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ABSTRACT

Wildfires ravage communities, forests, and government budgets each year in the US. The
risk of wildfires continues to evolve as climate change enables conditions that are hotter, drier,
and conducive to more frequent and intense fires. It remains unclear to what extent public
policy is nimble enough to respond effectively at the local, state, and federal levels. A patchy
web of disaster resilience policies and building codes meant to “harden” structures, as a
defense against wildfires, exist in some places to attempt to protect public safety, property, and
forests. However, it is uncertain whether codes are enforced, if codes are enforced differently
by local jurisdictions or states, and whether codes are effective at changing consumer behavior.
Here we derive empirical evidence from multivariate binomial regression analysis to predict
whether homeowners’ adopt fire-resistant building materials following major policy changes
and whether key spatial and socioeconomic characteristics help or hinder adoption as well.
We find that homes built after California’s comprehensive building code change in 2008 and
homes located in Firewise communities or wildland urban intermix (WUI) areas all exhibit
strong, positive effect sizes for adopting higher levels of fire-resistant home building materials.
Findings from this study may help to identify where public policy is making strides in wildfire
resilience and where improvement and investment are needed.
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1 Introduction

From 2011-2020, there were an average of 62,805 wildfires annually in the US. These fires
have burned an average of 7.5 million acres annually. In 2020 along, 58,950 wildfires burned
10.1 million acres, which was the second highest number of acres burned since 1960; of these
10.1 million acres burned in 2020, nearly 40% were in California [CRS, 2021]. Despite the
imminent risk, 43 million homes are located in the most wildfire-prone areas, which are
known as wildland-urban interface (WUI) zones. Although WUI areas continue to expand
as development encroaches on these areas, WUI areas make up only about 10% of the US
land area as of 2018. However, WUI areas are home to more than a third of houses [Kramer
et al., 2018]. As risk and hazard models continue to indicate that wildfires will only become
a greater threat in these areas, public policy can intervene to provide fire-fighting services
and infrastructure, educational outreach and information regarding fire safety and risk, and
protect lives and property through enforcement of preparedness regulations and fire-resistant
building codes and standards. This work focuses mainly on the latter piece of the policy
approach to evaluate building standards and codes that increase wildfire resilience.

The goal of this research is to better understand the empirical underpinnings of the
relationship between building code adoption and higher classes of fire-resistant building
materials being used in home construction throughout building code enforcement areas and
non-enforcement areas. Building codes meant to harden homes are an important part of
wildfire resilience because evidence suggests that codes and standards - though by no means
foolproof - can be effective at protecting property while also preventing further spread of
fires [Syphard and Keeley, 2019, Evans et al.]. Even a limited number of fire-resistant homes
in a community has been shown to reduce the spread and threat of wildfires [Baylis and
Boomhower, 2021].

California is the only state in the US that has instituted statewide building code regulations
for fire-resistant housing materials in designated high-hazard areas. Similar to other states,
California has mapped fire hazard severity zones, and it has also mapped state responsibility
areas (SRAs) and local responsibility areas (LRAs), which are designations that determine
official responsibility for wildfire suppression efforts. State authorities are in charge of
fire suppression in SRAs and local authorities are in charge of fires in LRAs; if fires cross
these boundaries, authorities negotiate or consolidate responsibility. In 1995, the California
legislature passed a bill requiring that all houses built or re-roofed in all SRAs and certain
LRAs adhere to an ignition-resistant roofing mandate. Roofing materials are classified on
an ordinal scale of ignition resistance, including Class A, B, C, or unrated. The 1995 law
required that roofs be at least Class B. In 1997, the law was amended to require that all
houses in these areas install Class A ignition-resistant roofs, and then in 1999, unrated
roofing materials were outlawed throughout the entire state. In 2008, the state passed the
first statewide comprehensive wildfire building code requirement - known as Chapter 7A
of the California Building Code - for all houses built in SRAs and certain LRAs. Chapter
7A includes specific fire-resistant requirements for many housing characteristics beyond just
roofing, including decks, eaves, exterior walls, siding, landscaping, and other features. (As
a note, the more comprehensive regulation for building standards in Chapter 7A does not
necessarily correspond directly to a fire-resistant rating class system in the same way that
roofing does.)
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Here we plan to evaluate the empirical relationship of these policy changes on fire-resistant
class ratings for housing in California using housing data and fire insurance classification data
made available through Zillow. The Zillow Transaction and Assessment Dataset (ZTRAX) is
the largest real estate database in the US. The ZTRAX database includes several rounds
of updated data from recent years, but given that I will be using the construction year to
evaluate changes over time, I will only be using a recent round from 2020 as a cross-sectional
sample. Within the ZTRAX database, all homes evaluated in this study are rated using a
five-letter fire-insurance rating system. The definitions provided for each class are defined by
Zillow in the provided data dictionary and we present them here in Section 4. We use this
classification as a categorical outcome variable to test the hypothesis that the policy changes
in California starting with roofing in 1995 and then comprehensive housing requirements in
2008 have driven significantly higher fire-resistant home classifications among those homes
built after the roofing code change in 1995 and even more significant effects among homes built
in 2008 or later. To test this, we use a variable representing periods of time that correspond to
a statewide policy absence, roofing requirements starting in 1995, and comprehensive housing
requirements starting in 2008, i.e. 1) pre-1995 construction, 2) 1995-2007 construction, and
3) post-2007 construction. Using the construction year as an independent variable, the
fire-resistant home classification as an outcome variable of the relative amount of adoption of
higher levels of fire-resistant building materials, and a range of socioeconomic and spatial
variables as covariates, we hope to estimate the the degree of change in adoption of these
materials over time and changes to the regulations.

