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Spatial spillover effects 
from agriculture drive 
deforestation in Mato Grosso, 
Brazil
Nikolas Kuschnig1*, Jesús Crespo Cuaresma1,2,3,4, Tamás Krisztin2 & Stefan Giljum1

Deforestation of the Amazon rainforest is a threat to global climate, biodiversity, and many other 
ecosystem services. In order to address this threat, an understanding of the drivers of deforestation 
processes is required. Spillover effects and factors that differ across locations and over time play 
important roles in these processes. They are largely disregarded in applied research and thus in the 
design of evidence-based policies. In this study, we model connectivity between regions and consider 
heterogeneous effects to gain more accurate quantitative insights into the inherent complexity 
of deforestation. We investigate the impacts of agriculture in Mato Grosso, Brazil, for the period 
2006–2017 considering spatial spillovers and varying impacts over time and space. Spillovers 
between municipalities that emanate from croplands in the Amazon appear as the major driver of 
deforestation, with no direct effects from agriculture in recent years. This suggests a moderate success 
of the Soy Moratorium and Cattle Agreements, but highlights their inability to address indirect effects. 
We find that the neglect of the spatial dimension and the assumption of homogeneous impacts lead 
to distorted inference. Researchers need to be aware of the complex and dynamic processes behind 
deforestation, in order to facilitate effective policy design.

The Amazon rainforest is the world’s largest forest and provides a wide range of ecosystem services. It plays an 
important role in regional as well as global climate  stabilisation1–3, is an unparalleled biodiversity  hotspot4,5, 
and is essential to the livelihoods and health of  people6,7. Deforestation is a threat to the continued provision of 
these services and thus a primary focus of environmental policy  (see8–10). The rate of forest loss in the Amazon 
remains high (see e.g.11), making research on the determinants of deforestation in this part of the world par-
ticularly relevant. Environmental policy design requires an understanding of the nature of deforestation and 
linked processes, such as forest degradation, to support the role of forests in a variety of future  challenges12–14.

Unveiling the drivers of deforestation has been on the research agenda for decades, with shifting focal points. 
Early studies of deforestation in the Brazilian Amazon emphasise the roles of infrastructure investment and 
governmental programmes, such as settlement policy and credit  programmes15,16. These intensified the role of 
market forces as a determinant of the dynamics of land use  change17,18. Large-scale cattle ranching and expand-
ing croplands were identified as major drivers of deforestation (see e.g.7,19,20), motivating a number of policies to 
limit these adverse effects. The most prominent examples of such policies are zero-deforestation commitments, 
which seek to eliminate deforestation from supply chains  (see7,8,21). Such command-and-control policies are the 
main form of intervention, as opposed to incentive-based  policies13. However, their efficacy may be undermined 
by spillover effects, such as indirect land use change or leakage into other  regions22–24.

Two particularly salient policies in this respect are the Soy Moratorium and the Cattle  Agreements7. These 
voluntary zero-deforestation commitments seek to eliminate deforestation from the soy and cattle supply chains 
of participating companies. The Soy Moratorium bans soy from previously deforested areas in the Amazon biome 
(see Fig. 1) since its inception in 2006, with the Cattle Agreements following in  20098,21. Both interventions were 
adapted and extended over time to achieve higher levels of compliance, applicability, and efficacy. A major chal-
lenge for their efficacy is indirect land use change. Croplands (and to an extent, pastures) displace other land 
use types that, in turn, replace forests, undermining the  interventions22,23. Since interventions are limited to the 
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Amazon, detrimental impacts may leak into other biomes, a phenomenon called leakage. Today, the neighbouring 
Cerrado biome is a deforestation  hotspot27 and its native vegetation is being lost at high  pace28. The estimated 
effects of the Soy Moratorium and Cattle Agreements are highly dependent on the particular time period and 
space under scrutiny, which is reflected in mixed results in the literature (e.g.7,8,21–23,27,29).

