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Abstract 
 

Small-scale farms play a critical role in current agricultural production and food security. Previous 

studies have developed various maps to estimate the geographical distribution of small-scale farms or 

the geographical distribution of crop production; however, current maps have limited capacities to 

support climate change and water resources studies where a grided farm size- and crop-specific map 

is needed. This study aimed to develop a 5 arcmin farm-size specific crop map of harvested area and 

to explore the implication for the management of water as a global resource. We developed such a 

map by downscaling a global database that directly measures the crop area and/or crop production per 

farm size for 42 crops and 56 countries. We downscaled the national data to grid-level by solving an 

optimization problem, where the objective function aimed to maximize the consistencies between the 

downscaled map and information from other databases on farm size structure, crop distribution, and 

field size distribution. We validated the developed map with empirical data from satellite images for oil 

palm, expert knowledge for coffee in Costa Rica, household surveys on irrigation, and similar estimated 

maps. Validations show an overall acceptable error. We then estimated small-scale farms’ contribution 

to total agricultural water consumption (blue and green water) using the output of the Global Crop 

Water Model (GCWM). Results show, under the 2 ha threshold, small-scale farms contribute to 25.8% 

of total agricultural water consumption globally, and this number is significantly higher in developing 

countries. Their contribution is also higher in labor-intensive crops (e.g. sweet potato, banana, rice, 

coconut) and domestic market-oriented crops. This means that the water consumed by small-scale 

farms may not be virtually exported to other countries. Future work will focus on map development 

(further validation, inclusion of more countries, estimation of crop production) and the assessment of 

water use sustainability, productivity (per net weight and per nutrient), and equity.  
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Introduction 
 

Small-scale farmers are of great importance for agricultural production and food security. Their exact 

contribution to agricultural production and food security depends on the definition of small-scale 

farmers in various contexts. At the global level, studies often use the 2 ha threshold to outline the 

picture of small-scale farmers despite its limitations (FAO, 2014). Under this threshold, small-scale 

farms account for 84% of the total number of global farms and support the livelihood of more than 2 

billion people (Bosc et al., 2013; FAO, 2014, 2015; Gomez y Paloma et al., 2020). Recent global 

empirical study shows small-scale farmers use 24% of agricultural land, produce around 34% of global 

cereals, 17% of vegetables, 50% of pulses, 42% of fruits, and supply 30% of global food (Ricciardi et 

al., 2018a). 

 

The scale of agricultural production does not directly dictate agricultural practices (e.g., planting, 

harvesting, irrigating), but it can be said that farmers with similar farm-size share similar patterns of 

agriculture production and social-economic conditions. Studies show that small-scale farmers plant 

more cereals, fruits, pulses, and roots and tubers; medium-scale farmers plant more vegetables and 

nuts; and large-scale farmers plant more oil crops and other cash crops (Ricciardi et al., 2018a). Small-

scale farmers tend to increase the use of non-fixed inputs, such as fertilizers and pesticides to increase 

agriculture production, while large-scale farmers tend to increase fixed inputs, such as machinery (Ren 

et al., 2019). This helps to explain the overuse of fertilizers among small-scale farmers in some countries 

(Sheahan and Barrett, 2017; Wu et al., 2018). In the water scarcity region, small-scale farmers have 

less irrigation than non-small-scale farmers (Ricciardi et al., 2020). In developing countries, they are 

often found in subsistence conditions, featured by low profit and yield, limited market access (Meemken 

and Bellemare, 2020). 

 

The characteristics of small-scale farmers are also highly context-dependent. For example, small-scale 

farmers in Europe can be both weak and strong market-oriented depending on their location and type 

of crops (Guarín et al., 2020; Rivera et al., 2020). Even in developing countries where they often have 

limited market access, small-scale farmers may play a critical role in export-oriented crops. For example, 

in Indonesia, the world's largest palm oil producer and exporter, small-scale farmers plant 38% of palm 

oil (Bakhtary et al., 2021).  In Vietnam, the world's second-largest coffee producer and exporter, small-

scale farmers plant 54% of coffee (ICO, 2019). Small-scale farmers still perform different agriculture 

practices compared to large-scale producers in these countries (Bakhtary et al., 2021). 

 

Given the need to differentiate farm size in agriculture studies, significant progress has been made in 

mapping small-scale farmers at the global level. Samberg et al. (2016) put the first effort in mapping 

the geographic distribution of small-scale farmers, where they used the Mean Agricultural Area (MAA) 

from agriculture census and household survey to classify farm size for subnational administrative units.  

They overlapped their map with crop map, Monfreda et al. (2008), to estimate crop production per 

farm size. The MAA is calculated by dividing the total cropland area by the number of households. Since 

the number of small-scale farms is always large, using MAA as farm size to classify subnational 

administrative units will overestimate small-scale farms (Ricciardi et al., 2018a). Fritz et al. (2015); 

Lesiv et al. (2019) developed a grided global field size dominant map using manually labeled field size 

data on the satellite image and spatial interpolation. In agriculture census, the classification of a small-

scale farm is based on the total operated or cultivated land by a household, thus, using field size to 

identify small-scale farmers overestimate the number of small-scale farmers, too. Herrero et al. (2017) 

used the country level farm size data from Lowder et al. (2016) and Fritz et al. (2015) to develop a 

dominant farm size map and overlapped the map with a crop map from Ray et al. (2013) to estimate 
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the farm-size specific crop area. This map was updated by Mehrabi et al. (2020) using Lesiv et al. (2019) 

to providing a global grided dominant farm size map at 10km2 resolution. Mehrabi et al. (2020) further 

overlapped the map with Monfreda et al. (2008) to estimate crop production per farm size. Since the 

focus is on the dominant farm size, potential overestimation issues remain unsolved in Mehrabi et al. 

(2020). Different from the above maps, which estimated farm-size specific crop production indirectly 

and have potential overestimations, Ricciardi et al. (2018a); Ricciardi et al. (2018b) established an 

empirical global database using agriculture census and household survey that directly measure crop 

production or area and farm size. Ricciardi et al. (2018a); Ricciardi et al. (2018b) cover half of the 

global cropland for 56 countries1 – with subnational data for 46 countries. 

 

Ricciardi et al. (2018a); Ricciardi et al. (2018b) products, however, have limited abilities to fulfill the 

need of global climate change and water resources studies where the hydrological model requires a 

grided crop map. The farm size has a close link to export. The water embodied in the international food 

trade makes water is a global resource: one country could reduce water stress by importing water-

intensive products (Hoekstra, 2020); thus, distinguishing the farm size contributes to estimating to 

what extent the local water scarcity is one part of global water management issues or local water 

management issues. 

 

This study aimed to develop a 5 arcmin grided farm-size specific crop map of harvested area by 

downscaling Ricciardi et al. (2018a). The reason to use Ricciardi et al. (2018a) is that this dataset is 

the most complete empirical dataset that directly measures crop area or production and farm size. We 

achieved the downscaling by solving an optimization problem for each administrative unit to maximize 

the consistencies between the downscaled map and different cropping maps. Based on the downscaled 

map, we also estimated the small-scale farmers’ contribution to total agricultural water consumption. 

We discussed the reliabilities of the developed map and the implications of results for future studies on 

water as a global resource. 