2 Background

The overlap between wildfires and the built environment continues to grow as human
development increasingly moves into heavily wooded or wildland areas [Kramer et al., 2018,
Brenkert-Smith et al., 2012, Renner et al., 2006]. This is happening relatively rapidly in
many states, including California, where - among other drivers of development expansion -
real estate prices near urban areas in much of the state are increasingly and prohibitively
expensive. According to Kramer et al. [2018], the most threatened and most often destroyed
buildings in the US are located in the wildland urban interface (WUI). Kramer et al. [2018]
found that from 2000-2013 within the conterminous US, 59% of buildings that are threatened
by wildfires and 69% of buildings that have been destroyed by wildfires are located in the WUI.
Among states from 2000-2013, California experienced the most property destruction and also
had the highest percentage of destroyed buildings within WUI areas. The encroachment on
wildland areas is only projected to increase in coming decades. Mann et al. [2014] estimate
that by 2050, California’s exurban land classes will replace nearly 12 million acres of wild and
agricultural lands, increasing the threat of wildfires and property destruction from wildfires.

For the growing number of homes located in high-risk areas, one strategy to protect
properties and lives while potentially slowing the spread of wildfire is to require a certain
standard of fire-resistant building quality. In a recent working paper, Baylis and Boomhower
[2021] found that a 2010 or newer home in a building code-enforced area in California is about
15 percentage points (38%) less likely to be destroyed than a 1985 home. Not only did the
authors discover positive direct impacts from building codes, but they also found significant
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indirect benefits for communities in which some homes adopt higher levels of fire-resistant
building materials; they found that a home’s likelihood of destruction during a wildfire falls
by about 3 percentage points (8%) if its nearest neighbor was built under the modern wildfire
codes.

Understanding that the use of fire-resistant building materials can lead to higher structure
survival rates [Baylis and Boomhower, 2021, Syphard et al., 2017, Syphard and Keeley,
2019, Evans et al.], what are the barriers and the determinants of adoption of defensive
building practices? Haines et al. [2008] conducted a study in 2008 finding that building code
adoption and enforcement at the municipal level can encounter a number of key barriers.
First, a community has to muster the political will and ability to allocate public funding for
code implementation and enforcement. Evans et al. also point to political will as a main
determinant for enforcement of regulations and motivation for wildfire preparedness and
mitigation within communities. It is important to note that political will for these mitigation
efforts may increase in the aftermath of a wildfire. The second major obstacle is apathy
or even resistance from homeowners or homeowner organizations. The authors cite that
Washington and Colorado tried unsuccessfully to pass legislation at the state level requiring
stronger building requirements to combat property destruction from wildfires. However, there
has been more success at the local level with suggesting voluntary guidelines for construction
and defensible space around the home as well as offering assistance to aid implementation of
mitigation efforts at local and county levels.

Paveglio et al. [2015] suggests it is imperative to consider the social complexities at local
levels to understand why there is uptake or resistance to wildfire resilience and mitigation
efforts. Paveglio et al. [2015] cite the following characteristics as those that should be
considered when targeting resilience and mitigation programs or policies: (1) previous wildfire
experience, (2) primary versus secondary home ownership, (3) formal versus informal outreach
programs, (4) personal efficacy, (5) community identity, (6) demographics, and (7) income.
Specific to the community level, the authors point to different community identities or
archetypes that frame the approach to wildfire preparation, such as rural versus urban or
libertarian versus more communal archetypal constructs that can heavily influence the form
that response efforts take. This study and many others invoke key socioeconomic and spatial
indicators as major determinants for adoption of key wildfire preparedness measures [Evans
et al., Renner et al., 2006, Brenkert-Smith et al., 2012, Ergibi and Hesseln, 2020, Schulte and
Miller, 2010, Wolters et al., 2017].
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3 Methods

The main methodological approach of this study is to find empirical evidence based on
multivariate regression analysis to support or negate the hypothesis that building code
changes in California in 1995 and, especially, the more comprehensive code change in 2008
may have had an impact on the level of fire-resistant building class adoption throughout the
state. We also evaluate which key spatial and socioeconomic variables may help to predict
higher levels of fire-resistant building classes. These variables have been added to the analysis
based on their relevance according to the literature, which is explained in greater detail in
Section 2. To address these research goals, we rely on binomial multivariate logistic regression
models that will be explained in more detail in this section and in Section 5. We have also
run initial diagnostic tests and preliminary models that we will explain briefly in this section.