Recent empirical studies of deforestation benefit from the availability of fine-scale, spatially explicit data, but 
rarely investigate spatial spillover effects explicitly (see Busch and Ferretti-Gallon30, for a meta-analysis). Studies 
that do consider spillovers show a wide variety of indirect effects. Among them, Aguiar et al.31 and Hargrave 
and Kis-Katos32 take broad approaches, investigating deforestation using pooled data for the whole Amazon 
biome. Amin et al.33 assess the efficacy of protected areas in deterring deforestation. Gollnow et al.34 focus on 
finer scales, investigating indirect deforestation at property level in the state of Mato Grosso. A different approach 
is taken by de Sá et al.35, who examine spillover effects from sugarcane expansion in São Paulo state on forest 
conversion in the Amazon. Pronounced spatial dynamics arise as a consistent feature of such studies. Nonethe-
less, empirical studies that consider both spillover effects and heterogeneity of impacts in the context of the Soy 
Moratorium and Cattle Agreements are lacking.

In this study, we evaluate direct and indirect impacts of agriculture on deforestation in the Brazilian state of 
Mato Grosso. In our econometric framework, we explicitly consider spillovers both across municipalities and the 
whole state, and account for the temporal and spatial heterogeneity of effects stemming from different biomes, 
legislation, and evolving interventions. Our statistical analysis is carried out using a panel regression model with 
data at the municipal level that covers the period 2006–2017 on a yearly basis. We accommodate spatial spillovers 
in our modelling framework via spatial lags, and assess heterogeneity by allowing impacts to vary across biomes 
and time periods. Our main research questions are: (1) How does agriculture impact deforestation directly and 
indirectly? (2) Have these dynamics changed over time? and (3) What are the differences across biomes?

Mato Grosso lies at the intersection of the Amazon, Cerrado, and Pantanal biomes (see Fig. 1) and was an 
early deforestation hotspot (see e.g.36,37). After exceptional agricultural expansion and  intensification37,38 it is the 
number one producer of soy and beef in Brazil  today39. Mato Grosso is subject to exceptionally dynamic land 
use change—vast amounts of forest have made way to agricultural lands, which are predominantly used for the 
production of soy and beef, since the turn of the century (cf. Fig. 2). Mato Grosso is a particularly interesting 
region due to these rapid changes, its economic importance, varied geography, and the heterogeneous political 
climate in the context of the Soy Moratorium and Cattle Agreements. Insights from the region are important for 
understanding deforestation processes and informing policy design.

Figure 1.  Mato Grosso lies at the intersection of the Amazon rainforest, the Cerrado tropical savannah, 
and the Pantanal wetlands (coloured). The frontier state is located in the centre-west of Brazil (see inset) and 
is subdivided in 141 municipalities (gray lines). Created using the tmap (version 3.3-2) R (version 4.1.1) 
 package25,26.
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Our findings show considerable spatial spillovers in deforestation and substantiate agriculture as a driver 
of deforestation. The transmission of these impacts is varied, with cattle herds acting as a direct driver, and 
croplands as an indirect one, affecting neighbouring municipalities. Impacts from croplands are relatively stable 
throughout the studied period, while pressure from cattle disappears in more recent years. The overall dynamics 
are shaped in the Amazon biome and differ considerably from the Cerrado and Pantanal. There, deforestation 
is affected by direct impacts from cattle and pasture and incoming cropland spillovers from the Amazon. These 
results have strong implications for future studies on deforestation and environmental policy design. Empirical 
studies need to account for spatial spillovers in order to avoid distorted impact estimates. Heterogeneous effects 
need to be considered to obtain deeper and more precise insights on the efficacy of targeted policy interventions. 
Our results suggest that voluntary zero-deforestation commitments can complement national policy measures, 
but cannot replace them.

