
NOT FOR QUOTATION 
WITHOUT P E R M I S S I O N  
O F  T H E  AUTHOR 

S T O C H A S T I C  QUASIGRADIENT METHODS AND T H E I R  
A P P L I C A T I O N  I N  SYSTEMS O P T I M I Z A T I O N  

Y u r i  E r m o l i e v  

J anuary  1 9 8 1  
WP-81-2 

Working P a p e r s  are i n t e r i m  repor ts  on w o r k  of t h e  
I n t e r n a t i o n a l  I n s t i t u t e  fo r  A p p l i e d  S y s t e m s  A n a l y s i s  
and have received o n l y  l i m i t e d  r e v i e w .  V i e w s  o r  
o p i n i o n s  expressed h e r e i n  do n o t  n e c e s s a r i l y  repre- 
s e n t  those of t h e  I n s t i t u t e  o r  of i t s  N a t i o n a l  M e m b e r  
O r g a n i z a t i o n s .  

INTERNATIONAL I N S T I T U T E  F O R  A P P L I E D  SYSTEMS A N A L Y S I S  
A - 2 3 6 1  L a x e n b u r g ,  A u s t r i a  



ABSTRACT 

This paper systematically surveysthe basic direction of 

development of stochastic quasigradient methods which allow one 

to solve optimization problems without calculating the precise 

values of objective and constraints function (all the more of 

their derivatives). For deterministic nonlinear optimization 

problems these methods can be regarded as methods of random 

search. For the stochastic programming problems, SQG methods 

generalize the well-known stochastic approximation method for un- 

constrained optimization of the expectation of random functions 

to problems involving general constraints. 
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STOCHASTIC QUASIGRADIENT METHODS AND THEIR 
APPLICATION IN SYSTEMS OPTIMIZATION 

Yuri Ermoliev 

1 .  INTRODUCTION 

The stochastic quasigradient (SQG) methods are stochastic 

algorithmic procedures for solving general constrained 

optimization problems with nondifferentiable, nonconvex functions, 

see [I] - [34]. There are two main reasons for interests in 

stochastic procedures of optimization. Firstly, deterministic 

processes are special cases of stochastic processes, therefore 

stochastic procedures of optimization give us a new opportunity 

to build more flexible and effective algorithms; secondly, a 

wide range of applied problems cannot be stated and solved 

within the framework of deterministic optimization techniques. 

The SQG methods allow us to solve optimization problems with 

objective functions and constraints of such a complex nature 

that the calculation of the precise values of these function (all 

the more of their derivatives) is impossible. The main idea of 

these methods consists of using statistical estimates for the 

values of the functions and of their derivatives instead of their 

precise values. For the stochastic programming problems, SQG 

methods generalize the well-known stochastic approximation methods 

for unconstrained optimization of the expectation of random 

functions (see for instance [47] to problems involving general 



constraints. For deterministic nonlinear programming problems 

SQG methods can be regarded as methods of random search [44]. 

Some extensions of stochastic approximation methods to problems 

with differentiabie functions are made in [48] - [53], [66] 
B.T. Poljak (see survey [46]) proposed techniques for investigating 

the local convergence of the stochastic optimization process 

and proved some results concerning differentiable optimization with 

strong assuntptions about the noise: the random disturbances in the 

function evaluations and of their derivatives are assumed to be 

independent from each other. Such cases can be regarded as methods 

of optimization in the presence of random noise. The paper 

[331 is a survey of SQG mthods for stochastic minimax problems. 

The purpose of this paper is a systematic review of 

recent work concerning the main direction of development of SQG 

procedures, their applications and an overview of the key ideas 

involved in the proofs. During the course of writing this paper, 

several colleagues at IIASA read various draft versions and made 

many useful comments. I wish especially to thank R. Wets who 

read the paper and commented on it in detail. Several of his 

suggestions were included to eliminate misleading statements. 

The author is also grateful to M. Dempster for the proposition 

of writing this paper and numerous comments. 

2. THE GENERAL IDEA OF SQG METHODS 

Consider the problem of minimization: 

0 F (x) = min 

subject to 

i - 
F (x) GO,i=l,m , 

To start with, let us assume that the functions FV(x) ,v = o,m 
are convex. Then for every x we have the inequality 



"v where Fx(x) is a subgradient (generalized gradient). It should 
"v be noted that the notation Fx(x) for a subgradient used here is 

convenient in cases where a function depends on several groups 

of variables and the subgradient is to be taken with respect to 

one of them (this occurs in minimax problems, two-stage stochastic 

programming problems etc., which are considered later). 

For such problems, a number of iterative deterministic 

methods are known. In these methods the sequence of approximate 
0 1 solutions x ,x , . . ,xS, . . .is created by means of precise 

" v 
evaluations of the function FV(x) and subgradient Fx(x) at each 

S point x=x , s=O,1, ... 
In stochastic quasigradient methods, the sequence of 

0 1 S approximates x ,x ,..., x ,... is constructed by using statistic 
estimates of the FV (xS) and ;i (xS) . In SQG methods instead of 

"V S the precise values of I?' (xS) , FX (X ) , random numbers qv (s) and 
random vectors tV(s) are used such that the conditional 

mathematical expectation satisfy 

where the numbers av (s) and the vectors bv (s) may depend on 
0 S (x,..,x ) For exact convergence to an optimal solution, the 

values av(s) , / I  bV(s) 1 1  nust be small (in a certain sense) when 

s . At some time we must have that 

directly or in such a way that (compare with (4)). 

0 S S F' (x*) - F' (xS)> ( E { gV(xt . . ,x },x*-x ) + yv (s) , (6') 



where yv(s) + 0 as s + m and x* an optimal solution. The vector 

tS(s) is called a stochastic quasi-gradient when bV (s) f 0, or 
stochastic generalized gradient (stochastic gradient for 

differentialbe function FV (x) ) when bV (s)= 0. For a better grasp 

of these concepts, it is important to discuss some difficult 

problems and to see that usually qv (s) ,cv (s) are easily 

calculted. 