We first ran a diagnostic chi-squared test to evaluate whether there are significant
differences to exploit between observed and expected values when comparing the dependent
and independent variable categories. The outcomes of the chi-squared test are presented in
Table 1. Observed values are the number of observations per category in the data. Expected
values are calculated by multiplying row totals by column totals and dividing by the total
number of observations in the twoway table. The construction year is represented by different
time periods corresponding to building code changes in California, and A, B, C, D, and
S are listed along the top of each section of Table 1 to represent each fire-resistant home
classification outcome. classifications A, B, and C are at least somewhat to very fire-resistant,
and D and S represent homes that are not fire-resistant at all. Classifications are explained
in more detail in Seciton 4.

Table 1: Chi-squared = 4371.6, df = 8, p-value < 2.2e-16

Observed values

Construction year A B C D S
1995-2007 103 258 136 230969 22
2008-2020 199 416 209 72525 24
Pre-1995 310 2343 12259 1005223 152

Expected values

Construction year A B C D S
1995-2007 106.91 527.03 2201.77 228617.69 34.59
2008-2020 33.89 167.05 697.88 72463.22 10.96
Pre-1995 471.20 2322.91 9704.35 1007636.08 152.45

Residuals

Construction year A B C D S
1995-2007 -0.378 -11.719 -44.025 4.918 -2.140
2008-2020 28.364 19.261 -18.506 0.229 3.937
Pre-1995 -7.426 0.417 25.933 -2.404 -0.036
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Residuals are calculated by finding the difference between the observed and expected
values and then dividing those values by the square root of the expected value. The residuals
from the chi-squared test are presented in detail in Table 1 and are shown according to the
magnitude of positive or negative deviation from the expected value in Figure 1. The size of
the dot and the gradation of color indicate the magnitude of deviation for each categorical
comparison. The most striking comparisons between observed and expected values are for
the C class in the 1995-2007 period where the observed value is much lower than is expected,
the A category in the 2008-2020 period where the value is much higher than expected, and
the C class in the pre-1995 period where the value is much higher than expected. Overall,
the 2008-2020 shows the strongest deviations from expected values compared to other time
periods, suggesting there is something about this time period that is creating a greater
deviation.

Figure 1: Chi-squared residuals plot (Note: Pearson chi-squared test was used)

After running an initial diagnostic evaluation with the chi-squared test, we then moved
forward with regression analysis. Initially, we ran ordered logistic regression models using the
building class variable and an ordered outcome variable since the S and D classes represent
homes that are not built to be fire-resistant and the C, B, and A classes represent homes
that are progressively more fire-resistant, with class A homes being the most fire-resistant.

The ordered logistic regression models yielded highly significant results; however, a major
assumption of this model is the proportional odds assumption, which requires that the
estimate coefficient in the model must apply to each category of the categorical outcome
variable without significant deviation. In this case, the proportional odds assumption was not
supported. We tested whether the proportional odds assumption holds in two ways. First,
we ran a Brant test with the brant package in R, which basically evaluates whether the
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deviations from what are proportionally expected in the outcome categories of the dependent
variable are greater than what could be attributed to chance. The null hypothesis of the
Brant test is that the proportional odds assumption holds. In Table 2 below, the results
suggest that the null hypothesis should be rejected, meaning that the model is invalid.

Table 2: Brant test of proportional odds assumption

X2 df probability

Omnibus 3, 844.094 6 0
CodeYear.L 3, 021.456 3 0
CodeYear.Q 649.524 3 0

Although the Brant test is popularly applied to test the validity of the ordered logistic
regression model, it is extremely conservative in its underlying assumptions. Therefore, it
is helpful to accompany the Brant test with a more careful evaluation of the proportional
odds assumption. Another method is to run binomial regression models between pairs of
consecutive categories of the dependent variable to evaluate if the differences in coefficients
are significant. In Table 3, the results of this test are presented as coefficients representing
the difference between each pair for each period of the independent variable. It is clear that
the coefficients are significantly different across categories of the dependent and independent
variable, which supports the general findings from the Brant test that the model is invalid.

Table 3: Binomial comparison between categories of dependent variable

IV category Diff AB Diff BC Diff CD Diff DS

Pre-1995 (Intercept) -0.919 0.641 -13.537 15.359
CodeYearPre-1995 -1.106 -2.305 4.927 -2.347
CodeYear2008-2020 0.179 0.050 3.230 -2.886

To relax the proportional odds assumption, we then ran multinomial regression models
with a five-class categorical variable. The main difference between the ordered logistic model
and the multinomial model is that there is no assumed order of the dependent variable.
However, the sample size for certain categories, especially categories A and B in time periods
1995-2007 and 2008-2020, was relatively small. This made it difficult for the multinomial
regression model to converge consistently in these categories.

In order to account for the small sample size in select categories, we collapsed the
dependent variable into a binary outcome variable where 0 represents categories D and S
and 1 represents categories A, B, and C. Categories A, B, and C represent homes that are
fire-resistant to at least some degree. Categories D and S represent homes that are not built
to be fire-resistant at all.