Results
Indirect impacts from croplands are the main empirical driver of deforestation in Mato Grosso. Table 1 presents 
the overall effect estimates for pastures, croplands, cattle density, and soy yields. The significant (95% HPDI does 
not contain zero) agricultural factors behind deforestation are croplands, which are predominantly used for the 
cultivation of soy, and cattle herds. Impacts from croplands are indirect, with an estimate of − 8.083 hectare per 
square kilometre in forest change per cropland share (in percent of total area). Cattle have direct impacts, with 
an estimate of − 0.153 hectare per square kilometre of forest change per percent increase in cattle density. These 
impacts from cattle ranching are related to intensity, as measured by the number of cattle per pasture, instead 
of the mere presence of pasture, whose effect is statistically insignificant. In the case of soy production the share 
of croplands is the main driving factor of forest cover change, instead of soy yields. The spatial dynamics of 

Figure 2.  Land use cover in Mato Grosso in 2001 and 2017. The clustered expansion of croplands and their 
appearance in areas previously covered by forest or pasture is noticeable when comparing both years. The area 
devoted to pasture has also increased considerably, replacing vast amounts of forest. See Fig. 3 for a visualisation 
of transitions between land use cover. Data is derived from the maps by Câmara et al.40; created using the tmap 
(version 3.3-2) R (version 4.1.1)  package25,26.

Table 1.  Regression of deforestation on agricultural drivers and control variables. We report the posterior 
mean and boundaries of credible intervals (the highest posterior density intervals (HPDI)) covering 95% 
of the posterior. Effects are divided into direct effects (within a municipality) and indirect effects (affecting 
other municipalities). Deforestation is measured as change of forest in hectare per total area in  km2, croplands 
and pasture in percent of area, cattle as logged cattle density per pasture, and soy yields in Brazilian Real 
per harvested area. More information on the model, data, and extended results are provided in the methods 
section and supplementary material.

Forest change ∼
Direct Indirect

Mean (HPDI) Mean (HPDI)

Croplands 0.941 (− 0.141 2.017) − 8.083 (− 11.964 − 4.24)

Soy yields 0.055 (− 0.014 0.122) 0.131 (− 0.159 0.411)

Pasture − 0.150 (− 0.886 0.553) 1.675 (− 1.116 4.583)

Cattle − 0.153 (− 0.261 − 0.048) 0.190 (− 0.379 0.706)
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deforestation processes are very pronounced in our sample. State-wide spillovers, direct impacts within a munici-
pality, and indirect ones from neighbouring municipalities are important driving factors of forest cover changes.

The magnitude of agricultural impacts is considerable. As an illustration, consider a scenario where the 
impacts of croplands or cattle are reduced by ten percent in 2017. In 2017 we observe an average forest cover loss 
of 0.150 hectare per  km2, for a total of 1402  km2. Our model predicts an average of 0.174 hectare per  km2, cor-
responding to total deforestation of 1514  km2. Reducing indirect impacts of croplands by ten percent is equivalent 
to avoiding 1122  km2 of deforestation (i.e. the prediction for deforested area is reduced to 392  km2). For direct 
impacts of cattle, the prediction is 509  km2 of avoided deforestation (1005  km2). If we consider total impacts 
instead of indirect or direct ones, we find 679  km2 of avoided deforestation for croplands and 37  km2 of additional 
deforestation for cattle. These magnitudes differ considerably from models where spatial spillover effects are 
not considered. Using a standard linear regression model without connectivity, the cropland scenario yields 165 
 km2 of avoided deforestation, and the cattle scenario 125  km2. The omission of spatial dynamics thus results in 
a severe underestimation of the deforestation impacts of croplands relative to cattle and of agriculture in total.

Heterogeneity of deforestation impacts plays an important role in explaining the dynamics of forest cover 
loss in the region. We find considerable differences for different time periods and for the Amazon biome. Table 2 
presents effect estimates that allow for variation of effects across biomes and over time periods.

The results presented at the top of Table 2 summarise the estimated impacts using a specification that allows 
for biome-specific effects. The Amazon biome largely mirrors the pooled results for the whole of Mato Grosso. 
Croplands appear as the most important driver, with considerable indirect effects and, as a result, total effects. 
The effect estimate of − 8.443 is comparable to that of the pooled model. The effects of cattle are also comparable: 
direct effects are a significant driver, but indirect effects are more uncertain. The Amazon-specific impacts of 
pasture are positive, but remain insignificant. This contrasts with the evidence for the other biomes, where pasture 
emerges as a significant direct driver of deforestation, although total effects remain ambiguous. By contrast, the 
effects of croplands, direct and indirect, are insignificant outside of the Amazon biome.