3.1 A General Problem of Stochastic Programming 

A rather general problem of the stochastic programming 

can be formulated as the minimization of 

0 0 F (x) = Ef (x,w) (7 

subject to 

i i F (x) = Ef (x,w) G 0, i==, 

where E is the operation of mathematical expectation with 

respect to some probability space (R; F; P) ; fV (x,w) , v==, 
are random functions possessing all the properties necessary 

for the expressions (7) and (8) to be meaningful. For example, 

the constraints 

of the stochastic programs with chance-constraint would be of 

the type (8), if we assume that 



- 1  when E aij (w) xj G bi (w) , 
j=l 

The problem (7) - (9) is more difficult than the common non- 
linear programming problem. The main difficulty of this 

problem is that, as a rule, the calculation of exact values of 

the functions 

is feasible only in exceptional cases for special types of 
V - 

probability measures P(dw) and random functions f (x,w), v = 0,m. 

For instance, to calculate the values of the constraint 

functions (lo), it is necessary to find the probability of the 

event 

as a function of x = (xl, ..., xn) E X .  Generally speaking, this 

is possible only in rare cases, this distribution may depend 

dramatically on x (compare x = 0 , .  0 and x = (1,. . .,I)). 
The computing of the exact values of the functions F' (x) is out 

of question in those cases when the distribution P(dw) is 
0 1 S unknown and only some observations w ,w ,..., w ,...of the 

random element w is available at each iteration s = 0,1, ... 
Such situations are typical in the optimization of systems when 

the values of the characteristics of the system output are 

obtained through real measurement or through Monte Carlo 

simulation. 

For the stochastic problem (7) - (9) , in practice it is only 
V possible to calculate random realizations f (x,w) of the 

functions ~ ~ ( x ) .  In such cases we can take 



v s s  - 
n v ( s )  = f  (x .W 1 .  v = 0.m . 

where t h e  wS r e s u l t s  from mutua l ly  independen t  samples  of  w. W e  

have 

v  I f  t h e  f u n c t i o n s  F (x) have un i fo rmly  bounded second d e r i v a t i v e s  
s 00 

a t  x E  {x t h e n  f o r  t h e  random v e c t o r s  

w e  would have 

where e l  i s  t h e  u n i t  v e c t o r  on t h e  j - t h  a x i s ;  A S  > 0; 
S O  sl s n  a 

( W  I W .  I .W Is=o a r e  a  r e s u l t  o f  independen t  s = 0.1. ..., 
samples  of i r  ( w e  c o u l d  have wSo = sS1 = s n  ... = w ) . For t h e  

v e c t o r  

1  r s where r 1  h  a r e  o b s e r v a t i o n s  o f  t h e  random v e c t o r  s 
h  = ( h h n  whose components a r e  i n d e p e n d e n t l y  and u n i f o r ~ ~ ~ l y  

d i s t r i b u t e d  o v e r  [-1.11 



Since the second derivatives of the functions FV(x) are 

bounded then Icx.(s) I <  const. It is remarkable that independent 
I 

of the dimensionality of the problem, the vector (12) can be 

found by calculating the functions fV (x,w) at (rs + 1 ) points 

only, r 2 1 . 
S 

3.2 Recourse Problems 

The simplest well-known recourse problem (two-stage stochastic 

programming problem) may be formulated in the following way: to 

find a vector x 2 0 such that the function 

0 F (x) = ~fO(x,w) , 

= (c,x) + min I(d,y) ly b - AX) r 

has the minimum value, where all coefficient w = (d,b,A,D) may 

be random variables. 

Problems of this kind often appear in long-term planning. 

It is often necessary to choose a production plan or make some 

other decision which takes into account possible variations in 

the exogenous parameters and which are resilient to random 

variations of the initial data. For this purpose the notion 

of a correction y is introduced and the losses (d,y) connected 

with this correction have to be considered. An optimal long-term 

plan x should minimize the total expenditures of the plan's 

realization and its possible corrections. In a two-stage problem 

the long-term decision x is made in advance, before observation of 

w; a corrective solution y is derived from the known w and x. 

0 The objective function F (x) of this problem is a convex 

one, but in general nonsmooth, since the minimization operator 

is present under the integral sign. The random 
0 s 0 s realization of F (x ) ,  a statistical estimate of F ix ) 



o s s  s s qO(s) = f (x ,w ) = (c,xS) + (d,y(x ,w ) )  

0 
is calcutlated without any difficulties. To calculate F (x) it 

is necessary to find the distribution of the (d,y(x,w)) as a 

function of x and then to compute the corresponding integral, 

which is possible only in rare cases. A stochastic estimate of 
0 S a subgradient Fx(x) at x = x looks as follows: 

0 6 (s) = c + u (xS,ws) A(w') ; (1 3) 

S the w , s = 0, 1, ... are mutually independent samples of w, and 
the u(xS,wS) are a dual variables corresponding to a second-stage 

optimal plan y(xS,wS). It can be shown that under any reasonable 

choice for the u (xS, ) , see [2] , [5] , we have that 

3.3 The Stochastic Minimax Problems 

Stochastic minimax problems are, at least formally, closely 

related to recourse problems, but their specific structures allows 

for a more detailed analysis. The objective function of the 

simplest stochastic minimax problem (see [I 1 , [3] , [5] , [I 31 and 
[33]) takes on the form 

0 0 n 
F (x) = Ef (x,w) = E max [ Z aij (w) xj + bi(w)] . (14) 

l\(i<m j=l 

Many inventory models are of this type: suppose that the decision 

about the stock-size x must be make before the information about 

the demand w is available, the optimal stock-size minimizes the 

expected cost, i.e., 

0 F (x) = cx + E max {a (x-w) , B (w-x) 1 , (14') 

where c is the unit cost of the product (at delivery), a is 

the unit storage cost and B is the unit shortage cost. 



A more general stochastic minimax problem is to minimize 

the objective 

0 F (x) = E max g(x,y,w) = E g(x,y(xtw) tw) (1 5) 
Y E Y  

subject to the constrainsts (8) and (9). In this model, for 

decision making under uncertainty, the three variables x,y 

and w contribute to the evnetual choice of a decision. Naturally, 

the x are the decision variables themselves, the y variables 

are there to take into account the worst case whereas the w 

variables can be viewed as the states of nature with either a 

known a priori probability measure or one that can be obtained 

through Monte Carlo simulation. The criterion (15) is a 

mixture between a purely minimax one, such as 

and the Bayesian criterion 

where some probability measure is assigned to Y, e.g., the 

uniform distribution if Y is bounded. 