 

Data and methods 
 

We developed the 5 arcmin farm-size specific crop map of harvested area, across 42 crops, 11 classes 

of farm size, and 4 farming systems circa 2010, by downscaling the crop-specific farm size structure 

from Ricciardi et al. (2018a) with the crop distribution from SPAM2010 (Yu et al., 2020) and field size 

distribution from Lesiv et al. (2019) (Fig. 1, Table 1). Here, farm size is defined as the total operated 

or cultivated area by a holding or household. Since the definition of small-scale farms depends on 

research and policy context and an overview of these definitions can be found in Khalil et al. (2017), 

to increase the flexibility of our map to various definitions of the small-scale farmer, we distinguished 

11 classes of farm size in our map defined by the World Census of Agriculture (WCA). For illustration 

purposes, in this study, we used the 2 ha threshold for small-scale farms which is widely adopted as a 

threshold by the global studies. 

 

Given the inconsistencies between different datasets, we tackled the development of a crop-specific 

harvested area map per farm size as an optimization problem, aiming to use information from these 

datasets as much as possible and maximizing consistencies with them. 

 

 

 

 
1 In their paper, they claim to have data for 55 countries. In the dataset they published, it contains 

the 56th country, Czechia. 



3 

 

 
Fig. 1 The three databases used in this study to develop a 5 arcmin farm-size specific crop map of 

harvested area 

 

Table 1 Detailed information on the three databases used in this study to develop a 5 arcmin farm-

size specific crop map of harvested area 

Dataset Indicator Spatial resolution Time Crops Note 

SPAM2010 Harvested 

area [ha] 

5 arcmin 2010 Reclassify 

161 FAO 

crops into 42 

SPAM crops  

Include 

4 

farming 

systems  

Ricciardi 

et al. 

(2018a) 

Cropping 

area [ha] 

National or 

subnational 

administrative unit 

The data 

source for 

each country 

ranging from 

2001 to 2015 

154 FAO 

crops 

Include 

11 farm 

sizes  

Lesiv et al. 

(2019) 

Dominant 

field size 

1*1 km The data 

source for 

each location 

ranging from 

2000 to 2017 

Not crop-

specific 

Include 

5 field 

sizes  

 

Data sources and preprocessing 

 

SPAM2010 maps physical area, harvested area, and production for 42 crops in 2010 under 4 farming 

systems (irrigated, high input, low input, and subsistence rainfed farming systems) with a resolution of 

5 arcmin. It was developed based on the CAAS-IFPRI cropland extent map (Lu et al., 2020) and national 
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and subnational agricultural census on crop-specific data. SPAM2010 downscaled the national and 

subnational level data into a grid level considering social-ecological factors including crop suitability and 

market accessibility. SPAM2010 also reported the country-level data as FAO reports it. The 42 crops 

include 33 individual crops and 9 aggregated crops to cover all the FAO crops, except fodder crops (for 

crop classification, please find it in Yu et al. (2020)). In this study, we used the grided harvested area 

of each crop and crop classification from SPAM2010. 

 

Ricciardi et al. (2018a) collected agricultural inventories and household surveys that directly measure 

the cropping area and/or production per farm size across 154 FAO crops for 56 countries covering half 

of the global cropland (Fig. 2). The cropping area in this dataset means either crop area, planted area, 

harvested area, or cultivated area. In this dataset, farm size was classified into 11 categories according 

to WCA: 0-1 ha, 1-2 ha, 2-5 ha, 5-10 ha, 10-20 ha, 20-50 ha, 50-100 ha, 100-200 ha, 200-500 ha, 500-

1000 ha, and >1000 ha. We used the lower bound of each farm size classification to represent the 11 

respective classes. The reported year is different from country to country ranging from 2001 to 2015 

with the median year as 2013. 

 

 
Fig. 2 The 56 countries covered by Ricciardi et al. (2018a) and this study 

 

Data from Ricciardi et al. (2018a) was preprocessed to estimate the farm size structure, i.e. the 

percentage of 11 farm sizes in the total harvested area for each crop, at the administrative level in 

2010. Among 42 SPAM crops, 38 crops are estimated by aggregating FAO crops in Ricciardi’s dataset. 

The remaining 4 SPAM crops - pearl millet and small millet, and arabica coffee and robusta coffee - 

used the data on crop millet and coffee (green) from FAO. We basically relied on cropping area to 

calculate the percentage of 11 farm sizes in the total harvested area. Since the cropping area in this 

dataset include 4 items (crop area, planted area, harvested area, or cultivated area), when more than 

one item is available for the cropping area, we used the item with a larger overall area (after 

aggregation). If all 4 items are not available, we used production data to estimate the percentage of 

11 farm sizes in the total harvested area. In this case, the underlying assumption is constant yield 

across farm sizes. 

 

The data from Lesiv et al. (2019) indicates the dominant field size in a 1*1 km grid. Field sizes were 

classified into 5 categories: < 0.64 ha, 0.64-2.56 ha, 2.56-16 ha, 16-100 ha, and >100 ha. Here, field 

size is different from farm size since several fields may belong to one farm. This map was developed 
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based on manually labeled crowdsourcing data with the time reference ranging from 2000 to 2017.  

We used it to estimate the lower bound area of farm sizes in 2010. We interpret “dominant” field size 

as the respective field size accounting for at least 50% of the cropland of the grid. To keep consistent 

with SPAM2010, we first extracted available field size information to the CAAS-IFPRI cropland extent 

map with a spatial resolution of 500*500 m. We then calculated the lower bound area for farm sizes 

by summing field area up to the 5 arcmin grid using cropland extent, lower bound of dominant field 

size type, and 50% threshold at the resolution of 500*500 m. 

 

Prioritizing datasets  

 

Among the three datasets, we prioritized SPAM2010 and Ricciardi et al. (2018a) over Lesiv et al. (2019).  

 

We prioritized SPAM2010 because the development of SPAM2010 is based on very detailed agricultural 

censuses. It was developed for the year 2010. Also, SPAM2010 is widely used in various global models 

and it has been adjusted to FAOSTAT. Prioritizing SPAM2010 can maximize the potential application of 

our map in global agricultural studies. We ensured the total harvested area across 11 farm sizes would 

be the same in SPAM2010 for each crop and grid.  

 

We prioritized Ricciardi et al. (2018a) dataset because this dataset provides the crop-specific proportion 

of 11 farm sizes at the administrative level based on agricultural census. We acknowledge that some 

of this information may not be close to the situation in 2010 and bias from the estimated data based 

on household surveys. Thus, we only ensured the relative differences between the developed map and 

Ricciardi et al. (2018a) are within 10%.  

 

Data from Lesiv et al. (2019) is worth being included since it tells us where the large farms are located. 

This holds only for large farms because large fields indicate large farms but relative small fields could 

belong to both small and large farms. The spatial resolution of this map is 1*1 km, however, the grid-

level data was estimated from several labeled data points within its neighborhood. The distance 

between the farthest labeled data and a grid ranges from 3 to 20 km. Considering our spatial resolution 

is about 10 km, field size information from this map may be uncertain, thus, we prioritized the other 

two datasets over this one when we came across inconsistencies. 

 

Establishing optimization problems to and maximize consistencies 

 

For each administrative unit, 𝑎, defined in Ricciardi’s dataset, we solve the following optimization 

problem. 