The bottom of Table 2 holds the results with period-specific estimates for the periods 2006–2011 and 
2012–2017. The earlier period corresponds to the years when the Soy Moratorium and Cattle Agreements came 
into effect. The period is characterised by higher deforestation rates, at an average of 4085  km2 of deforested area 
per year. The later period has both zero-deforestation commitments in full effect and displays lower deforestation 
rates, with an average of 1748  km2 per year. In both periods, cropland density appears as a driver of deforestation 
with considerable indirect and total effects. However, the magnitude of effects drops off in the later period. For 
2006–2011, high soy yields significantly deter direct deforestation. In the case of cattle, we only find significant 
direct effects for the earlier period and no significant total effects. With estimates of 3.089 and 3.005, pasture 
acts as a significant indirect deterrent to deforestation in both periods. The link between animal husbandry 
and deforestation is ambiguous in the earlier period and from 2012 until 2017 no significant effects are found.

The importance of spillover effects is best understood when contrasted to direct land use changes as depicted 
in Fig. 3. Early on, over the period 2001–2005, a large amount of forest is converted directly into pasture 
(26,304  km2) and croplands (3610  km2). In subsequent years, the pace of forest conversion slows down. In par-
ticular, the conversion of forest to croplands largely ceases while indirect impacts persist. Croplands are a consist-
ent net-receiver of land use change over the investigated period. This contrasts with forests, which consistently 

Table 2.  Regressions with heterogeneous effects across biomes and over time periods. Specification A on 
the top allows effects for the Amazon biome to differ from the rest of the state. Specification B on the bottom 
allows different effects for the 2006–2011 and 2012–2017 periods. See Table 1 for further information.

Specification A Forest change ∼
Direct Indirect

Mean (HPDI) Mean (HPDI)

Amazon

Croplands 1.967 (0.604 3.365) − 8.443 (− 13.260 − 3.754)

Soy yields 0.069 (− 0.006 0.142) 0.148 (− 0.151 0.449)

Pasture 0.885 (− 0.044 1.876) 3.123 (− 0.887 6.882)

Cattle − 0.243 (− 0.393 − 0.093) 0.063 (− 0.734 0.871)

Other

Croplands 0.121 (− 1.305 1.608) − 3.831 (− 10.811 2.957)

Soy yields 0.043 (− 0.031 0.116) 0.084 (− 0.192 0.376)

Pasture − 1.111 (− 2.024 − 0.198) − 1.130 (− 4.920 2.144)

Cattle − 0.089 (− 0.233 0.070) 0.115 (− 0.658 0.866)

Specification B Forest change ∼ Mean (HPDI) Mean (HPDI)

2006–2011

Croplands − 0.016 (− 1.230 1.240) − 9.857 (− 14.753 − 4.876)

Soy yields 0.198 (0.048 0.339) 0.573 (− 0.044 1.228)

Pasture − 0.281 (− 0.994 0.466) 3.089 (0.285 6.096)

Cattle − 0.197 (− 0.306 − 0.076) 0.425 (− 0.154 0.981)

2012–2017

Croplands 0.638 (− 0.529 1.772) − 8.851 (− 13.825 − 4.322)

Soy yields 0.016 (− 0.057 0.088) 0.031 (− 0.275 0.330)

Pasture 0.057 (− 0.644 0.821) 3.005 (0.098 6.120)

Cattle − 0.075 (− 0.190 0.046) 0.369 (− 0.201 0.935)
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suffer from a large net-loss amidst large outflows and minuscule inflows. Among the outflows we find conversion 
into pasture, which is itself converted into croplands, as the most significant determinant. We identify a major 
pathway behind these deforestation processes in the form of spatial spillover effects.