Here it is quite easy to obtain a stochastic estimate of 

the value of the objective function F0 at any point xS. For 

instance, if F0 is given by (14) 

n s s S 
q 0 (s) = max [ L  aij(w )xj+bi(w ) ]  

l<i<m j=l 

and more generally, when F0 is defined by (1 5) 



S s where yS is an approximation to y(x ,w ) - a point that 
s s maximizes g (x , ,W ) on Y - with 

where E~ + 0 as s + m. A statistical estimate of the generalized 
"0 s gradient Fx(x ) for the problem (15) takes on the form 

where g(x,y,w) is assumed to be a convex function with respect 

to x. It is easy to show that 

To see this, recall that g(-,y,w) is convex and thus 

Taking conditional expectation on both side, we get 

s s from which the assertion follows. Instead of y(x ,w ) we can 

use also yS (see (16)). It is easy to see that 

satisfy the conditions (6'). In (17) and (18) we can apply 

also the approximation (11) or (12) for computing the gradient 
S gx (for a differentiable function g(-,y,w ) ) .  



3.4 Nonlinear Programming Problems, Optimization of Large-Scale 
Systems 

If diffentiable functions Fv(xl,...,xn) of linear 

programming problems have a great number of variables, then 
v v 

the calculation of gradient Fx ( .  ) = F V  . . . F ) would require 
X1 xn 

v - 
computing a great number of different derivatives Fx ,i=l,n. 

i 
It can be shown that the random vector 

similar to the (12) is the stochastic quasigradient of F' (x) at 
S x = x and computing of this vector requires only the calculation 

of the function FV (x) in (rs + 1) points, r Z 1, independent of 
S 

the dimensionality of x. 

It should be noted also that the recourse problem is 

strongly connected with large scale linear programming problems. 

For instance, if w has a discrete distribution, i.e., 

W E  {1,2, ... ,N) and w = k with probability pk, then the initial 

problem becomes 



where y(k) is the correction of the plan x if w = k. The 

number N may be very large. If only the vector b = (bl ,... ,bm) 
is random and each of the components has two independent out- 

comes, then N = 2". The use of the stochastic quasigradient 

(13) for solving such a problem allows us to solve extremely 

large-scale problems. 

4. METHODS FOR CONVEX FUNCTIONS 

4.1 The Projection Method 

Suppose we have to minimize a convex continuous function 

FO (x) in x E X  G R", where X is a compact convex set such that 

a projection n on X can easily be calculated, e.g., 
X 

X = {xlaGxGb). Let X* be a set of optimal solutions. The 

method is defined by the relations: 

0 s 0 0 S * - F (x )>  ( E { C  (s) Ix,. . .,x 1 , X  - xS) + y0(s), (20) 

0 S where p is the step size, y (s) may depend on (x ,... ,x ),x*EX*. 
S 0 

This method was proposed and studied in [I] - [3], [5] . If 
0 "0 s 5 (s) = Fx(x ) ,  we obtain the generalized gradient method which 

was suggested by Shor [36] and was studied by the author [37] 

and Poljak [38]. If X = R ~ ,  

then the method suggested by (19) corresponds to the well-known 

stochastic approximation methods which were developed by Robbins 

and Monro, Kiefer and Wolfowitz, Dvoretsky, Blum and others. 

It was shown that under natural assumptions, that are also 

those of interest in practice, the iterative method defined by 

(19), converges to a set of minimum points of the original 



problem with probability 1. The proof of this fact is based on 

the notion of a stochastic quasi-Feyer sequence [3]. A sequence 
s O3 n 

{z is a Feyer sequence for a set Z c R if [lo] 

S=' A sequence of random vectors {z Is-o - defined on a probability 

space (O,R,  u )  is a stochastic quasi-Feyer sequence [ 3 ]  for a 
0 2 set ZCR", if E \ ( Z  1 1  < a ,  and for any z E Z  

Theorem 1 [5, p.981. If {zS) is a stochastic quasi-Feyer 

sequence for a set Z, then: 

2 
a) the sequence 1 1  z - zS+' I /  , s=0,1, converges with 

probability 1 for any z E Z  E l l z - z S 1 l 2 < C < ~  , 
b) the set of accumulation points of {zS(8) I is not empty 

for almost all 8, 

c) if z ' (8) ,zl' (8) are a two distinct accumulation points 
of the sequence {zS(8) which do not belong to the set 

Z then Z lies in the hyperplan equidistant from the 

point z ' (8) ,zl' (8) . 
The fact (a) would follow from convergence of super martingale-.. 

0 if ds independs on (x , . . . ,xS) . The (c) follows from 
the equality 



Consider now a simple version of the convergence theorem for 

the iterative procedure (19) to illustrate the techniques of 

proof. 

Theorem 2. Assume that 

0 a) F (x) is a convex continuous function, 

b) X is a convex compact set, 
0 2 xo S c) ~ ( 1 1 5  1 1  1 ,...,x 1G const and also that the parameters 

d satisfy with probability 1 the conditions 
s 

Then lim xS X* with probability 1. 

Note that the requirements (b), (c) are not too stringent 

for most applications. In practice (c) is the consequence of 

(b) and finite distributions of random parameters. The condition 
0 (22) for the random vector 5 (s) defined by (1 1 ) or (1 2) 

signifies that in (11) or (12) the step-size As of the finite 
difference approximations to the gradient and the step-size ps 

used in the procedure described by (19), must be subjected to 

the conditions 

when the parameters ps,As are chosen independently of 
0 S (x ,...,X 1 .  

Proof of Theorem 2: 

The properties of the projection T yield for any x*EX 
X 



By the assumption (c) and (20) (taking into account that 

F(x*) - F(xS) G 0) 

where C is a constant. 

In view of (22) and by the def-inition (21), 

it means that {xS} is indeed a stochastic quasi-Feyer sequence * s 2 
forthis set X*. Consequently, the sequence IIx - x 1 1  I s = O I  I,.. * 
converges with probability 1 for any x* E X , the set of 
accumulation points of {xS} is not empty. If we show that one * 
of the accumulation points of {xS (0) } belongs to X for almost 

all 0, then from assertion (c) of Theorem 1 would follow the * 
convergence of {xS} with probability 1 to a point of X . 

Consider the inequality 

Due to the inequality (20) 

from which we get 

a3 

0 O k  E C pk(F (x*) - F (x ) )  > . 
k= 0 

Since 

- 
0 O k  

C pk = 00 and F (x*) - F (x ) G 0 I 

k= 0 



k 
s 0 

k 
there exists a subsequence x such that F (x*)-F(x ') + 0, 

and this completes the proof. 