The formal notation for the binomial regression model is presented in Equation 1 below.
A binomial regression model calculates that log odds probability of an outcome from a binary
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variable. The right-hand side of the equation includes a set of predictor variables used to
predict the log-odds probability.

log(
π

1− π
) = β0 + β1x1 + ...βkxk (1)

Where :

π = probability
x = predictors

Log-odds estimates are not intuitive for most audiences; therefore, results from binomial
regression models are often reported in odds ratios, which are more straightforward to
communicate. In Equation 2 below, the formal notation for calculating odds ratios is
presented. Odds ratios represent the odds or probability that an outcome will occur given
certain input parameters. Finally, we also calculated the predicted probabilities, which make
a prediction based on the data that the outcome will equal one when a predictor variable
increases by a unit while all other input variables are held constant at their means.

θ =
( π
1−π

)|x = x1

( π
1−π

)|x = x2

(2)

Where :

θ = odds ratio
π = probability
x = predictors
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4 Data

We evaluate the outcomes of fire-resistant class ratings for housing in California according
to changes to the building code in 1995 and 2008 in California using multiple data sources;
these include 1) housing data made available through Zillow, 2) socio-economic data from the
US Census Bureau and election results data, and 3) GIS-derived data. The Venn diagram
in Figure 2 below shows how parts of the Zillow dataset, GIS-derived variables based on
intersections of homes with key perimeters of interest (e.g., WUI zones), and socioeconomic
data from the US Census Bureau and election outcomes data all combine to form the full
dataset used in this analysis. Not all parts of each data source overlap perfectly within one
another, meaning that merging them together limits the overall number of observations to a
small degree after dropping observations that do not have values for each variable to be used
in the regression analysis.

Figure 2: Parts of the Zillow dataset, socioeconomic data from US Census Bureau and
voting outcomes from the 2020 presidential election in the US, and GIS-derived variables
make up the full dataset used in this analysis.

The Zillow Transaction and Assessment Dataset (ZTRAX) is the country’s largest real
estate database. The ZTRAX database includes rounds from recent years, but given that
we use the construction year to evaluate changes over time, we only include the latest panel
as a cross-sectional sample. Within the ZTRAX database, all buildings are rated using a
five-letter grading system used by California’s home insurance rating system, which is outlined
in Table 4. The definitions provided for each class are defined by Zillow in its provided data
dictionary. We use this classification as an outcome variable to test the hypothesis that the
policy changes in California starting with roofing in 1995 and then comprehensive housing
requirements in 2008 have driven significantly higher fire ratings among homes built in 1995
and even higher ratings among homes built in 2008 or later. 1 To test this, we have included

1Note that this rating system is not a direct correlate to the changes of the building code in California. It
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a main independent variable in the regression models, which is also constructed from Zillow’s
data, representing statewide policy absence, roofing requirements, and comprehensive housing
requirements, i.e. 1) pre-1995 construction, 2) 1995-2007 construction, and 3) 2008-2020
construction.

Building Class

Code Description

Class A Buildings having fireproofed structural steel frames carrying all wall,

floor and roof loads. Wall, floor and roof structures are built of

non-combustible materials.

Class B Buildings having fireproofed reinforced concrete frames carrying all

wall floor and roof loads which are all non-combustible.

Class C Buildings having exterior walls built of a non-combustible material

such as brick, concrete, block or poured concrete. Interior partitions

and roof structures are built of combustible materials. Floor may

be concrete or wood frame.

Class D Buildings having wood or wood and steel frames.

Class S Specialized buildings that do not fit in any of the above categories.

Table 4: Wildfire building code classifications used in the Zillow database

The Zillow dataset captures a large proportion of homes in California overall. However,
when limiting the dataset to listed homes that have a reported year of construction (independent
variable) and a reported wildfire building class (dependent variable), the dataset constricts
significantly. Figure 3 below shows a narrowing of the Zillow sample size used in this
analysis after restricting observations to those with construction years and wildfire building
classifications. When socioeconomic variables are also merged into the dataset, this limits
the data further to 1,048,149 total observations used in the final analysis.

The distribution of homes according to each outcome variable category, which in this case
is each fire-resistant building class, is quite disproportionate. The majority of homes within
each of the five counties represented by the Zillow data fall within the C and D classes. Table
5 shows the distribution of home observations across each building class category as well as
the total number of homes represented in the data, the number of existing homes in each
county according to 2019 Census data, and finally the percentage of existing homes that are
represented by the data. A majority of homes in each county is captured in the analysis, but
the Zillow database is not comprehensive. Homes that are sold directly by owners, homes
that are sold at auction, or any other homes that are not included in the Multiple Listing
Service (MLS) in the US are not included in Zillow’s database.

is used in this study as a general indicator of the level of adoption of higher classes of fire-resistant building
materials and not necessarily as a measure of proper code enforcement attached to homes meeting a certain
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Figure 3: Zillow dataset sample size after restricting the sample to homes that have a
reported year of construction and wildfire building class