Discussion
Our analysis reveals a spatially complex and heterogeneous picture of deforestation dynamics in Mato Grosso. 
Agriculture remains pervasive in shaping the region’s landscape, but pathways have changed over the past 20 
years. Spillover effects from agriculture, long theorised and confirmed statistically by 23, are the main empirical 
driver of continued deforestation today. Conversion of forest to pastures is an important factor, but is being driven 
indirectly by croplands. Within the group of agricultural commodities, soy emerges as the dominant driver of 
deforestation. Direct impacts from cattle only emerge in the 2006–2011 period, when the Cattle Agreements were 
not yet in full effect. In the 2012–2017 period, we observe slightly lower impacts of croplands and agriculture 
overall. These results are mainly driven by dynamics in the Amazon biome. Effects in the Cerrado and Pantanal 
biomes differ considerably, with pasture and cattle as the sole significant deforestation drivers. Spatial connectivity 
and heterogeneity in effects have strong implications for the construction of empirical models of deforestation, 
as well as for the design of environmental policy responses.

Spillover effects and heterogeneity play important roles in deforestation processes, but are not systematically 
assessed in empirical studies  (see30). When considered, spillover effects—both between municipalities and across 
the whole state—turn out to be an important piece of the deforestation puzzle, as evidenced by some previous 
works (e.g.23,31–33) and by our study for the case of Mato Grosso. We find that disregarding spillovers leads to an 
underestimation of the impacts of agriculture and a relative underestimation of the importance of croplands. 
Focusing on the state of Mato Grosso, heterogeneity of effects over time and space is pronounced. Most previous 
studies operate on larger spatial scales that arguably imply more heterogeneity, but largely ignore the issue in 
their modelling frameworks (cf.30). By wrongly assuming homogeneity of effects, a range of important impacts 
may remain hidden behind average results. The lack of a consistent and effective treatment of spatial connectivity 
and heterogeneity casts some doubts on many of the empirical results obtained hitherto. Our statistical model 
considers these elements and yields important additional insights into the nature of deforestation processes and 
their drivers. Indirect deforestation pressure continues to be rampant in Mato Grosso, with direct pressure wan-
ing. Spillover effects emanating from croplands in the Amazon are the main driver of deforestation in the region.

The Cattle Agreements and particularly the Soy Moratorium are generally understood to have been successful 
in alleviating direct deforestation  pressure7,8,21,29. However, there are serious doubts regarding the overall success 
due to spillover  effects22–24,41. Our study corroborates both stories. In later years, deforestation pressure from 
agriculture is exclusively indirect, but deforestation and other detrimental impacts of land use change remain 
problematic. More comprehensive measures to curb deforestation are needed urgently. There is some debate 
on voluntary zero deforestation commitments (e.g.28,41) and the role of certain commodities and trade (e.g.27,42) 
in deforestation. Measures targeted at specific drivers may serve as short-term remedies, but lasting solutions 
require more comprehensive governmental action. As a common good, the Amazon rainforest will continue to 
suffer from exploitation as long as there is value to be  extracted43. If protective measures are overly focused, new 
deforestation drivers may arise imminently. Alternative policies that tackle the issue at its root exist, e.g. land 
use or carbon taxes, and could effectively and efficiently limit  deforestation13.

Future research will have to shed light on a number of open issues around deforestation. In this study, we 
concentrated on Mato Grosso, but larger scale analyses may offer additional insights. These could ensure the 

Figure 3.  Direct land use change over selected years from 2001 to 2017. The height of flows represents the 
amount of yearly incoming/outgoing land use cover, the height of individual bars the maximum thereof. An 
interactive version of this figure with exact measurements of flows as tool-tip is provided as supplementary 
material. Also see Fig. 2 for a visualisation of land use cover in 2001 and 2017.
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external validity of the results presented, but must not come at the loss of internal validity, e.g. due to omitting 
heterogeneity or spillover effects. An important issue to address is the heterogeneity of spillover effects, which 
could occur, e.g., on regional, national, or even international scales. Further attention to natural vegetation 
other than forests is also needed. The Cerrado’s native vegetation is being converted at high  pace28 and Song 
et al.38 find that the cultivation of soy in the Pantanal wetlands is rapidly expanding. These processes evolve in 
parallel to Amazon deforestation and additional insights may help addressing adverse effects and developing 
suitable countermeasures. Our study investigates agricultural impacts related to soy and cattle, the major com-
modities whose impacts are being addressed in zero deforestation commitments. However, it is important to 
understand deforestation drivers in a broad context, since deforestation-inducing commodities are manifesta-
tions of a market that places little value on forests. Researchers and policymakers alike need to be aware of this 
fact and the spillovers, leakages, and other complexities in deforestation that come with it.