The methods which we shall consider below, converge under 

conditions approximately analogous to those mentioned above. 

Theorem 2 establishes the convergence of the iterative procedure 

(19) with probability 1. Such a convergence is important in many 

applications. If yo (s) EO and if instead of (22) only the 

conditions 

hold, then it can be shown [5], that 

In [65] the following idea was proposed for estimating efficiently 

the vector 

This depends on the parameters pk,yo(k). From the inequality 

S 
0 O k  0 2 + 2E C pk(F (x*) - F (x ) )  + ~ l x * -  x ~ + ~ ~ / ~ G E I ( x * -  x 1 1  k=O 



we have that 

0 k 
If the pk are independent of (x ,..., x ) ,  then 

and we have such estimation 

2 
s 2 

0 -s 0 
EF (X ) - F (x*) < ( E I I ~ * - X ~ ) \  + c IFO L ( P ~ J Y ~ ( ~ ) I  + 4)) 

4.2 Penalty Function Methods 

Constraints of type (2) of the general problem (1) - (3) 

can be taken into account by means of penalty functions and 

instead of the original problem, we can minimize a penalized 

function, for instance 

0 m 
9(xtc) = F (XI + c L min 

i= 1 

s on the set X. A generalized gradient of +(x,c) at x = x is 

^O s m 
Fx(x + c L min {O,F~(X~)} ik(xs) 

i= 1 

^O s ^i ~f the exact values of F~ (xS) ,Fx (x ) ,F (xS) are known, then a 
X 

deterministic generalized gradient procedure can be used for 



minimizing $J(x,c). The penalty function methods for a problem 

with known values of the constraint functions F~ (xS) was 

considered in [48] , [66] . In such cases the projection method 

(19) is applicable to minimizing $J(x,c). In general, if instead 
V S A V S  - of the values F (x ),Fx(x ),v = 0.m , only statistical estimations 

rl (s) , cv (s) are available, it is impossible to actually find v i min {O,F (xS) 1 .  How to handle this situation was studied in 

[4]. Because of the inherent difficulties in estimating the 

subgradient of the function $(x,c), we are led to the following 

variant of the iterative scheme studied in the previous section. 

s+l- s 0 i 
m 

x - rx(x - ps[S (s) + c E min {0.Bi(s))5 (s)]), (23) 
i= 1 

where is the step-size and 

For convergence with probability 1 of these kinds of procedures 

in addition to (22), we must demand that with probability 1 

It is worthwhile to note that the above mentioned method may not 

converge when 6s - 1. i.e., for B.(s)- rli(s). If As = l/(s + 1) 
1 

then 

The averaging procedure of the type (24) proved to be very 

useful of SQG methods. In particular, Gupal [8] has studied 

the method characterized by the relations: 



The requirements for convergence of this method are similar to those 

for the method (23) . 

4.3 The Linearization Method 

0 Let the function F (x) have continuous derivatives. If 
0 s 0 F (X ) and FX(xS) are known, then the standard linearization 

method is defined by the relations 

0 s 0 s 
( F (x ) ,xS) = min ( F' (x ) ,x) , 

X xEX X 

0 s FO (xS+') = min F (x + p (GS - xS)) . 
OGpGl 

The stochastic variant of this method has been studied in [6], 

[30] and is defined by the relations 

0 0 
( v (s) ,XS) = nin (v (s) ,x) , 

xEX 

where p 6 satisfy conditions similar to those of the previous 
S I  S 

0 6 section. Notice that if instead of v (s) the vectors 5 (s) are 
used (6 - 1  ) then, some simple examples show that the method 

S 
may not converge. 



4.4 The Lagrange Multiplier Method 

The method is characterized by the relations 

u = max {O,ui(s) + 6 q .  (s) ) i s 1 

- v v s i s 
and when X = R", As- ps = const,S (s) = Fx(x ) ,qi(s) = F (x ) ,  1 = G, 

v and the f (x), v = O,m are smooth it is a deterministic algorithm 
proposed in [54]. The stochastic version of this method was - - 

O k  studied in [I 1 , [5] , where it was proved that the min F (x ) to 
0 k<s 0 

min F (x) converge with probability 1, provided thaF F (x) is 

strictly convex and 6 - 
s Ps 

. The convergence for convex functions 
0 F (x)--not necessarily strictly convex--was studied in [21.] with 

assumptions that pS/As + 0. 

5. SQG Methods for Nonconvex Functions 

The convergence of SQG methods for nonconvex differentiable 

functions was studied in [3], [5]. In [I21 Nurminski considered 

the case at non-convex non-differentiable functions FV (x) 

satisfying the inequality 

Such functions are called weakly convex. The class of weakly 

convex functions includes convex functions as well as nonconvex 

differentiable. Moreover, the maximum of a collection of weakly 

convex functions is also a weakly convex. This case needs new 

techniques for proving the convergence [Ill and later on this 

technique was widely used for proving the convergence of various 

algorithms (see [5], [lo], [13]). This technique relies on 

arguing by contradiction. 

Let us assume that X* is a set of solutions, {xS(0)) is a 

random sequence of approximations. Then we obtain (seeL51) the 

following generalization of Nurminski's results [Ill. 



* 
Theorem 3 [ 5 ,  p. 181 1 . Suppose that X c R~ is closed and 

S a n 
{x (-))s=Oisa random sequence of vectors in R defined on a 

probability space (O,R,y). Moreover, suppose that almost surely 

1) for all s, x S ( 0 ) ~ ~ ( O )  with K(0) compact 
Sk 

2) for any subsequence {xSk(*) with lim x = x g  
* s + 1.. 

a) if x'EX , then Ilx k - xSkll + 0 ask + * 
b) if x g F  X , then for E sufficiently small and for 

S 
r = min {sbss I I x  - xsll>~}< k 

k 

3) there exists a continuous function V(x) such that the * 
set V(X ) is at most countable and with probability 1 

s 
lim v(xrk) < lim V(X k, . 

Then for almost all 0 in O 

* * 
and x (0)EX . 

The conditions of this theorem are similar to necessary 

and sufficient convergence conditions, proposed by Zangwill 

(see [691). However, Zangwill's conditions are very difficult 

to verify for a nondescent procedure. 