Table 5: Homes observed when filtered on construction year and fire-resistant building class

County A B C D S Total Census %

Alameda 607 2,841 1,216 388,416 33 393,113 622,922 63%
Fresno 1 3 2,374 232,674 74 235,126 336,473 70%

San Bernardino 2 172 7,190 525,888 51 533,303 731,400 73%
Stanislaus 2 1 1,488 137,555 39 139,085 182,978 76%
Sutter 0 0 336 24,184 1 24,521 34,583 71%

Total 612 3,017 12,604 1,308,717 198 1,325,148 1,908,356 70%

In addition to the primary variables from the Zillow data, we also use socioeconomic data
from the US Census Bureau for control variables in the regression models. This includes data
on median household income, household retirement savings, percentage of the population
living under the poverty line, and bachelor’s degree attainment. All of these variables are
aggregated at the Census tract level within counties corresponding to home observations in
the Zillow data.

Political affiliation has also been associated with the adoption of progressive adaptive
measures, such as using more fire-resistant home building materials. Therefore, we have also
included a variable from the New York Times for the percentage of the Democratic lead
within the boundary of each election precinct (within counties) during the 2020 presidential

class rating.
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race. This is the most recent proxy for party affiliation (of the two dominant parties) available
at a local scale in California. This variable is meant to give a general indication of party
affiliation at the precinct level. Of course, political affiliation within geographic areas changes
over time, but this is meant to be a general, recent indicator only.

Finally, several variables were derived using geographic perimeter data from the state of
California’s Department of Forestry and Fire Protection (CAL FIRE). We imported perimeter
layers into QGIS for wildfires occurring within the previous 10 years, city boundaries for
Firewise communities,2 wildland urban intermix (WUI) areas, and wildland urban interface
(WUI) areas.3 Using these perimeters as polygons and homes’ latitude and longitude locations
as points, we were able to run intersectional geoprocessing for each perimeter layer to assign
each home in the data to a dummy value (i.e. zero or one) to represent the home’s location
in or outside of each perimeter. The maps in Figure 4 show different polygon layers for
wildland urban intermix (gold) and wildland urban interface (red) areas on the map on the
left, historical wildfire perimeters (orange) dating back 10 years on the map in the center,
homes located within Firewise communities (small blue triangles) on the map on the right,
and homes located within counties (small brown triangles) included in the analysis (Sutter,
Alameda, Stanislaus, Fresno, and San Bernardino) on the right as well.

Once all the variables were constructed, we merged all the data components together to
form the full dataset. Each variable is summarized in Table 6 below. The Class variable is the
dependent variable, which has been collapsed into a dummy variable where 0 is a combination
of D and S class categories (which are not fire resistant) and 1 is a combination of A, B,
or C classes (which all include some amount of fire-resistant materials). The rationale to
collapse the categories into a binary variable will be explained in more detail in Section 3, but
this generally increases the observations by outcome for regression analysis. The CodeYear
variable is the independent variable, which is a factor variable corresponding to three time
periods: 1) pre-1995, 2) 1995-2007, and 3) 2008-2020.

After the dependent and independent variables in Table 6, there are four GIS-derived
dummy variables. Fire10 is a dummy variable denoting whether a home is located in a
historical wildfire perimeter from the previous 10 years. Firewise is a dummy variable
indicating whether a home is located in a designated Firewise community. There are three
cities or towns in San Bernardino county (Big Bear, Big Bear Lake, and Yucaipa) that are or
were recently registered as Firewise communities according to the National Fire Protection
Association. WUI1 is a dummy variable for homes in wildland urban intermix areas, and
WUI2 is a dummy variable for homes in the wildland urban interface areas.

Finally, there are five socioeconomic variables, but not all are included in the regression
models due to multicollinearity between income-related variables. Income (ln) is logged median
household income by US Census tract. Retirement is logged mean household retirement
savings by US Census tract. Poverty is the percentage living under the US poverty line by
US Census tract. Bachelors is the percentage of bachelor’s degree attainment at the US

2Firewise communities are those designated communities that choose to organize themselves voluntarily
to be part of the National Fire Protection Association’s Firewise program. This program helps communities
to spread information about defensive and preparedness techniques that can be used to protect homes,
individuals, and the local community from devastating effects of wildfires.

3Wildland urban intermix areas are where human development is adjacent or overlapping with forested
areas. Wildland urban interface areas are where human development is located within forested areas.
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Figure 4: The map on the left shows wildland urban intermix areas in gold and wildland
urban interface areas in red. The map in the center shows wildfire perimeters from the
previous 10 years from 2020 in orange. The map on the right shows homes located within
Firewise communities as blue triangles with white outlines; also shown are homes generally
located within the five counties represented by the relevant Zillow data. These five counties
are outlined and labeled in white in each map. The base layer (gray and turquoise is simply
an administrative boundaries layer.)
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Census tract level. All US Census variables are taken from the 2019 estimates of the latest
American Community Survey (ACS), which we have accessed using the tidycensus package
in R. The ACS is conducted annually by the US Census Bureau among a sample of the US
population. Finally, Democrats is a variable indicating the percentage Democratic party
lead during the 2020 US presidential election aggregated at the election precinct level. This
variable is reported by The Upshot at the New York Times and is noted to be accurately
tabulated for California. This variable can range from -100 to 100% because it indicates the
Democratic lead, which could be negative.