Methods
The data used for the study cover the 141 municipalities of Mato Grosso (Brazil) over the course of twelve years 
( N = 1692 ). We investigate the impacts of agriculture on deforestation using a spatial panel model. The panel 
structure and our dataset allow us to account for relevant observed and unobserved factors affecting deforesta-
tion in the period considered. The spatial specification captures indirect factors in deforestation processes and 
is therefore able to model impacts that may spill over municipal borders.

Econometric model. The econometric model is of the form

where yt is an N × 1 vector with the yearly change in forest area in hectare per  km2 at time t, Xt is an N × K 
design matrix with variables of interest and controls, and εt is an error term that is assumed to follow a mul-
tivariate Gaussian distribution with zero mean and a diagonal variance-covariance matrix Iσ 2 . The vectors µ 
and ψt contain region-specific and year fixed effects, capturing space and time-invariant unobserved effects, 
respectively  (see44). This model differs from standard models in that it explicitly assesses the potential existence 
of geographical spillovers by the use of a spatial connectivity matrix W , which is used to impose a neighbour-
hood structure across observations  (see45). The exact form of W is presented and discussed in the supplemen-
tary material. We include a spatially autoregressive lag Wy and a spatial lag of explanatory variables WX , with 
respective parameters ρ and θ.

The model in Eq. (1) is termed the ‘spatial Durbin model’ (SDM) and nests other widely applied spatial model 
specifications, as well as the classical linear  model46. In this framework, spillover effects may arise globally, i.e. 
across all observations, and locally, i.e. from neighbour to neighbour. The spatial autoregressive term induces a 
non-linear spatial filter. Partial effects are hence not given directly by the coefficients in Eq. (1). We report the 
summary statistics of average effects, which can be separated into direct (within a region) and indirect ones (in 
other regions)  (see46). Estimation is performed using Bayesian methods. We report 95 percent Bayesian credible 
intervals (highest posterior density intervals) as measure of uncertainty. Further information on the estimation, 
including the priors used and full posterior densities of the estimates, is provided in the supplementary material.

Variables. The design matrix includes variables that allow us to isolate the impact of agriculture on defor-
estation, while avoiding confounding effects from other factors that affect deforestation. These control variables 
were chosen based on the meta-analysis of deforestation drivers by Busch and Ferretti-Gallon30, previous studies 
of the region (e.g.23,31,34), and our particular econometric approach. The factors of interest—effects of agriculture 
are represented by four different variables. These are the areas devoted to (1) pasture and (2) croplands as per-
centage of total area, (3) the logged headcount of thousand cattle per pasture, and (4) soy-yields in Brazilian Real 
(BRL) per harvested hectare. Agriculture in Mato Grosso is dominated by cattle and soy; other types of livestock, 
crops like sugarcane, and forestry only play marginal roles in the region (c.f.47).

Control variables can be summarised along three broad categories (loosely  following30): socioeconomic vari-
ables, infrastructure, and biophysical characteristics. From the first category, we consider the roles of population 
density and municipal gross domestic product per capita. We find little relevance for either, but keep population 
density to prevent confounding from effects driven by anthropogenic activity. Protected areas, which may also 
impact deforestation, are essentially constant over the studied time frame (calculations based  on48 and hence 
captured in the fixed effects of our panel specification. We assume that other important policy measures generally 
occur at the national or state level and are hence accounted for given the granularity of our data and the use of 
fixed effects. We differentiate between large scale infrastructure, which opens up frontier regions and is generally 
considered to be  exogenous30, and small scale infrastructure. The former are captured via regional fixed effects, 
while we omit the latter as a mediator between agriculture and deforestation. Biophysical characteristics, such 
as elevation, slope, and soil, are constant over the investigated period and hence absorbed by the fixed effects in 
the setting of our panel data model. This is only partially true for the effects of climate. Droughts, in particular, 
show variation over time and space and may affect  deforestation49. To account for such effects, we construct an 
indicator for the incidence of particularly dry periods.