Conditions (2) of Theorem 3 prevent all sequence {xS) 

converge to limit point x', which does not belong to the set * 
X . However, condition (2) alone does not prevent "cycling", 

i. e. , such a behavior of {xS ) that it will be visiting any * 
neighborhood of x'FX infinitely many times. To exclude such 

a case the condition (3) is imposed, which guarantees that the 

sequence {xS} will be leaving a neighborhood of x' with 
decreasing values of some Lypunov functions V(x). Later we shall 

illustrate the use of this theorem. 



Gupal [9] , [lo] , [32] studied SQG methods with functions 
satisfying a local Lipschitz condition. This approach is based 

on the limit extremal problem idea [I 41 , [43] . 

6. LIMIT EXTREbLAL PROBLEMS, NONSTATIONARY OPTIMIZATION 

Briefly, the essence of this idea is the following: suppose 
0 we have to minimize a function f (x) of a rather complex 

nature, for example, it does not have continuous derivatives. 
0 Consider the sequence of the "good" functions F (x,s), for 

0 instance smooth, converging to f (x) for s + m. Now consider 

the procedure 

Under rather general conditions (pSIO,Lps = m) it is possible to 
0 s 0 show (see [51 , [I71 and Theorem 4) that F (x , s) + min f (x) . 

Often approximate the functions may have the form of 

mathematical expectations 

0 0 0 F (x,s) = jf (x+h) Ps (dh) = ~f (x+h (s) ) , (29) 

where the measure Ps(dw) for s+m is centered at the point 0. 

Hence instead of the procedure given by (28) that requires the 

exact value of the gradient of the mathematical expectation, 

we can use the ideas of the stochastic quasigradient methods. 

For example, see [9], let h(s) be random vectors with 

independent components uniformly distributed on [-As/2,As/2], 
0 As + 0 for s + m, and suppose that f (x) satisfies a local 

0 Lipschitz condition, then the function F (x,s) is smooth and 
0 F (x, s) + f O (x) uniformly on any bounded domain. Consider the 

stochastic procedure 

-s where the xi are independent random quantities uniformly 



s r s r  
distributed on intervals [xi - s t x i  + - sl . It can be shown that 

0 0 s 2 2 E I ~  (s)(xS1 = F ~ ( X  

where 

0 s and Fx (x , S) is the gradient of the function (29) . The 

convergence of this method with probability 1 is then proved 

under assumptions that 

In [32] this method was modified to handle semicontinuous functions 
0 

by smooth functions of the semicontinuous function f (x) also 

being approximated 

where h(s),t(s) are random independnet vectors with independent 

components uniformly distributed I-As/2,As/2]. To illustrate 

the ideas involved in the proof of convergence results, let us 

consider the following simple case: 

Theorem 4. Assume that: 

0 0 a) F (x, s) , f (x) are convex continuous functions, 
b) X is a convex compact set, 

0 0 c) F (xts)+f (x) uniformly in X, 
"0 s 

d) IIFx (X ,s) 1 1  < const. 

and the parameters ps satisfy the conditions 



0 s * 0 Then F (x ,s)+f0 (x) = min f (x) 

Proof 

The conditions 1,2(a) of Theorem 3 are fulfilled. It 
Sk 

suffices to verify the conditions 2(b) and 3. Let x + xl€x*, 

we need to show that We argue by contradiction, to 

suppose the contrary that T~ = For this purpose, we consider - . - 

the function V(x) = min llx*- x 11'. We have that 
x* 

S Since xSk + x'c X* and 1 1  x - xsk l l  < E for sufficiently large s 

and any E.  Then there exists 6 > 0 such that 

and for x * ~  X* we have 

Therefore 

and for a sufficiently large sf this contradicts the fact that 

I V  (x) ( < const when x E x*. So, condition 2 is satisfied. 

Looking at condition 3, it is easy to realize that 
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Hence, in view of the properties of nx , 

where C is a constant. Then 

or equivalently 

'r S 
lim V(X I:) < lim V(X 

and this completes the proof. 

This approach is very important in nonsmooth and particularly 

in discontinuous optimization. Thus in [30] it is shown that 

the general linearization scheme (26) may be used for optimizing 

a function that satisfies a local Lipschitz condition. The 

convergence with probability 1 of the following methods was 

investigated: 

0 0 < (s) ,XS) = min (v (s) ,x) t 

0 0 0 v (s+l) = 6s5 (s) + (1-6s) v (s) , 

0 where 5 (s) is the vector (30) , and 



The systematic study of methods for the solution of general limit 

extremal problems was undertaken by Verchenko [17]. The general 

problem was formulated as follows: given a sequence of functions 
v F (x,s) -' fV (x) , v = G. It is necessary to find an optimal 
solution to the problem 

- 
min {fo (x) ~ f ~ ( x ) ~ ~ , i = l , m , x ~ x ~  

v by using only information about values of the functions F (x,s), 

s = 0,1,.., and their subgradients or statistical estimates of 

these quantities. 

There may be several reasons for considering such problems. 

One of them -the idea mentioned above of approximating "bad" 
v functions fv (x) by a sequence of "good" functions F (x,s) . 

v 
Secondly, the functions f (x) may be defined as lim F'(x,s) 

s-' O3 

and it is very difficult to get an explicit expression for the 
v 

limit functions. Thirdly, the F (x,s) may be time dependent functions 

and at iteration s only information about F' (x,s) is accessible. 

The optimization problem with time-varying functions and known 

trend of the optimal solutions is considered in [55] , [56] and 
[631. The methods for solving the following general problem 

on nonstationary optimization were investigated in the articles 
0 1 S [I51 - [20]: to find a sequence x , x ,..., x ,..., such that 

where 

0 i @(s) = min {F (x,s)l~ ( x , s ) ~ o , ~ = ~ , x E x )  . 

7. APPLICATIONS OF SQG METHODS 

The applications of SQG methods to long-term planning 

problems, optimization of probabilistic systems, decision-making 

under risk and uncertainty, identification and reliability of 

systems, inventory control, etc., were considered in [5] and [71 . 
In this part of the paper we sketch out some of them. 