 

Sets: 

 

𝑐 Crops |𝑐| = 42 

𝑓 Farm size |𝑓| = 11, 𝑓 = 𝑙𝑖𝑠𝑡(0, 1, 2, 5, 10, 20, 50, 100, 200, 500, 1000) 

𝑒 Field size |𝑒| = 5, 𝑒 = 𝑙𝑖𝑠𝑡(0, 0.64, 2.56, 16, 100) 

𝑠 Farming system |𝑠| = 4 

𝑎 Administrative unit |𝑎| = 3421 

𝑔 Grid |𝑔| = 832827 

𝑙 Elastic factor |𝑙| = 8, 𝑙 = 𝑙𝑖𝑠𝑡(1, 1 2⁄ , 1/4,1/8,1/16,1/32,1/64,0) by order 

 

Parameters: 
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ℎ𝑎. 𝑅𝑐,𝑓,𝑎 percentage of harvested are of farm size 𝑓 in crop 𝑐 from administrative unit 𝑎 estimated from 

Ricciardi’s dataset 

 

ℎ𝑎. 𝑆𝑐,𝑠,𝑔 harvested area of crop 𝑐 for farming system 𝑠 at grid 𝑔 from SPAM2010 

 

ℎ𝑎. 𝐿𝑒,𝑔 the lower bound cropland area of field size 𝑒 at grid 𝑔 

 

Variables: 

 

ℎ𝑎𝑐,𝑓,𝑠,𝑔 harvested area for crop 𝑐, farm size 𝑓, farming system 𝑠 at grid 𝑔 estimated in our model. 

 

Objective function: 

 

The objective is to maximize the consistencies between the downscaled map and Ricciardi’s dataset: 

 

 

𝑚𝑖𝑛 ∑ 𝑎𝑏𝑠 (ℎ𝑎. 𝑅𝑐,𝑓,𝑎 ∑ ℎ𝑎. 𝑆𝑐,𝑠,𝑔

𝑠,𝑔∈𝑎

− ∑ ℎ𝑎𝑐,𝑓,𝑠,𝑔

𝑠,𝑔∈𝑎

)

𝑐,𝑓

 (1) 

 

Constraints: 

 

The first constraint ensures that the total harvested per crop per grid in our map equals the harvested 

area per crop per grid indicated in SPAM2010. In this way, we kept perfect consistency with SPAM2010: 

 

 ∑ ℎ𝑎𝑐,𝑓,𝑠,𝑔

𝑓

= ℎ𝑎. 𝑆𝑐,𝑠,𝑔, ∀𝑐, 𝑠, 𝑔 (2) 

 

The second constraint ensures that the relative differences between our map and Ricciardi’s dataset 

are within 10%: 

 

 90% ∗ ℎ𝑎. 𝑅𝑐,𝑓,𝑎 ∑ ℎ𝑎. 𝑆𝑐,𝑠,𝑔

𝑠,𝑔∈𝑎

≤ ∑ ℎ𝑎𝑐,𝑓,𝑠,𝑔

𝑠,𝑔∈𝑎

≤ 110% ∗ ℎ𝑎. 𝑅𝑐,𝑓,𝑎 ∑ ℎ𝑎. 𝑆𝑐,𝑠,𝑔

𝑠,𝑔∈𝑎

, ∀𝑐, 𝑓 (3) 

 

Thirdly, since 𝑓 is the lower bound of each farm size category, we also applied a minimum allocated 

area for each farm size (Note 1): 

 

Hard form 

 

 ℎ𝑎𝑐,𝑓,𝑠,𝑔 ≥ 𝑓, ∀𝑐, 𝑓, 𝑠, 𝑔 (4) 

 

Soft form 

 

 ∑ ℎ𝑎𝑐,𝑓,𝑠,𝑔

𝑠

≥ 𝑙 × 𝑓, ∀𝑐, 𝑓, 𝑔 (5) 

 

Fourthly, using Lesiv’s dataset, we applied a lower abound for some farm sizes (Note 2). 

 

For farms larger than 100 ha: 
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 ∑ ℎ𝑎𝑐,𝑓,𝑠,𝑔

𝑐,𝑠,𝑓≥100

≥ ℎ𝑎. 𝐿100,𝑔, ∀𝑔 (6) 

 

For farms larger than 10 ha: 

 

 
∑ ℎ𝑎𝑐,𝑓,𝑠,𝑔

𝑐,𝑠,𝑓≥20

+
20 − 16

20 − 10
∑ ℎ𝑎𝑐,10,𝑠,𝑔

𝑐,𝑠

≥ ℎ𝑎. 𝐿100,𝑔 + ℎ𝑎. 𝐿16,𝑔, ∀𝑔 (7) 

 

For farms larger than 2 ha: 

 

 
∑ ℎ𝑎𝑐,𝑓,𝑠,𝑔

𝑐,𝑠,𝑓≥5

+
5 − 2.56

5 − 2
∑ ℎ𝑎𝑐,2,𝑠,𝑔

𝑐,𝑠

≥ ℎ𝑎. 𝐿100,𝑔 + ℎ𝑎. 𝐿16,𝑔 + ℎ𝑎. 𝐿2.56,𝑔, ∀𝑔 (8) 

 

For all farms: 

 

 
∑ ℎ𝑎𝑐,𝑓,𝑠,𝑔

𝑐,𝑠,𝑓≥1

+
1 − 0.64

1 − 0
∑ ℎ𝑎𝑐,0,𝑠,𝑔

𝑐,𝑠

≥ ℎ𝑎. 𝐿100,𝑔 + ℎ𝑎. 𝐿16,𝑔 + ℎ𝑎. 𝐿2.56,𝑔 + ℎ𝑎. 𝐿0.64,𝑔, ∀𝑔 (9) 

 

Last but not least, we have non-negative area constraints: 

 

 ℎ𝑎𝑐,𝑓,𝑠,𝑔 ≥ 0, ∀𝑐, 𝑓, 𝑠, 𝑔 (10) 

 

Note 1: This constraint is not necessarily required by the definition of farm size because farm size is 

defined based on the total operated or cultivated area that does not need to be a single crop area and 

single farming system. We think this constraint is still highly reasonable because we applied it to the 

grid level which is far larger than a single farm. However, due to inconsistencies, this constraint 

especially the hard form may make the optimization infeasible. These inconsistencies mainly come from 

SPAM2010 because it does not consider farm size in its algorithm leading to the grid-level crop-specific 

harvested area being less than a certain size sometimes. Due to it, when the optimization is infeasible, 

we first relaxed this constraint instead of the constraint derived from Lesiv’s dataset. For the relaxation, 

we first tried soft form which ignores farming system requirements. If the optimization is still infeasible, 

we further relaxed the constraints by using the elastic factor from 1 to 0 in order. 

 

Note 2: We relaxed the constraints from large farms to small farms gradually until the optimization is 

feasible. This case does not happen often in our calculation. We think these infeasible cases reflex the 

uncertainties to determine the farm location of difference scale among datasets. 