Table 6: Summary statistics of full dataset

Statistic N Mean St. Dev. Min Pctl(25) Pctl(75) Max

Class 1,047,739 0.013 0.113 0 0 0 1
CodeYear 1,047,739 1.340 0.717 1 1 1 3
Fire10 1,047,739 0.001 0.032 0 0 0 1
Firewise 1,047,739 0.016 0.127 0 0 0 1
WUI1 1,047,739 0.055 0.229 0 0 0 1
WUI2 1,047,739 0.289 0.454 0 0 1 1
Income (ln) 1,047,739 11.059 0.493 9.304 10.711 11.420 12.287
Retirement (ln) 1,047,739 16.716 6.736 0.530 11.650 21.160 39.040
Poverty (%) 1,047,739 15.963 12.451 0.870 6.100 22.920 67.270
Bachelors (%) 1,047,739 18.358 10.704 0.467 9.190 26.681 45.416
Democrats (%) 1,047,739 28.958 35.188 −100.000 1.200 51.800 100.000

Most of the variables in the dataset are relatively independent from each other. However,
there is multicollinearity between income-related variables, which is shown in the matrix
in Figure 5. Median household income and bachelor’s degree attainment are strongly and
positively correlated (0.8). Poverty and income are strongly and inversely correlated, as are
poverty and bachelor’s degree attainment. To reduce multicollinearity in the regression models
while still including the most relevant variables, we use a stepwise approach to introduce
different variables, as is explained in more detail in Section 3.
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Figure 5: Correlation matrix of all variables in the full dataset (Note: Pearson correlation
coefficient reported)
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5 Results

As discussed in detail in Section 3, we rely mainly on binomial regression models and
additional measures of probability for the interpretation of results here. We first ran a basic
binomial regression with the binary dependent variable of fire-resistant building class and
the main independent variable with three factored categories for the pre-1995, 1995-2007,
and 2008-2020 time periods corresponding to building code changes. Second, we included
socioeconomic covariates in the model. Third, we we included GIS-derived spatial variables in
the model, and finally, we included a full combination of spatial and socioeconomic variables
in the model. The results are presented in Table 7 below.

The results shown in Table 7 are presented as log-odds, which are simply the logged
odds of an outcome of 1 occurring given a one unit increase in each predictor variable while
other predictor variables are held constant. The full model on the far right of Table 7 is
the preferred model because it has the highest log likelihood and lowest Akaike Information
Criterion (AIC). We have also conducted a Wald test on the preferred model, which reports
that the model is valid with a p-value of 0.

According to the preferred model, a home built after 2008 has a 0.26 log-odds of being
classified as A, B, or C as opposed to being classified as D or S. This is compared to the
reference period of homes built before 1995. In contrast, a home built between 1995 and 2007
has a -1.27 log odds of being classified as a fire-resistant home compared to the reference
period of homes built before 1995. The coefficients from each of the binomial regression
models are also displayed in the graph in Figure 6.

Each model from the binomial regressions is shown as a different color in Figure 6. The
preferred model is displayed in green and is labeled “binom1.” The figure shows the relative
magnitude of the coefficients and how each predictor performs across models. It is evident
from looking at the figure that the dummy variable “Fire10” has a particularly large standard
error range. This suggests less precision in this predictor’s impact on the outcome variable,
which also corresponds the variable’s insignificant p-value in the preferred model since it is
not significantly different than zero. All other variables in the preferred model are highly
significant in helping to predict the outcome.

For binomial logistic regression models, log-odds are generated automatically, but these
estimates are not necessarily intuitive for audiences to readily understand. Therefore, we have
converted the outcomes from the preferred full model to odds ratios in Table 8. Confidence
intervals at the 95% confidence level are also presented to the right of the odds ratios in the
table. The odds ratio can simply be interpreted as the odds of an event occurring versus the
odds of it not occurring. For example, according to the outcomes from the preferred model,
a home built in between 2008-2020 is 1.29 times more likely to be fire-resistant. A home
built between 1995-2007 is 0.28 times less likely to be fire-resistant (due to the negative sign
on the regression coefficient). The interpretation of covariates is similar, but this changes
according to units. For example, for each log-level increase in median household income, a
home is 0.1 times less likely to be fire-resistant. As bachelor’s attainment increases by a
percentage point, a home is 1.07 times more likely to be fire-resistant. If a home is located in
a Firewise community, it is 1.62 times more likely to be fire-resistant.