7.1 Optimization of Stochastic Systems 

Taking into account the influence of uncertain random 

factors in optimization of systems leads to stochastic programming 

problems. The problem (7) - (9) i s  a model for stochastic systems 
optimization, when the decision (valuesto assign to the system 

parameters) x is chosen in advance, before the random factors w 

is realized. A stochastic model tends to take into account all 

possible eventualities for stabilizing the optimal solution with 

respect to perturbations of the data. There may also be a class 

of models, when the decision x is chosen only after an experiment 

over w is realized and x is based on the actual knowledge of the 

outcomes of this experiment. Such situations occur in real-time 

control and short-term planning. In practice, these problems are 

usually rediced to problems of the type (7) - (9) via decision 
rules. 

The formulation of such models can be done - at least 
formally - in terms of decision function theory. Given probability 

space (R,A,P) of random parameters, the experiment maps (R,A,P) 

in the sample or outcome space. Let B be the subfield associated 

with this outcome space. If the events of B are to have any 

relevance as to which decision x is made, then x must depend on 

w and be a B-measurable function x(w). The problem is to find 

such B-measurable function x(w), which minimizes 

sub j ect to 

The optimality conditions derived for this problem, in a form 

which is convenient, for application of SQG methods, have been 

treated in particular in [5], [7]. Under suitable hypotheses, 

an optimal solution x(w) is defined (for X = R") as a function 

satisfying the conditions: there exist B-measurable functions 



hvw 2 0,v = such that 

v 
for any vector e = (e l...,e ),where f (x,w) is the directional n e 
derivative. Such optimality conditions reduce the problem 

(31)-(33) with unknown B-measurable functions to the problem 

of the type (7)-(9) with x E  R" and with conditional mathematical 

expectations. There may be also a way of formulating the 

original problem directly as the problem of minimizing 

0 F0 (x) = E{f (x,w)lB) 

subject to 

The investingation of more general problems with unknown 

distributions belong to a given class and with associated 

(simple) numerical procedures that was considered in [ 5 ]  and 

more systematically in [22]. 

In stochastic programming problems with x E Rn, a SQG 

method can be used to obtain procedures similar to those of 

stochastic approximation [47], but for more general regression 

functions and with more general constraints. The problems 

solvable by stochastic approximation methods (see 4.1) occupy 

a place in the general range of stochastic programming problems 

comparable to the place occupied by problems requiring the 

determination of an unconditioned minimum of a smooth function 

in the range of nonlinear programming problems. 



Consider some of the concrete SQG procedures. From (13) 

and the convergence of the procedure given by (19) we can 

obtain the following method for solving a recourse problem. 

S (i) For given x observe the random realization of b, d, 

A, D, which we note as B ( s ) ,  D(s), A(s), D(s); 

(ii) Solve the problem 

and calculate the dual variables u(xS,wS). 

(iii) Get 

and change xS: 

It is worthwhile to note that this method can be regarded 

as a stochastic iterative procedure for the decomposition of 

large scale problems (see 4.1). It is not difficult to obtain 

a similarly simple (implementable) procedure for solving other 

stochastic problems. For instance, by using (1 7) and (1 9) one 

obtains a SQG procedure for stochastic minimax problem (14): 

S S (i) For given x observe the realizations a (wS) , bi (W ) . ij 
(ii) Calculate 



(iii) Change xS 

I n  p a r t i c u l a r ,  i n  t h e  s i m p l e s t  i n v e n t o r y  problem ( 1 4 ' )  w i t h  

x > O  

S 
X 

0  
= max I O , X  - p s c  ( s )  1 , 

The methods ( 2 3 ) ,  ( 2 5 ) ,  (26)  and o t h e r s  a l l o w  u s  t o  s o l v e  a  more 

d i f f i c u l t  problem w i t h  c o n s t r a i n t s  o f  t y p e  ( 8 )  o r  w i t h  s o - c a l l e d  

complex f u n c t i o n s  ( s e e  [5 ]  ) of  t h e  form 

A s  an  example of  a  complex c r i t e r i a ,  we can  c o n s i d e r  t h e  p e n a l t y  

f u n c t i o n  o f  t h e  g e n e r a l  s t o c h a s t i c  problem ( 7 ) - ( 9 )  

0  
m 

Ef (x,w) + c L min { o , E £ ~ ( x , w ) }  , 

o r  t h e  f u n c t i o n s  

The main i d e a  o f  s o l v i n g  t h e  problems w i t h  complex f u n c t i o n s  i s  

s i m i l a r  t o  (23)  . 

7.2 b l u l t i o b j e c t i v e  Problems:  O p t i m i z a t i o n  w i t h  a  P r e f e r e n c e  
S t r u c t u r e  

Many complex d e c i s i o n  problems i n v o l v e  m u l t i p l e  c o n f l i c t i n g  

o b j e c t i v e s .  G e n e r a l l y ,  w e  c a n n o t  o p t i m i z e  s e v e r a l  o b j e c t i v e s  

s i m u l t a n e o u s l y ,  f o r  i n s t a n c e ,  m i n i n i z e  c o s t  and a t  t h e  same 



time maximize benefits. It would be nice if we could find some 

function (utility function) that combines all objectives into 

a scale index of preferability. Then the problem of decision 

making can be put into the format of the standard optimization 

problem: to find x E X  to optimize the utility function. The 

finding of a utility function may be a very difficult problem 

and often it is easy to have a preference ordering (preference 

structure) among feasible solutions x E X  and deal with this 

structure directly to get the prefered solution. This ordering 

may be based on the decision maker's judgement or other rules, 

for instance lexicographic ordering. So let us assume that 

the decision maker has a preference structure at different 

points x E X  and there exists a utility function (unknown) U(x) 

such that 

Consider the procedure 

0 1 S where h , h ,..., h ,.. are the results of independent samples 
of the random vector h = (hlf ..., hn) uniformly distributed over 
the unit sphere. It can be shown [ 7 ]  that 

for differentiable U(x), where a is positive number. Therefore, 

the convergence of this procedure follows from the general 

conditions of the procedure given by (19)(with small corrections). 

A series of similar procedures for general constrained problems 

was investigated in [ 6 8 ] .  



7.3 The Global Nondifferentiable Optimization Problem Arising 
from Linkage Systems 

The presence of random disturbances in gradient type 

procedures: 

0 
(for ordinary problems of minimizing f (x) without noise w) permits 

0 s us to bypass stationary points, where fx(x ) = 0. Notice that 

where F'O (xSfs) is the gradient of the function (29). An 
X 

optimization problem becomes especially difficult when the 
0 objective function f (x) possesses many local optima and has 

no continuous derivatives. A typical example of such a problem 

may be the following problem of linkage of systems (see [611). 