 

Solving procedure 

 

The optimizations were solved by Gurobi v9.1 using the dual simplex method with a time limit of 150s 

for each administrative unit. Gurobi v9.1 is a fast commercial optimization solver (Gurobi Optimization, 

2021). Most of the optimization problems in this study could be solved within 60s with the optimal 

solutions. The above optimization always had multiple optimal solutions because of the existence of 

free variables (we do not have enough information for every crop and every farm size). To avoid 

potential bias of single optimal solutions, we calculated up to 80 (sub)optimal solutions for each 

optimization and averaged these solutions to get the final one. There may be still bias on the final 

averaged solution because the number and quality of solutions depend on the searching process of the 

dual simplex method. 
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For the administrative units containing more than 300 5-arcmin grids, the optimization problem 

becomes extremely large posing a great challenge for the solver. The number of decision variables 

would be more than half-million (11*42*4*300). In this case, we applied a two-tier optimization. We 

first randomly divided all grids into several groups. Each group includes around 100 grids (for Russia, 

it is 200 to keep the number of groups less than 300). We first solved the optimization problem at the 

group level. Then, we solved the grid-level optimization for each group. Of 3421 administrative units, 

244 units need to be dealt with in this way -- they cover 89.4% of grids in this study.  

 

Finally, to increase the reliability of our results, we masked the farm size of crops as unknown if these 

crops are not covered by Ricciardi’s dataset. For these crops, the optimization could estimate their farm 

size components, but the uncertainties are significantly larger than those covered by Ricciardi’s dataset. 

 

Estimating water consumption per farm size per crop 

 

We used the output of the Global Crop Water Mode (GCWM) to estimate the water consumption per 

farm size per crop. GCWM estimate the crop-specific water consumption (mm/ha) at 5 arcmin grid level 

under 1998-2002 climate conditions. It considers the soil water balance, crop calendar, and crop growth 

stages (Siebert and Döll, 2010). Here, we used the total water consumption from GCWM including the 

blue water (surface water, groundwater, and irrigated water) and green water (rainwater). The 

information on crop-specific farm size is provided by our downscaled map. 

 

Results and discussion 
 

Validation 

 

Comparison with empirical data 

 

Oil palm from satellite images 

 

We compared our map with the farm size distribution for oil palm from Descals et al. (2020). This 

dataset used deep learning and satellite image to identify the global small-scale oil palm farms and 

industrial oil palm farms in 2019. They distinguished the small-scale farm and large-scale farm based 

on landscape, e.g. whether the regular road can be found in the satellite image. Since we only have 

the farm size information, to have an equivalent definition with Descals et al. (2020), we adopted the 

Indonesian definition on small-scale oil palm farms and used 20 ha as the threshold, which is mentioned 

in Descals’s paper. Descals et al. (2020) have a spatial resolution of 10 meters. We conducted Zonal 

Statistics in ArcGIS to calculate the total area of small-scale farms and large-scale farms for each 5 

arcmin grid.  

 

Since we do not have oil palm data for every country, we could only compare 5 countries (Table 2). 

We conducted comparisons at different resolutions and calculate the Pearson correlation coefficient. 

For 15 arcmin and 25 arcmin resolution, we compared the spatial average on 5 arcmin grids.  
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(a) (b) 

Fig. 3 The small-scale oil palm farm distribution in our map (a) and validation map (Descals et al., 

2020) (b) in Colombia. The color indicates the total area (in hectares) of small-scale farms at each 

grid cell. 

 

Results show a significantly positive correlation with the validation map (Table 2). At the 5 arcmin level, 

the Pearson correlation coefficient is not large which means the geographical distribution of farm size 

is not exactly the same. Results from 15-arcmin and 25-arcmin spatial resolution present a stronger 

correlation which means the patterns of farm size distribution are similar (Fig. 3). For Tanzania, the 

validation results may be attributed to only a few oil palms are plant in this country, thus, we do not 

have enough data for validation. For Brazil, the correlation is not as strong as other countries because 

of 3 reasons. First, the validation map and SPAM2010 have inherent uncertainties. The validation map 

has an accuracy of 73.8% - 89.4%. SPAM2010 has a correlation coefficient between 0.05 and 0.94 with 

observed data depending on crops and countries. These errors lead to some inconsistencies as 

background for our validation.  Second, we focus on different years. Our map was developed for 2010 

and the validation map was for 2019. The farm size and oil palm distribution may change during the 9 

years, especially in developing countries. Third, we adopt a different definition of small-scale farms 

which affects the identification of small-scale farms.  

 

Table 2 Validation with oil palm farm size distribution at 5, 15, and 25 spatial resolution. 

 

Small-scale farms Large-scale farms 

5 arcmin 15 arcmin 25 arcmin 5 arcmin 15 arcmin 25 arcmin 

Colombia 0.23*** 0.56*** 0.70*** 0.38*** 0.62*** 0.70*** 

Costa Rica 0.10** 0.42*** 0.62*** 0.63*** 0.85*** 0.93*** 

Brazil 0.10*** 0.21*** 0.26*** 0.12*** 0.09*** 0.08*** 

United republic 

of Tanzania 
0 0.02 0.07 0 

  

Peru 0.36*** 0.38*** 0.41*** 0.14*** 0.21*** 0.24*** 

*** p<0.0001 
** p<0.05 
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Coffee from expert knowledge 

 

We also compared with the small-scale coffee farm map for Costa Rica developed by Holland et al. 

(2016), where they applied local expert knowledge to map the small-scale coffee farms at the 

subnational level for the year around 2013. According to the comparison (Fig. 4), we have a similar 

small-scale farm distribution in the middle and south of Costa Rica. In the north of Costa Rica, our map 

indicates additional small-scale farms which are identified as other agricultural farms in Holland et al. 

(2016). Due to data availability, we are unable to quantify the comparison. 

 

  
(a) (b) 

Fig. 4 The small-scale coffee farm distribution in our map (a) and validation map (b) (revised from 

Holland et al. (2016)) in Costa Rica. The color indicates the total area (in hectares) of small-scale 

farms at each grid cell. 

 

Irrigation from household surveys 

 

During the downscaling, we not only estimated the harvested area per farm size for each crop but also 

4 farming systems. Here, we compared our estimation of the farm size-specific percentage of irrigated 

areas with observations from household surveys. We used the FAO RuLIS (Rural Livelihoods 

Information System) to get the micro-level data of household surveys where they provide 54 

standardized household surveys from 32 countries. We selected the 11 countries that are covered by 

our downscaled map and provide crop area, cultivated area, and total irrigated area in the survey. If 

more than one surveys are available for one country, we used the one conducted around 2010. The 

list of these surveys can be found in Appendix A1.  

 

With each household survey, we dropped samples that contain any Null value in crop area, cultivated 

area, and total irrigated area. Then, we classified samples into the 11 farm sizes based on the crop 

area and calculated the total cultivated area and irrigated area per farm size. For each farm size, we 

required 5 minimum samples. The percentage of the irrigated area was calculated by dividing the total 

cultivated area by the total irrigated area.  

 

The comparisons show an overall significant positive relationship between our downscaled map and 

household survey (Fig. 5 (a)). We notice the regression indicates our downscaled map only has half 

percentage of irrigated area compared to the household survey. We attribute these systematic 
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inconsistencies to SPAM2010 since SPAM2010 provides the farming system information for our map. 

This can be seen from the comparison between SPAM2010 and the household survey (Fig. 5 (b)). In 

SPAM2010, the information on the farming system is directly from national and subnational agriculture 

censuses or experts. We think the systematic inconsistencies may come from the definitions of irrigated 

area and cultivated area in the respective dataset. The systematic inconsistencies may also be attributed 

to the inclusion of industrial farms in SPAM2010 and the exclusion of these farms in the household 

survey. Besides the systematic inconsistencies, our downscaled map captures the same trends for 

irrigation in many countries where small-scale farms have a greater percentage of the irrigated area 

(detailed results can be found in Appendix A2).  