We investigate heterogeneous impacts of agriculture across biomes and over different time periods by interact-
ing variables of interest with indicators for biomes and periods. First, the Amazon biome is likely to have distinct 
deforestation dynamics from the Cerrado and Pantanal, e.g. due to differences in forest code (see e.g.7). Different 
impacts of agriculture may be the consequence. This could result in increased uncertainty of estimates or hide 
important insights behind an inadequately averaged effect. We also consider heterogeneity of the Pantanal, but 
find very similar dynamics to the Cerrado and thus pool the two biomes. Second, deforestation dynamics may 

(1)yt = ρWyt + Xt−sβ +WXt−sθ + µ+ ψt + εt ,
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change over time. Particularly, the implementation of zero-deforestation commitments has evolved considerably 
in the years considered in our analysis. Important dates are the inception of the Soy Moratorium in 2006 and 
the Cattle Agreements in 2009, although adaptations and updates mean that they came into full effect later on. 
Gradual changes may be a factor behind the findings of Arima et al.23, who investigate the efficacy of the Soy 
Moratorium from 2003 until 2008, and le Polain de Waroux et al.24 and Alix-Garcia and  Gibbs22, who look at 
the periods 2001–2013 and 2007–2015. These studies find little evidence for decreasing adverse impacts from 
environmental regulations. However, if interventions only come into effect gradually, their effects may be mis-
judged due to temporal heterogeneity.

Data. Our dataset covers 141 municipalities of Mato Grosso on a yearly basis from 2006 until 2017. It is 
derived from three major sources:  IBGE47 with various municipal statistics and maps, and the Standardised Pre-
cipitation-Evapotranspiration Index (SPEI)50, a multi-scalar drought index, and Câmara et al.40 with remotely 
sensed land cover change maps.

The  IBGE47 data is commonly used in studies on deforestation and land use change (e.g.31). The datasets used 
are the Censo Demográfico, Estimativas de População, Produto Interno Bruto dos Municípios, Censo Agropecuário, 
Produção Agrícola Municipal, and Pesquisa da Pecuária Municipal. The SPEI is used to construct indicators for 
particularly wet or dry months and is described in detail by Vicente-Serrano et al.51. For our analysis, we aggre-
gate individual pixels from the Câmara et al.40 dataset to the municipal level and derive land use cover variables 
(forest, pasture, and croplands). A visual comparison of the variables obtained at the start and end of the dataset 
is presented in Fig. 2.

The remotely sensed land cover change maps of Câmara et al.40 are available at a 250m resolution from 2001 
to 2017 and use the MODIS sensor as source material for time consistency. Simoes et al.52 discuss the dataset in 
detail. The maps are generated with a support vector machine model for classification and are post-processed 
using Bayesian smoothing, land cover masks, and land use change calculus. The overall degree of accuracy is 96%, 
with user (producer) accuracy of 99% (98%) for forest, and 97% (98%) for pasture. We find that our aggregated 
cropland variable (the dataset distinguishes seven types of cropland) correlate strongly with official statistics at 
the municipal  level47, as documented by Simoes et al.52. They also cross-check the dataset against state-of-the-art 
remote sensing  data53,54 as well as governmental surveys and find them to be consistent and reliable.

In our analysis, we equate deforestation and the change of forest cover. Other types of forest loss are included, 
but play a minor role in practice. We find that 92% of non-minor forest loss in the region is due to deforestation 
or shifting agriculture, as defined by Curtis et al.55. Negative loss may occur due to the independent generation 
of yearly maps, but we observe few instances of gain in forest cover, and of small magnitude. Further informa-
tion on aggregation, transformations used, exact variable descriptions, and summary statistics are provided in 
the supplementary material.
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