Results can also be visualized by graphing the predicted probabilities of an event occurring
based on the distribution of one covariate while holding all other variables at their means.
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Table 7: Binomial regression results

Dependent variable:

Fire-resistant building class (binary)

(Base) (Socioeconomic) (Spatial) (Full)

Code Year 2008-2020 −0.267∗∗∗ 0.274∗∗∗ −0.346∗∗∗ 0.255∗∗∗

(0.036) (0.038) (0.036) (0.038)

Code Year 1995-2007 −1.931∗∗∗ −1.240∗∗∗ −1.923∗∗∗ −1.266∗∗∗

(0.046) (0.047) (0.046) (0.047)

Median hh income (ln) −2.332∗∗∗ −2.265∗∗∗

(0.024) (0.024)

Bachelor’s attainment (%) 0.071∗∗∗ 0.070∗∗∗

(0.001) (0.001)

Democratic lead 2020 (%) −0.001∗∗∗ 0.001∗∗∗

(0.0003) (0.0003)

Firewise 0.547∗∗∗ 0.480∗∗∗

(0.062) (0.067)

Fire10 −0.426∗ −0.058
(0.246) (0.254)

WUI1 0.680∗∗∗ 0.881∗∗∗

(0.027) (0.034)

WUI2 −0.665∗∗∗ −0.236∗∗∗

(0.023) (0.026)

Constant −4.211∗∗∗ 19.983∗∗∗ −4.128∗∗∗ 19.164∗∗∗

(0.008) (0.242) (0.009) (0.246)

Observations 1,325,148 1,048,149 1,325,148 1,048,149
Log Likelihood −85,884.020 −66,783.760 −84,981.580 −66,346.420
Akaike Inf. Crit. 171,774.000 133,579.500 169,977.200 132,712.800

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

16



CodeYear1995−2007

CodeYear2008−2020

WUI (interface)

WUI (intermix)

Fire10

Firewise

% democratic lead

% bachelor's degree

Median income (ln)

−2 −1 0 1
Value

C
oe

ffi
ci

en
t

Model

binom1

binom2

binom3

binom4

Binomial logistic regression coefficients

Figure 6: Coefficients of the preferred, full model are shown in green and labeled as “binom1.”
Coefficients of the spatial model are shown in orange and labeled as “binom2.” Coefficients
of the socioeconomic model are shown in light blue and are labeled as “binom3.” Coefficients
of the base model are shown in red and are labeled as “binom4.”

Table 8: Odds ratios of preferred binomial regression model coefficients

Coefficients OR 2.5 % 97.5 %

Code Year 2008-2020 0.255 1.290 0.180 0.328
Code Year 1995-2007 -1.266 0.282 -1.359 -1.175
Median hh income (ln) -2.265 0.104 -2.312 -2.218

Bachelor’s attainment (%) 0.070 1.072 0.067 0.072
Democratic lead (%) 0.001 1.001 0.0004 0.002

Firewise 0.480 1.616 0.346 0.610
Fire10 -0.058 0.943 -0.598 0.404
WUI1 0.881 2.413 0.815 0.946
WUI2 -0.236 0.790 -0.287 -0.186
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Two predicted probabilities graphs for median household income and wildland urban intermix
are presented below as example, while the remaining graphs of predicted probabilities are
presented in Section 8. Each can be interpreted conceptually in a similar way to the odds
ratios. For instance, in Figure 7, as the log level of median household income increases, it
is predicted that a home is less likely to be classified as fire-resistant. In Figure 8, as the
percentage of bachelor’s degree attainment increases in a Census tract area, homes in that
area are predicted to be more likely to be fire-resistant, though the margin of probability is
relatively moderate. If a home is located in a Firewise community, it is predicted that the
home is somewhat more likely to be classified as fire-resistant.
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6 Discussion

We present the results here to lend empirical evidence using multivariate regression analysis
methods to establish a better understanding of the relationship between California’s building
code changes in 1995 and 2008 and general public adoption of higher levels of fire-resistant
building materials. Our analysis also focuses on secondary relationships between spatial
and socioeconomic characteristics and the outcome of higher levels of fire-resistant building
materials across 1,048,149 homes in the five counties included in this study. It appears that,
at least for the homes represented in the data used here, the code change in 2008 is positively
and significantly associated with higher levels of fire-resistant building classes. The opposite
is true of the code change in 1995, but it is also important to note that a home could have
a fire-resistant roof (which can have a positive impact on reducing the chances of property
destruction during wildfire) and not be included in the higher-level classes of A, B, or C. So
perhaps it is unsurprising that roofing-only building code change in 1995 does not appear to
have much of an effect on the overall rating of the building class, but this is again descriptive
and only representative of the data available within the five California counties of Alameda,
Fresno, San Bernardino, Stanislaus, and Sutter.

Some of the covariate results were surprising based on previous findings in the literature.
For instance, relatively recent experience with wildfire has been shown to be a major predictor
of the adoption of fire-safe practices and adaptive behaviors [Haines et al., 2008, Paveglio
et al., 2015]. However, in this study, previous experience with wildfire in the past 10 years
does not appear to be significantly associated with the adoption of higher-level building
materials. It could be that this experience does have an acute effect on specific households,
but this effect may not apply largely to a broad swath of a population. The adaptive capacity
or broader local context of different geographic areas can vary widely and affect a community’s
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ability to rebuild effectively in the aftermath of disaster [Kolden and Henson, 2019, Paveglio
et al., 2016].