 

  
(a) (b) 

Fig. 5 The comparison of the percentage of irrigated area: (a) differentiates the 11 farm sizes at the 

country level;  (b) only compares the country-level data without differentiating farm sizes. 

 

Comparison with previous estimated farm size distribution map 

 

Previous studies focused on developing the farm size distribution map and overlapped the map with 

the crop map to estimate the crop area per farm size. Among these studies, the map from Mehrabi et 

al. (2020) represents the state-of-art status which was developed based on the work of Lowder et al. 

(2016), Herrero et al. (2017), and Lesiv et al. (2019). This map provides the dominant farm size at the 

5 arcmin grid level. 

 

To compare with Mehrabi’s map, we first estimated the dominant farm size using our downscaled map 

at the grid level. In our downscaled map, we have multiple farm sizes in one grid. Here, we used the 

farm size that accounts for the largest area in each grid as the dominant farm size. Then, we compared 

the two maps pixel-to-pixel. To quantify the comparison, considering the uncertainties in the maps, if 

the dominant farm sizes in the two maps are next to each other or the same, we counted the 

comparison as “similar”. Otherwise, we compared if the farm size in our downscaled map is larger or 

smaller than that in Mehrabi’s map.  

 

Overall, 53.4% of grids have similar dominant farm sizes; 27.0% of grids have a larger dominant farm 

size in our downscaled map, and 19.4% of grids have a smaller dominant farm size in our downscaled 

map (Appendix A3). The results vary from country to country (Fig. 6). We have more similar dominant 

farm sizes in developing countries. This means, in terms of small-scale farm identification, the two 

maps have more consistencies. In developed countries where farm sizes are often non-small, our 

downscaled map tends to indicate a larger dominant farm size than Mehrabi’s map. Since our map is 

developed for the year 2010 and Mehrabi’s map basically developed based on the date around 2000. 

Farm sizes may change a lot within 10 years.  
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(a) 

 
(b) 

Fig. 6 The dominant farm size in our downscaled map (a) and Mehrabi’s map (b). Only the grid cells 

that are covered by both maps are shown. 

 

Some differences between our downscaled map and Mehrabi’s map also come from inconsistencies in 

data sources used to develop the respective map. We obtained the farm size information from Ricciardi 

et al. (2018a) and kept the relative differences between our map and Ricciardi’s data within 10%. 

Mehrabi’s map got the farm size information from Lowder et al. (2016) and remains a good consistent 

with it at the country level. We compared the proportional farm size distribution per country from our 

downscaled map and Lower’s database (Fig. 7). The comparison shows an overall positive relationship 

with some disparities (Appendix A4). This means the farm size information from data sources is not 

exactly the same. These background inconsistencies lead to some differences in dominant farm size in 

our downscaled map and Mehrabi’s. 
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Fig. 7 The proportional farm size distribution per country from our downscaled map and Lower’s 

database. 

 

The overall distribution of small-scale farms 

 

Through downscaling, we estimated the geographical farm size distribution for 42 crops across 56 

countries. With the 2 ha threshold, we map the distribution of small-scale farms (Fig. 8). Small-scale 

farms are mainly distributed in developing countries, such as India, Africa, Central America, South 

America, and South European countries. The total harvested area of small-scale farms for 42 crops can 

be found in Appendix A5. 

 
Fig. 8 The total harvested area (in hectares) of small-scale farms and their distribution estimated by 

this study. 

 

Small-scale farms’ contribution to total water consumption 

 

Under the 2 ha threshold, small-scale farms contribution to 25.8% of total agricultural water 

consumption. This number is significantly higher in developing countries than in developed countries. 

In developing countries, this number is often higher than 40% while in developed countries (India and 

African countries), this number is often lower than 5% (Fig. 9).  
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Fig. 9 Small-scale farms’ contribution to total local agricultural water consumption in each country. 

 

Small-scale farms’ contribution to total water consumption depends on the type of crops (Fig. 10). Their 

contribution can reach over 60% in some crops, such as sweet potato, robusta coffee, coconut, plantain, 

cassava, yams, banana, and some fiber crop and roots. Most of these crops are labor-intensive. In 

some crops, their contribution is below 5%. These crops include soybean, oil palm, barley, sugarbeet, 

and rapeseed. 

 

 
Fig. 10 Small-scale farms’ contribution to total water consumption per crop. 

 

Small-scale farms’ contribution to total water consumption also depends on whether the crop is export-

oriented in the country. We investigated the relationship between small-scale farms’ contribution to 

total water consumption and export orientation of crops. We quantified the export orientation of a crop 

by dividing total export by the total production of the crop in FAOSTAT. Since the total export includes 

not only domestic production but also imported crops, we excluded the samples whose export divided 

by production or import divided by production is larger than 1.0. Due to data availability, we were able 

to investigate this relationship for 15 crops. 
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Of 15 crops, 7 crops are found to have a significant negative relationship between the small-scale farms’ 

contribution to total water consumption and the export orientation, which means small-scale farms 

consume less water in export-oriented agriculture and more water in domestic market-oriented 

agriculture (Fig. 11). This also indicates the water embodies in international crop trade is mainly 

contributed by large-scale farms. The 7 crops are barley, maize, potato, rice, soybean, vegetable, wheat. 

Of 8 remain crops, bean has a significant positive relationship due to Ethiopia and Peru. No significant 

relationship is found for banana, cassava, coconut, groundnut, sorghum, sweet potato, and yams. 

 

 
Fig. 11 Relationship between the small-scale farms’ contribution to total water consumption and the 

export orientation for vegetables. 

 

Limitations and next steps 
 

As a global map, our farm-size specific crop map is limited to 56 countries while other estimated farm 

size distribution map have a larger coverage, e.g. Mehrabi et al. (2020). Since Ricciardi et al. (2018a), 

more data is available for some countries that directly measure the crop area per farm size. One 

example is the third agricultural census from China. We are considering adding these countries, e.g. 

China, in our future work. 

 

Further validations will help us to better understand the reliability of our downscaled map, especially 

for crop area per farm size. We validated our map with the data from the satellite image, expert 

knowledge, household survey, and similar maps. The validations show an overall acceptable error. Due 

to data availability, we are unable to validation our map with some observations that provide the farm-

size specific crop area at a large scale. If some data is available in the future, we could gain more 

understanding of the reliability of our downscaled map. 

 

We need to update water consumption data in order to estimate crop production in our future work. 

Currently, we use GCWM to estimate water consumption. GCWM provides water consumption and yield 

under the 2000 climate conditions. It does not matter if we only focus on water consumption, however, 

it would be unreasonable to use the yield from GCWM to estimate crop production for the year 2010. 

To keep consistencies between the harvested area in our downscaled map, water consumption, and 

crop production in future work, we need to use the crop model that estimates the water consumption 

and yield under 2010 climate conditions. These data are expected available in the coming months from 

the global crop model ACEA (Mialyk et al., 2021). 

 

For the small-scale farms’ contribution to water consumption, we need to include more dimensions on 

the source of water (blue or green, surface water or groundwater). Tracking the source of water helps 

to assess water use sustainability and find solutions for water scarcity. It will be achievable to track the 
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source of water by incorporating agricultural water consumption into the global hydrological model, e.g. 

CWatM (Burek et al., 2020).  

