baseline scenario used for the main 983 

results of this study. 984 

 985 

Table 1: input settings for the conventional, reduced and no-tillage scenario 986 

 Conventional 
tillage 

Reduced 
tillage 

No-tillage 

total cultivation operations 6–7 4–5 3 

max. tillage depth 150 mm 150 mm 40–60 mm 

mixing efficiency 99% 75% 2% 

max. surface roughness 30–50 mm 20 mm 10 mm 

plant residues left 25% 50% 75% 

cover treatment class straight  contoured contoured & terraced 

 987 

Table 2: Countries with the highest annual maize production losses. All records are provided in Table S2. 988 

country 
prod. 

(million t)+ 
prod. loss 
(million t)* 

prod. loss 
(%) 

prod. loss 
(million $)+ 

Mexico 25.6 1.3 5.0 264.8 

Brazil 81.6 0.8 1.0 157.7 

USA 376.7 0.7 0.2 104.9 

India 25.6 0.6 2.5 92.0 

China 246.7 0.5 0.2 199.8 

Indonesia 23.3 0.5 2.1 151.8 

Philippines 7.6 0.4 5.2 111.3 

Nepal 2.2 0.3 12.5 74.2 

Guatemala 1.9 0.2 12.8 37.2 

Russia 12.7 0.2 1.5 24.6 
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country 
prod. 

(million t)+ 
prod. loss 
(million t)* 

prod. loss 
(%) 

prod. loss 
(million $)+ 

Argentina 38.6 0.2 0.5 31.1 

Tanzania 6.0 0.2 2.7 29.8 

Nigeria 10.2 0.1 1.3 41.2 

Myanmar 1.8 0.1 6.5 27.1 

Nicaragua 0.4 0.1 27.8 31.9 

Romania 12.7 0.1 0.9 20.6 

Ukraine 28.6 0.1 0.4 14.8 

France 14.4 0.1 0.7 17.9 

Ethiopia 7.5 0.1 1.3 20.8 

Viet Nam 5.2 0.1 1.7 26.4 

World 1,091.1 8.9 0.8 1,960.7 
+FAOSTAT: 2013 - 2018 or the latest five years recorded. 

*assuming uniform cropland in each grid cell. 

 989 

Table 3: Countries with the highest annual wheat production losses. All records are provided in Table S3. 990 

country 
prod. 

(million t)+ 
prod. loss 
(million t)* 

prod. loss 
(%) 

prod. loss 
(million $)+ 

India 94.4 0.7 0.7 137.4 

China 130.0 0.6 0.5 213.7 

Turkey 21.0 0.5 2.5 139.4 

USA 55.1 0.5 0.8 89.4 

Russia 67.5 0.4 0.6 60.2 

France 37.4 0.3 0.8 56.9 

Argentina 13.2 0.2 1.8 56.5 

Iran 12.4 0.2 1.6 77.4 

United Kingdom 14.6 0.1 1.0 30.1 

Italy 7.3 0.1 1.9 32.5 

Germany 24.8 0.1 0.5 22.9 

Ukraine 25.0 0.1 0.5 17.7 
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country 
prod. 

(million t)+ 
prod. loss 
(million t)* 

prod. loss 
(%) 

prod. loss 
(million $)+ 

Australia 24.5 0.1 0.4 22.0 

Kazakhstan 14.1 0.1 0.6 11.3 

Spain 6.9 0.1 1.2 17.9 

Syria 2.0 0.1 3.6 9.7 

Morocco 6.2 0.1 1.1 19.4 

Romania 8.6 0.1 0.8 11.9 

Greece 1.5 0.1 4.4 15.8 

Ethiopia 4.4 0.1 1.4 23.4 

World 739.5 5.6 0.8 1,292.5 
+FAOSTAT: 2013 - 2018 or the latest five years recorded. 

* assuming uniform cropland in each grid cell. 
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