The problem is defined as the opposite to decomposition. If in 

the decomposition problem one tries to subdivide the original 

model of the system into a number of small models of the sub- 

systems, then in a linkage problem one must try to obtain a 

model of the whole system by concatenation of the models for 

subsystems. 
- 

Let us suppose that each model of a subsystem k = 1,N 

(submodel) can be described by the minimization problem 



subject to 

These models have exogenous variables y(k),k = 1,N which describes 
interactions between subsystems. One can consider these variables 

as endogenous or as decision variables when these submodels are 

linked in a model for the whole system. Denote by x(k,y) the 

solution of the k-th problem for given y (k) , mk (y) = ( a (k) ,x (k,y) ). 

Then the problem of linkage is the problem of finding such 

y = (y(1) ,..., Y(N)), which minimizes the objective function of 
the whole system 

for a feasible set of linking variables y. For instance 

The functions @k(y) are nondifferentialbe piecewise linear 

convex functions and g (y) would be also convex, if $ (vl,. . ,vN) 
is a convex differentiable function and $; 2 0. If the $; 

k k 
are also allowed to be negative differentiable function with 

many local minima. 

Randomdirections of search may be a simple method to 

construct nondifferentiable optimization descent procedures 

which are easy to use with a computer. One of them is as 

follows: from the point xS, the direction of the descent is 

chosen at random and a motion is made in this direction with a 

certain step size. 



However, such a descent method of pure random search may 

take a long time in finding the direction descent. For instance, 

the probability of a randomly chosen direction at x = 0, which 
n 

would lead into the set { x = ( x l l . . , ~ n ) ~ ~ i < O l i = ~ }  equal 1/2 . 
Such directions are descending for function max xi at x = 0. 

l<icn - - 
To avoid those situations, two classes of deterministic 

methods were proposed based on the idea of a subgradient: descent 

methods (see the works Wolfe and Lemarechal in [39]) and 

nondescent methods [37], [38], and [40]. 

The first class of the methods yields a monotonic decrease 

of the objective function but has a complex logic and is sensitive 

to local minima. 

The second class which generalizes gradient type procedures 

s+l = S 
X "0 s 

- P f  S X ( x )  I 

does not result in a monotonic decrease of the objective function, 

but they are easy to use on the computer and they are less 

sensitive to local minima. Consideration of random disturbances 

in procedures of the type 

or in a more effective way as in (30)) make them still less 

senstive and permits to us to bypass even points of discontinuity, 

as mentioned above in section 6. 

7.4 Systems Identification and Parameter Estimation 

Determination of mathematical models of systems require 

determining the nominal parameter of systems. Problems of 

estimation of unknown system parameters and system identification 



can often be formulated as stochastic programming problems. The 

SQG methods in such cases allow us to construct iterative 

procedures which can be performed on line and can use a priori 

information concerning the structure of the system for improving 

estimates. Let us consider some examples. 

Many problems of statistical estimation deal with the 

problem of estimating the true value x* of unknown parameters 
1 S x = (xl,. . . ,xn) from the elements of a sample ho,h , . . ,h , . . 

assumed to have been drawn from a distribution function 
* H(y,x ) = P{h<y). There may be different formulations of 

optimization problems (see [5], [28]) concerning such problems 

of estimation (it depends on our knowledge about H (y,x*) ) . 
* There is no information about H(y,x ) except the sample 

0 1 S h ,h ,..., h ,...and x* = Eh. Therefore the problem is to estimate * 
x , where 

The sought-for parameter x* minimizes the function 

* because x = Eh satisfies the optimality conditions 

If a priori knowledge about the unknown x is introduced as xEX, 

then from (19) we could obtain the following iterative 
* 0 procedure for finding x (with 6 (s) = 2 (xS- hS)): 

1 , then 



The estimation (35) is the sample mean. The advantages of the 

estimation (34) when compared to (35) are 

a) possibilities of choosing p as a function of 
S 

(x0 , . .xS) in order to decrease the value of the 
objective function; 

b) if X f R ~ ,  then from (34) it follows that xS€x for all 

s = 0,l.. . , whereas in (35) only lim xS€ X . Therefore 

the estimations from (34) must be better for small 

samples. 

Problems of estimation of the moments 

e e 
E Q ~ , E ~ Q ~ ~ ~ E ( Q - E Q ) ~ ,  where Q = (Q~...,Q:) , 

may also be formulated as minimization problems 

The stochastic gradients of these functions are: 

Suppose now that we have the information 

X* = Eh = t(z)I - * , 
2 - 2  



where t (z ) is a given function and z* is an unknown vector. Then 

z* minimizes the function 

If we have information about the density (y,x*) of H(~,X*) with 

a measure y (dy), then it could be shown that x* maximizes the 

function 

These problems are re-formulations of well-known principles for the 

least square i.e., minimization of the function 

and maximum likelihood, i . e . ,  maximization of the function 

It gives us a good opportunity to apply SQG methods. 

The above mentioned problems are the problems of pure 

estimation. Very often the main reasons for estimation and 

identification are control or optimization. In such cases, it 

seems to be unnecessary to first determine a model (unknown 

parameters) and then design an optimization strategy based on 

this model. Why not use a procedure that directly solves an 

optimization problem and simultaneously extracts from the 

answers the information needed for estimation? Such kinds of 

procedures based on general ideas of nonstationary optimization, 

were considered in [ 2 0 ] .  Let the model of the system be 

formulated as the problem of minimizing 



where x is a control variables, x E X - c R", z E Z is a 

vector of unknown parameters. For a sequence of given 
0 1 approxination x , x ,.. there are available the observations 

9 1 s n ,h ,..., h ,... of random vectorh 

- * 
where g(x,z) is known, z* is the true value of z. If g(x,z*) = z , 
then we could consider the sequence of estimates zS, such that 

zS + z* with probability 1 and the problem of simultaneous 
0 

estimation z* and optimization of the F (x,z*) becomes the 
S 

limit extremal problem with time dependent function FO (x,z ) . 
A0 s When the values Fx(x,z ) are known. then the procedure. mentioned 

above in section 6 

0 can be used for minimizing F (x,z*) . In the general case we 

shall consider the procedure 

simultaneously with the procedure of estimation 

0 Theorem 5. Let X,V be convex compact, F (x,z) is a convex 

continuous function with respect to x, for all z E Z; the 

function 



is convex with respect to z, for all x E XI and there is the 

unique solution of equation 

and with probability 1: 

Then 

0 lim F ( X ~ , Z ~ )  -+ min {F (x,z*)IxE~} . 