 

Our downscaled map will make it possible to investigate the water sustainability assessment and food 

security from various perspectives. One of the important issues is to assess the water productivity per 

farm size, including nutritional water productivity which helps to inform food security. Current studies 

indicate small-scale farms have higher land productivity because of relative land scarcity (Ren et al., 

2019). Little is known for water productivity per farm size. The changes in farm size always happen 

along with urbanization in rapidly developing regions. Estimating water productivity and water 

consumption per farm size helps to understand how water interacts with land and food security during 

social development. This topic is doable using the global nutrition database after updating water 

consumption data.  

 

Another issue is to assess the sustainability of water as both a local resource and a global resource. It 

is possible with our downscaled map since farm size indicates the relationship between agricultural 

production and domestic and export-oriented market. We could identify whether domestic consumption 

or global consumption drives local water scarcity in a certain country by using the Environmentally 

Extended Input-Output Table, such as Bruckner et al. (2019). For water allocation, based on our 

downscaled map, we could estimate the equity among agricultural water use in response to some social 

concerns. Based on these, hopefully, we could find pathways towards sustainable, productive, and 

equitable water use for the global food supply. 

 

Conclusions 
 

In this study, we developed a farm-size specific crop map of harvested area at 5-arcmin spatial 

resolution for 42 crops and 56 countries. Validations show an overall acceptable error for the 

geographical farm size distribution of oil palm in 5 countries, coffee in Costa Rica, and irrigation across 

11 countries. Part of the errors can be attributed to the data source used to develop the map.  

 

We find small-scale farms, under the 2 ha threshold, contribute more to water consumption in labor-

intensive crops, e.g. sweet potato, banana, rice, coconut. Our results also indicate most of the water 

consumed by small-scale farms is not virtually exported. We find an overall 25.8% contribution of small-

scale farms to total water consumption. This number is significantly higher in developing countries, e.g. 

India, Africa, and South America. 

 

Further work will focus on further validation on the downscaled map, increasing the map coverage, the 

estimation of crop production, the assessment of water productivity including nutritional water 

productivity, and the pathways towards sustainable, efficient, and equitable water use for global food 

supply. 
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Appendix 
 

A1 List of 11 household surveys to estimate the percentage of irrigated 

area per farm size 

 

Country Year Survey 

Albania 2005 Living Standard Measurement Survey 

Cambodia 2009 Cambodia Social-Economic Survey 

Ethiopia 2014 Ethiopia Socialeconomic Survey 

India 2012 India Human Development survey 

Malawi 2011 Integrated Household Survey 

Mali 2014 
Enquête Agricole de conjoncture integree aux 

Conditions de Vie des Menages 
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Niger 2011 National Survey on Household Living Conditions 

and Agriculture 

Nigeria 2013 General Household Survey 

Timor-Leste 2008 Survey of Living Standards 

United Republic of Tanzania 2009 National Panel Survey 

Uganda 2010 The Uganda National Panel Survey 

 



20 

 

A2 Percentage of irrigated area per farm size in the 11 countries based on household survey and downscaled map  

 

Country  0 - 1 1 - 2 2 - 5 5 - 10 10 - 20 20 - 50 50 - 100 100 - 200 200 - 500 500 - 1000 > 1000 

Albania 

Survey 55.2% 36.4% 25.5%         

Downscaled map 25.5% 30.2% 27.3% 32.0% 39.3% 3.9% 55.8%     

Cambodia 

Survey 49.1% 43.6% 42.7% 29.0%        

Downscaled map 22.8% 31.3% 16.6% 21.0% 16.4% 16.7% 21.7% 4.1% 6.9%   

Ethiopia 

Survey 5.1% 3.1% 2.4% 2.9%        

Downscaled map 1.4% 1.2% 1.1% 0.8% 3.3% 3.8% 6.6% 6.7% 3.2% 6.7% 12.6% 

India 

Survey 62.5% 64.5% 70.7% 76.8% 74.1% 55.9%      

Downscaled map 41.8% 32.7% 32.1% 29.8% 30.1% 27.6% 26.9% 40.8% 35.2% 32.6% 30.5% 

Malawi 

Survey 1.8% 2.6% 2.6%         

Downscaled map 0.5% 1.0% 0.1%   0.0%      

Mali 

Survey 39.0% 26.6% 12.3% 7.3% 4.7% 1.7%      

Downscaled map 29.9% 29.8% 18.9% 8.6% 15.0% 5.4% 8.9% 4.1% 2.5% 9.1% 20.6% 

Niger 

Survey 19.4% 10.5% 3.8% 2.0% 1.6% 0.1%      

Downscaled map 0.0% 0.1% 0.0%   0.0%      
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Nigeria 

Survey 1.8% 1.8% 0.6% 0.0%        

Downscaled map 2.0% 0.8% 0.6% 0.4% 2.6% 0.8% 0.3% 0.5% 0.5%  0.0% 

Timor-

Leste 

Survey 12.5% 8.3% 7.1%         

Downscaled map 23.4% 5.4% 15.5% 2.1% 15.1%  64.7%     

United 

Republic 

of 

Tanzania 

Survey 4.0% 2.9% 3.0% 2.8% 1.0%       

Downscaled map 1.6% 1.3% 1.1% 0.8% 1.3% 1.0% 1.5% 0.9% 1.4% 8.0% 1.3% 

Uganda 

Survey 0.6% 1.0% 0.9% 0.0%        

Downscaled map 1.0% 0.7% 4.7% 0.7% 0.0%       
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A3 Number and percentage of pixels that have similar, larger, and smaller 

dominant farm size in our downscaled map and Mehrabi’s map 

 

Country 

Number Percentage 

similar larger smaller similar large smaller 

Albania 340 42 79 73.8% 9.1% 17.1% 

Austria 367 240 162 47.7% 31.2% 21.1% 

Belgium 401 99 85 68.5% 16.9% 14.5% 

Burkina Faso 621 2033 59 22.9% 74.9% 2.2% 

Bulgaria 1283 355 42 76.4% 21.1% 2.5% 

Bosnia and 

Herzegovina 330 382 22 45.0% 52.0% 3.0% 

Brazil 17976 4273 20216 42.3% 10.1% 47.6% 

Colombia 962 404 2990 22.1% 9.3% 68.6% 

Costa Rica 68 338 12 16.3% 80.9% 2.9% 

Cyprus 17 86 0 16.5% 83.5% 0.0% 

Czech Republic 876 290 63 71.3% 23.6% 5.1% 

Germany 2619 2021 1445 43.0% 33.2% 23.7% 

Denmark 692 130 18 82.4% 15.5% 2.1% 

Spain 923 5768 91 13.6% 85.0% 1.3% 

Estonia 469 354 12 56.2% 42.4% 1.4% 

Ethiopia  4076 439 828 76.3% 8.2% 15.5% 

Finland 123 1558 5 7.3% 92.4% 0.3% 

France 6438 926 326 83.7% 12.0% 4.2% 

United Kingdom 2431 178 140 88.4% 6.5% 5.1% 

Ghana 473 1794 0 20.9% 79.1% 0.0% 

Greece 820 532 296 49.8% 32.3% 18.0% 

Croatia 255 472 50 32.8% 60.7% 6.4% 
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Hungary 718 532 23 56.4% 41.8% 1.8% 