Another surprising and perhaps counterintuitive result is that median household income
is inversely related to higher levels fire-resistant building classes. It is possible that this could
be due to a higher propensity for risk-taking among wealthier households. Threats from
natural hazards and disasters may be perceived differently among households at different
income levels [Kolden and Henson, 2019]. It could also be possible that some of these homes
are seasonal or secondary homes of wealthier owners who are less interested in preparedness
for their additional properties. Other researchers have made conflicting findings regarding
income showing, for instance, that households with higher incomes exhibit preferences for
fire-safe landscaping around the home more frequently than lower-income households [Wolters
et al., 2017]. As Muller and Schulte [2011] points out, wealthier communities have greater
tendencies for adaptive behaviors and creating programs at the community level to promote
resilience. The direct impact of income on the adaptive behaviors of homeowners is less than
straightforward, however, and may be as dependent on local context or even idiosyncratic
individual behavior and preferences as other correlates of mitigation actions. Inconsistent
findings of the direction of correlation, or any correlation at all, between income and fire-safe
mitigation behaviors are cited by Paveglio et al. [2016] and Brenkert-Smith et al. [2012].

Other socioeconomic covariates for political affiliation and educational attainment (measured
by bachelor’s degree attainment) both have positive and significant associations with higher
levels of fire-resistant building classes. Both variables increase the likelihood that a home will
be classified as A, B, or C by slightly more than a factor of one. The positive correlational
effect observed here is consistent with several studies’ findings [Muller and Schulte, 2011,
Ergibi and Hesseln, 2020], but education specifically has been shown to have an enhanced
effect when it refers specifically to specialized education or knowledge of mitigation techniques
and home resilience to hazards [Brenkert-Smith et al., 2012].

Finally, homes located within key perimeters for Firewise communities, wildland urban
intermix, and wildland urban interface areas were all shown to have strong effect sizes. Homes
in Firewise communities and intermix areas are strongly and positively associated with higher
levels of fire-resistant building classes. Communities that have already adopted adaptive
programs and actions, such as the Firewise community program, are likely conducting more
outreach and education to promote resilient behaviors and home construction methods
[Wolters et al., 2017, Paveglio et al., 2016, Mockrin et al., 2018]. Homes in intermix areas may
be more likely to be associated with higher levels of fire-resistant building classes because there
may be more enforcement of building codes in these areas since they are highly fire-prone, or
people who move to these areas may exhibit other qualities beyond the scope of this study
that cause them to be predisposed to taking protective measures. It is uncertain why the
associations of intermix and interface areas are opposite from each other. Interface areas are
some most heavily wooded areas, and so this level of isolation may select for a certain type
of resident with a higher risk-taking preference or higher income.
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7 Conclusion

In this study, we have constructed a novel dataset by conducting geospatial data processing
to create completely new data, collecting socioeconomic indicators, and finally merging these
variables with real estate data from the largest real estate database in the US. We have used
this dataset to derive empirical findings between major building code changes in California in
1995 (requirement for fire-resistant roofing) and 2008 (requirement for certain fire-resistant
building materials in SRAs and certain LRAs). We have also examined the relationships
between higher-level fire-resistant building class outcomes and spatial and socioeconomic
covariates that are found in much of the literature studying the determinants of adoption of
adaptive or mitigating behaviors in fire-prone areas.

The results presented here suggest that the building code change in 2008 may have had a
broader impact in encouraging the adoption of higher-level fire-resistant home construction
materials than the building code change for roofing in 1995. However, these results are
not causal and would benefit from causal examination to infer more precisely the impact
and spillover effects of the 2008 building code change. Other factors undoubtedly play
a role in home resilience strategies, including local incentives or subsidies, local political
framing of wildfire adaptation, the cost and supply of fire-resistant materials and ease of their
incorporation into building plans, risk perceptions and awareness, etc. Covariate interactions
with these policy changes may also help to explain differences in community resilience and
wildfire preparedness.

For researchers, there is a need for future work on this topic to study the behavioral and
communal characteristics for greater adoption and perhaps mechanisms to target incentives
and subsidies for home design and home retrofits in fire-prone areas. Additional causal work
across different geographic areas that demonstrates the direct causal impacts and spillover
effects of different types of wildfire resilience policies as well as voluntary resilience and
mitigation efforts would be valuable moving forward. For policymakers, these results highlight
gaps between public policy and meaningful community resilience measures to protect the
public, property, and the local environment from worsening wildfire hazards. Over a quarter of
homes in the five counties represented in this dataset are located in one of the most fire-prone
areas - wildland urban interface areas - and yet, even for homes built after the building
code change in 2008, there is an inverse relationship for homes located in these areas and
home construction using fire-resistant materials. A more coordinated policy framework for
implementation and enforcement of codes across local and state jurisdictions will be needed
to effectively build community resilience to the imminent and growing threat of wildfires in
California in the coming decades.
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