The article [20] contains numerical results and similar theorems 

without assumptions of convexity, existence of a unique solution 

and stationarity of the models. 

The dynamic aspects of systems identification were studied 

in [5] , [29] , and [34] . The problem was formulated for instance, 

as minimizing 

0 (x) = E max I(z(k) - h(k)(l 2 
k 

subject to 

z (k+l) = g (z (k) txtwtk) I 



where x are unknown parameters, x E X - C R ~ ,  h (k) are observations 

of the trajectory. SQG methods for such and more general problems 

with differentiable and nondifferentiable criterias and 

constraints were studied in [5] and [34]. 

8. COMPUTATIONAL AMPLEMENTATION: AN EXAMPLE 

The SQG methods have been applied to several problems 

(deterministic and stochastic), containing a great number of 

variables. One of the advantages of these methods is that a 

priori knowledge of the statistics is not necessary (this opens 

up the possibilities of on-line optimization), numerical 

stability (these algorithms work in the presence of noise). The 

behavior of SQG methods is unusual compared with deterministic 

methods. It converges to one of the solutions but this solution 

may be different for different realizations of the stochastic 

method. For a unique solution there may be different ways of 

approaching a neighborhood of this optimal solution. The process 

of optimization could hardly be done in one run. It was £re- 

quently useful to interfere manually, by choosing different 

starting values, and to change the parameters of the algorithm, 

when it is difficult to know if a local minimum had been achieved 

or not. Efficient optimization processes require interactive 

program packages to cover the whole range from data modification 

to simulation. The reason why interactive programs are so 

efficient for optimization is that optimization is always an 

iterative procedure. 

The success of the application of SQG methods depends on 

the rules for choosing the parameters of the algorithms (random 

directions, step size). To demonstrate this, consider the 

results of the solution of the following stochastic facility 

location problem (see [59], [64]). 

A set of places of residence for the users (demand points) 

is given and a set of possible locations for the facilities. 

The users of demand point i = l,m are choosing the facility 
- 

j = 1.n with probability pij. 
Let 'ij 

be the random flow of 

users from demand point i to facility j 



where ai is the random demand at point i. Determine the size 
- 

x of the facility i = 1,n in order to minimize the expenditures 
j 

0 n m m 
F (xl,...,xn) = 1 E max {a. (x - 1 cij) ,Bj( 1 cij -x.)} 

j=1 I j i=l i= 1 I 

subject to 

0 The algorithm (1 9) with 5 (s) as (1 7) takes the form 

S 
X 

0 = max Iorminlrj ,xj - pScj (s) } }  
j 

S 

Here 'ij 
is an observation of the flow variables E~~ 

S where a are the observations of the demand. i 

From Theorem 2 it follows that ps might be chosen adaptively 
0 1 S as a function of the realization (x ,x ,..., x ) or independently 

1 1 
as Ps = s . The choice ps = - serves all realizations of the 

S 
stochastic procedure and cannot be a good one. The nice 

ways of choosing p are the adaptive rules, which depend on each 
S 

realization separately. 



The step size adaptation was inserted into this algorithm 

by starting an optimization proess with p = Co (or Co/S) where 
S 

Co is a relatively big number. By trial-and-error mechanism we 

can find Co with which the irregular behavior of the quantities 

would show a rather raped tendency of decreasing. This is illus- 

trated schematically in Figure 1 for the test problem of scholl 

location with data for Turin city (see [ 6 4 1 )  , n = 23, p,, = 
- 

-C -c L J  
ij 

(e /Ije ij) and where cij is the distance between demand 

point i and potential location j. 

0 -0 
Figure 1 . The behavior of the sequences f (xS , wS) and f (xS ,wS) 

as a function of the iteration number. 
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F i g u r e  1  a l s o  shows t h e  more r e g u l a r  b e h a v i o r  o f  t h e  q u a n t i t i e s  

1  s -0 s s O k k  
f (x  , w )  = -  I f  (x  , W )  . 

k=l  

-0 s A f t e r  a number o f  i t e r a t i o n s  t h e  f u n c t i o n  f  ( x  ,wS)  w i l l  

a c h i e v e  a c e r t a i n  l e v e l  and t h e n  w i l l  remain a l m o s t  on t h e  same 
-0 s s l e v e l .  The nonimprovement i n  t h e  b e h a v i o r  o f  f  ( x  ,w ) c a u s e s  

s w i t c h i n g  t o  a new s t e p  r e g u l a t i o n  p = cl ( o r  c l / s )  e tc .  
S 

For ci = B .  and d e t e r m i n i s t i c  demands a t h e  r e s u l t s  of  
j I i 

t h e  computa t ions  w e r e  g e n e r a l l y  i n  a good agreement  w i t h  w e l l -  

known s o l u t i o n  of  s u c h  a  problem, b a s e d  on t h e  e n t r o p y  approach 

(see [ 6 4 ] ) .  

I n  many cases t h e  convergence  i s  improved i f  d u r i n g  some i t e r a t i o n s  

t h e  d i r e c t i o n s  (see [ 2 5 ] )  

0  are used i n s t e a d  o f  5 ( s ) .  

Formal i n v e s t i g a t i o n s  o f  t h e  a s y m p t o t i c  ra te  of convergence  

o f  SQG-type p r o c e d u r e s  w e r e  a t t e m p t e d  by P o l j a k  (see [421 ) . A 

s y s t e m a t i c  s t u d y  o f  a s y m p t o t i c  b e h a v i o r  ( a s y m p t o t i c  r a te ,  l i m i t i n g  

d i s t r i b u t i o n s ,  e t c . )  and more g e n e r a l  p r o c e d u r e s  w e r e  under taken  

i n  [ 2 4 ] .  Note t h a t  f o r  t h e  above mentioned s t e p - s i z e  s e l e c t i o n  

it i s  i m p o r t a n t  t o  have  a s y m p t o t i c  b e h a v i o r  o f  t h e  s t o c h a s t i c  

p r o c e d u r e s  w i t h  permanent  s t e p  m u l t i p l i e r  ( s e e  [ 2 3 1 ) .  
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