India 23084 8853 4194 63.9% 24.5% 11.6% 

Ireland 713 222 106 68.5% 21.3% 10.2% 

Italy 1554 1188 1093 40.5% 31.0% 28.5% 

Cambodia 328 983 6 24.9% 74.6% 0.5% 

Lithuania 381 737 178 29.4% 56.9% 13.7% 

Luxembourg 25 1 0 96.2% 3.8% 0.0% 

Latvia 523 490 157 44.7% 41.9% 13.4% 

Mexico 7306 2878 2586 57.2% 22.5% 20.3% 

Mali 247 3713 0 6.2% 93.8% 0.0% 

Mongolia 27 17 20 42.2% 26.6% 31.3% 

Malawi 703 111 0 86.4% 13.6% 0.0% 

Niger 1808 1479 53 54.1% 44.3% 1.6% 

Nigeria 6270 3589 1 63.6% 36.4% 0.0% 

Netherlands 339 158 74 59.4% 27.7% 13.0% 

Norway 88 236 15 26.0% 69.6% 4.4% 

Panama 175 112 164 38.8% 24.8% 36.4% 

Peru  631 297 2334 19.3% 9.1% 71.6% 

Poland 2671 1754 1249 47.1% 30.9% 22.0% 

Portugal 628 325 168 56.0% 29.0% 15.0% 

Paraguay 871 91 760 50.6% 5.3% 44.1% 

Romania 1613 1242 474 48.5% 37.3% 14.2% 

Russia 27122 11516 8585 57.4% 24.4% 18.2% 

Slovakia 489 141 2 77.4% 22.3% 0.3% 

Slovenia 20 142 0 12.3% 87.7% 0.0% 

Switzerland  633 1059 25 36.9% 61.7% 1.5% 
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Tajikistan 173 595 20 22.0% 75.5% 2.5% 

Timor-Leste 125 7 0 94.7% 5.3% 0.0% 

Tanzania 1646 3690 6 30.8% 69.1% 0.1% 

Uganda 983 127 839 50.4% 6.5% 43.0% 

Uruguay 1077 247 275 67.4% 15.4% 17.2% 

United States of 

America 42431 15793 7447 64.6% 24.0% 11.3% 

South Africa 640 59 4177 13.1% 1.2% 85.7% 

Total 168602 85098 61972 53.4% 27.0% 19.6% 
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A4 Proportional farm size distribution per country from Lowder’s dataset and the downscaled map in this study  

 

Country  0_1 1_2 2_5 5_10 10_20 20_50 
50_10

0 

100_2

00 

200_5

00 

500_1

000 

1000_

5000 

Albania 

Lowder 6.8% 10.5% 82.7% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 

This study 16.1% 27.9% 38.3% 9.4% 6.4% 1.1% 0.8% 0.0% 0.0% 0.0% 0.0% 

Austria 

Lowder 0.0% 2.2% 5.3% 9.7% 17.8% 24.0% 9.6% 31.5% 0.0% 0.0% 0.0% 

This study 0.0% 0.5% 1.4% 3.5% 10.2% 34.8% 30.6% 18.7% 0.0% 0.0% 0.0% 

Belgium 

Lowder 0.0% 0.9% 2.2% 4.4% 10.8% 38.6% 29.8% 13.4% 0.0% 0.0% 0.0% 

This study 0.0% 0.0% 0.7% 2.6% 8.2% 30.3% 32.4% 25.8% 0.0% 0.0% 0.0% 

Brazil 

Lowder 0.1% 0.2% 0.7% 1.3% 2.8% 7.2% 7.8% 9.3% 14.3% 11.4% 45.1% 

This study 1.4% 1.8% 4.2% 4.1% 7.1% 10.5% 7.2% 7.3% 10.7% 9.5% 36.3% 

Bulgaria 

Lowder 6.6% 0.0% 8.3% 0.0% 0.0% 6.6% 78.5% 0.0% 0.0% 0.0% 0.0% 

This study 2.4% 0.0% 2.2% 1.7% 2.2% 4.1% 4.4% 83.0% 0.0% 0.0% 0.0% 

Burkina Faso 

Lowder 1.8% 7.4% 34.6% 36.7% 19.5% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 

This study 0.3% 1.6% 7.3% 10.1% 11.0% 17.7% 10.5% 10.4% 11.5% 3.2% 16.4% 

Colombia 

Lowder 0.4% 0.8% 2.7% 4.0% 6.2% 13.6% 14.8% 14.9% 22.9% 19.8% 0.0% 

This study 6.9% 17.8% 1.7% 14.0% 15.3% 16.6% 8.8% 6.1% 5.4% 3.1% 4.1% 
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Croatia 

Lowder 5.9% 7.4% 19.9% 21.1% 15.1% 30.5% 0.0% 0.0% 0.0% 0.0% 0.0% 

This study 2.7% 2.8% 12.4% 12.4% 12.0% 16.8% 12.7% 28.2% 0.0% 0.0% 0.0% 

Cyprus 

Lowder 6.4% 6.8% 14.4% 12.6% 13.6% 16.4% 11.5% 18.4% 0.0% 0.0% 0.0% 

This study 11.7% 11.8% 16.7% 10.2% 9.3% 14.1% 9.8% 16.5% 0.0% 0.0% 0.0% 

Czech 

Republic 

Lowder 0.1% 0.3% 0.8% 1.2% 2.0% 3.7% 3.5% 4.2% 8.0% 15.2% 60.8% 

This study 0.2% 0.1% 0.7% 0.7% 1.4% 3.6% 4.3% 4.4% 8.0% 15.2% 61.5% 

Denmark 

Lowder 0.0% 0.1% 0.2% 2.8% 6.4% 20.8% 29.7% 40.0% 0.0% 0.0% 0.0% 

This study 0.0% 0.0% 0.0% 0.9% 2.7% 9.8% 14.9% 71.7% 0.0% 0.0% 0.0% 

Estonia 

Lowder 0.5% 2.2% 6.0% 8.7% 12.3% 14.4% 7.6% 48.2% 0.0% 0.0% 0.0% 

This study 0.1% 0.1% 0.5% 1.0% 1.9% 4.5% 6.1% 85.9% 0.0% 0.0% 0.0% 

Ethiopia  

Lowder 27.1% 33.3% 32.6% 5.5% 1.4% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 

This study 35.5% 35.9% 25.4% 2.5% 0.1% 0.1% 0.0% 0.0% 0.4% 0.0% 0.0% 

Finland 

Lowder 0.0% 1.1% 2.9% 7.1% 18.6% 42.6% 20.4% 7.3% 0.0% 0.0% 0.0% 

This study 0.0% 0.0% 0.1% 1.0% 4.9% 24.7% 33.5% 35.3% 0.1% 0.1% 0.1% 

France 

Lowder 0.0% 0.7% 1.3% 1.9% 4.2% 17.3% 30.6% 44.0% 0.0% 0.0% 0.0% 

This study 0.0% 0.2% 0.4% 0.9% 2.2% 8.5% 21.2% 66.6% 0.0% 0.0% 0.0% 

Germany Lowder 0.0% 0.3% 2.1% 3.7% 8.3% 22.4% 21.4% 12.2% 8.1% 6.2% 15.4% 
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This study 0.3% 0.2% 0.8% 1.2% 3.8% 11.2% 18.3% 19.0% 12.5% 9.3% 23.4% 

Greece 

Lowder 0.0% 11.4% 20.6% 20.4% 19.1% 18.3% 5.8% 4.4% 0.0% 0.0% 0.0% 

This study 0.0% 11.2% 20.1% 20.3% 19.3% 20.2% 6.4% 2.6% 0.0% 0.0% 0.0% 

India 

Lowder 18.7% 20.2% 31.2% 16.7% 8.3% 4.9% 0.0% 0.0% 0.0% 0.0% 0.0% 

This study 23.7% 22.5% 30.6% 14.0% 5.9% 2.9% 0.3% 0.0% 0.0% 0.0% 0.0% 

Ireland 

Lowder 0.0% 0.1% 0.8% 3.0% 11.5% 39.6% 29.0% 16.0% 0.0% 0.0% 0.0% 

This study 0.4% 0.1% 0.1% 0.7% 3.1% 19.5% 32.5% 43.5% 0.1% 0.0% 0.0% 

Italy 

Lowder 2.4% 3.6% 8.5% 9.3% 11.2% 16.1% 10.9% 37.9% 0.0% 0.0% 0.0% 

This study 2.2% 3.2% 11.9% 13.3% 15.4% 21.6% 14.9% 17.5% 0.0% 0.0% 0.0% 

Latvia  

Lowder 0.0% 0.4% 3.3% 8.0% 17.5% 31.0% 18.0% 9.4% 5.7% 6.7% 0.0% 

This study 0.0% 0.4% 1.3% 2.5% 4.8% 8.2% 8.6% 73.9% 0.1% 0.1% 0.0% 

Lithuania 

Lowder 0.0% 1.1% 13.9% 15.1% 17.7% 17.2% 8.3% 6.2% 6.2% 14.3% 0.0% 

This study 0.0% 0.9% 4.9% 5.1% 6.3% 10.1% 12.5% 14.1% 13.8% 32.3% 0.0% 

Luxembourg 

Lowder 0.0% 0.3% 0.9% 1.6% 2.7% 15.3% 50.7% 28.6% 0.0% 0.0% 0.0% 

This study 0.8% 0.2% 0.5% 1.6% 2.2% 8.4% 29.7% 56.4% 0.2% 0.0% 0.0% 

Malta 

Lowder 33.1% 24.9% 29.0% 9.6% 3.3% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 

This study 20.4% 15.2% 38.8% 18.6% 7.1% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 
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Netherlands 

Lowder 0.0% 1.0% 2.7% 5.5% 12.2% 42.6% 21.9% 14.1% 0.0% 0.0% 0.0% 

This study 0.1% 0.1% 0.8% 2.5% 6.7% 24.3% 33.0% 32.5% 0.0% 0.0% 0.0% 

Norway 

Lowder 0.0% 0.3% 3.6% 11.7% 31.0% 42.8% 8.9% 1.4% 0.2% 0.0% 0.0% 

This study 0.3% 0.1% 0.6% 3.7% 13.4% 35.7% 27.8% 16.3% 1.8% 0.1% 0.1% 

Panama 

Lowder 0.6% 1.0% 2.7% 3.7% 7.2% 17.5% 17.8% 15.2% 15.0% 6.5% 12.7% 

This study 6.4% 1.9% 1.5% 3.0% 4.2% 16.9% 18.5% 15.1% 19.9% 12.5% 0.0% 

Paraguay 

Lowder 0.0% 0.1% 0.8% 1.8% 3.4% 3.6% 2.1% 2.4% 4.4% 4.2% 77.1% 

This study 0.2% 0.8% 2.5% 4.6% 5.8% 5.2% 4.9% 7.9% 15.4% 12.8% 40.0% 

Peru  

Lowder 0.0% 0.0% 5.4% 5.0% 4.4% 7.5% 77.6% 0.0% 0.0% 0.0% 0.0% 

This study 7.2% 36.5% 1.4% 18.9% 14.0% 12.0% 4.5% 1.7% 1.4% 0.7% 1.7% 

Poland 

Lowder 2.8% 4.6% 12.6% 18.1% 21.4% 15.5% 4.9% 2.7% 4.4% 4.2% 8.8% 

This study 1.1% 1.8% 9.9% 16.1% 20.7% 20.0% 9.5% 2.9% 4.7% 4.6% 8.8% 

Portugal 

Lowder 2.8% 6.4% 10.5% 8.6% 9.7% 9.8% 7.0% 45.3% 0.0% 0.0% 0.0% 

This study 3.1% 6.9% 14.9% 12.6% 11.7% 14.0% 9.4% 27.4% 0.0% 0.0% 0.0% 

Romania 

Lowder 4.9% 8.1% 20.2% 11.1% 3.9% 2.0% 1.7% 48.1% 0.0% 0.0% 0.0% 

This study 4.9% 8.1% 15.2% 7.8% 3.9% 4.1% 3.7% 52.1% 0.1% 0.0% 0.1% 

Switzerland  Lowder 0.7% 1.0% 3.2% 9.3% 36.2% 42.7% 5.6% 1.4% 0.0% 0.0% 0.0% 
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This study 0.1% 0.1% 0.1% 0.4% 1.9% 8.6% 16.7% 72.0% 0.0% 0.0% 0.0% 

Uganda 

Lowder 11.0% 15.8% 24.8% 18.2% 30.2% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 

This study 54.8% 26.4% 15.9% 1.6% 0.6% 0.6% 0.0% 0.0% 0.0% 0.0% 0.0% 

United 

Kingdom 

Lowder 0.0% 0.3% 0.5% 1.3% 2.9% 10.1% 16.4% 68.6% 0.0% 0.0% 0.0% 

This study 0.0% 0.0% 0.0% 0.1% 0.5% 3.9% 11.4% 84.0% 0.0% 0.0% 0.0% 

United States 

of America 

Lowder 0.0% 0.0% 0.1% 0.4% 1.1% 3.9% 6.4% 9.0% 16.4% 62.6% 0.0% 

This study 0.2% 0.1% 0.1% 0.1% 0.2% 1.6% 3.8% 8.1% 22.1% 63.6% 0.1% 

Uruguay 

Lowder 0.0% 0.0% 0.1% 0.3% 0.6% 1.7% 2.9% 5.5% 13.2% 16.6% 59.1% 

This study 0.6% 0.0% 0.3% 0.0% 0.1% 0.3% 0.9% 2.7% 9.5% 13.0% 72.6% 
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A5 The total harvested area (in hectares) of small-scale farms for 42 crops 

across 56 countries 

 
Arabica coffee 

 

 
Banana 
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Barley 

 

 
Bean 
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Cassava 

 

 
Chickpea 
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Cocoa 

 

 
Coconut 
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Cotton 

 

 
Cowpea 
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Groundnut 

 

 
Lentil 
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Maize 

 

 
Oil palm 
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Other cereals 

 

 
Other fibre crops 

 



 

 

 

38 

 
Other oil crops 

 

 
Other pulses 
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Other roots 

 

 
Pearl millet 
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Pigeon pea 

 

 
Plantain 
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Potato 

 

 
Rapeseed 
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Rest of crops 

 

 
Rice 
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Robusta coffee 

 

 
Sesame seed 
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Small millet 

 

 
Sorghum 
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Soybean 

 

 
Sugarbeet 
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Sugarcane 

 

 
Sunflower 
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Sweet potato 

 

 
Tea 
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Temperate fruit 

 

 
Tobacco 
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Tropical fruit 

 

 
Vegetables 
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Wheat 

 

 
Yams  


