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Abstract 
 
High uncertainty is found during inter-comparison of land-use/land-cover (LULC) maps derived from 
remote sensing imagery. Among the reasons for classification mismatch, especially in coarse maps and 
heterogeneous areas characterized by mixed pixels, is that the landscape heterogeneity is ignored by 
providing only the LULC class covering the largest portion of a pixel. Pixels are arbitrary spatial units 
determined mainly by the sensor’s properties and can have little relation to natural units on the ground. 
In fact, the use of class proportions in ground-truth training data, that better depict reality, proved to 
decrease the thematic accuracy of traditional LULC maps characterized by one LULC class per pixel. 
Because high-resolution LULC maps upscaled to coarser resolutions provide higher accuracy than 
natively-coarse maps, and because, except from creating new maps, integration of available ones can 
increase the final accuracy, during this project the potential of two data fusion methods for multi-scale 
(from high to coarse resolution) and multi-class maps to derive more accurate ones with fraction 
information at medium resolution (100m) was explored. Two data fusion models were tested in four 
study areas characterized by both mixed and pure-pixels by using seven LULC maps as input and a 
ground-truth sub-pixel database as response variable. The models’ output was then validated and 
compared against each individual input map, in both mixed and pure-pixels, by using the sub-pixel 
thematic accuracy matrix. To make more robust predictions and better answer the research questions 
of the study improvement of the goodness of fit of the data fusion models is needed. Despite the need 
of the models’ amelioration, it was observed that multiscale and multiclass data fusion improved the 
sub-pixel accuracy of some LULC classes compared to some of the maps used as input specially in 
mixed-pixels. 
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1.0 INTRODUCTION 
 
Land-use/land-cover (LULC) is an important driver in many of the studies involving the Earth surface, 
such as climate, food security, hydrology, nutrient cycling, soil erosion, atmospheric quality, 
conservation biology, plant functioning and ecosystems assessment. The possibility of land monitoring 
has increased in the last decade, and multiple global LULC maps have emerged to map the current 
global LULC, as well as to measure its change. To better understand LULC conversions, it is important 
to have an accurate understanding of the nature and distribution of LULC at high spatiotemporal scale 
(Verburg et al. 2011). Despite the continuous increased scale of remote sensing observations, 
problematic levels of uncertainty are associated with derived global LULC maps, and discrepancies are 
observed during maps inter-comparison (Fritz and See 2008, Fritz et al. 2011). Their spatio-temporal 
uncertainty affects downstream applications via propagation through models, therefore diminishing the 
reliability of their predictions (Seebach et al. 2012 from Schepaschenko et al. 2015, Estes et al. 2018). 
Therefore, there is a need for improvement of global LULC maps that can support scientific and policy 
applications (Szantoi et al. 2020). 
 
Despite efforts in advancing mapping approaches, the thematic accuracy of LULC maps has not 
improved significantly and continues to be around 70% (Tsendbazar et al. 2016). Except from creating 
new maps, one way in which the different LULC maps can be used (and the spatio-temporal 
discrepancies reconciled) is by using data fusion methods. Data fusion is a domain based on the 
integration of data coming from a variety of sources, and the derived product could have a resulting 
thematic accuracy higher than any of the individual sources used as input. Some authors have already 
demonstrated the efficacy of data fusion methods and explored their utility to reconcile discrepancies 
between maps. For example, Jung et al. 2006 developed a fuzzy agreement scoring method to 
determine the synergies between global LULC products for modelling the carbon cycle. Fritz et al. 2011 
used this synergy concept, in combination with expert knowledge, to rank LULC products at global and 
national scales, along with national crop statistics, and combined them into a single cropland layer for 
Africa. Tuanmu et al. 2014 created a global 1km consensus LULC product by using an accuracy-based 
integration approach centered on 4 global LULC maps. Schepaschenko et al. 2015 developed a global 
hybrid forest mask through the synergy of remote sensing, crowdsourcing and FAO statistics. The 
author showed where individual input datasets contributed to the final product, and demonstrated that 
all were needed to produce a consensus product with higher accuracy. See et al. 2015 reconciled a 
global hybrid LULC map with crowdsourcing and geographically weighted regression to obtain 
consensus information from 3 individual LULC maps. Tsendbazar et al. 2015 showed that data fusion 
of existing maps, especially when accounting for their relative merits, can improve the thematic 
accuracy. The results, therefore, demonstrated the added value of using reference datasets and geo-
statistics to improve LULC maps. Lesiv et al. 2016 compared several data fusion methods using 
crowdsourced data as reference and available forest products as input. The author found that 
geographically-weighted regression (GWR) was the best performing method in areas of high 
disagreement between the inputs. 
 
These authors made use of multi-scale co-existing maps in the data fusion. Upscaled high-resolution 
maps can provide higher accuracy than natively-coarse ones (Sun et al. 2018), but higher resolution 
products are not always more accurate than maps with coarser resolution (See et al. 2015). Thus, 
integrating information at multiple resolutions is essential for providing the most accurate information 
possible to data fusion approaches. To date, data fusion methods developed ultimately delivered 
another traditional discrete map via what is called ‘hard’ classification where each pixel unit is 
represented by the single LULC class covering the largest portion of the pixel (Li et al. 2014). Many 
areas on the ground are composed of a diverse mosaic of multiple LULC classes (mixed pixel or 
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heterogeneous area). Among the reasons of classification mismatch, especially in coarse maps and 
heterogeneous areas characterized by mixed pixels (Stehman and Foody 2019, Fritz et al. 2011), is 
that the landscape heterogeneity is often ignored by reporting only the LULC class covering the largest 
portion of a pixel. The magnitude of the problem is a function of the relationship between the image 
spatial resolution and the landscape mosaic on the ground. The ‘hard’ classification, therefore, simplifies 
reality and has implications for both the accuracy assessment and the applications derived from LULC 
maps, with a decrease in accuracy when fractional information is considered as reality (Fonte et al. 
2020). To date only few LULC maps, developed via ‘soft’ classification methods, report the fractional 
information of the co-existing LULC classes per pixel unit. Copernicus provides the Copernicus Global 
Land Cover Layers (CGLS-LC100) at 100 m resolution with fractions for every major LULC class between 
the time-period 2015-2019 (Buchhorn et al. 2019). The global layers (VCF) provide fractional 
information at 5000 m during a longer time-period (1982-2016) but only for 3 major LULC classes 
(Hansen et al. 2018). 
 
Yet, the potential of data fusion to harness the complementary information from multiresolution LULC 
maps, and derive more accurate ones with fractional information, remains underexplored. LULC at high 
spatio-temporal scale is important in order to have an accurate understanding of LULC changes 
(Verburg et al. 2011), but medium resolution products are also still extremely useful from a modelling 
and assessment point of view, when the issue in not to improve the resolution but simply to improve 
the accuracy. In this study, the overarching goal is therefore to test the efficacy of data fusion, for 
multiscale and multiclass LULC maps, to improve fractional information at 100 m. The tested models 
can potentially be used for future improvement of traditionally (hard) classified global maps meantime 
there is a lack of fractional classified global maps since they offer low spatial resolution or temporal 
coverage to date. 
 
This study addresses the following research questions: 
 

I. Can data fusion methods, for multiscale and multiclass LULC maps, be used to improve 
fractional information at medium resolution? 
 

II. Can the models improve the accuracy assessment in both homogeneous and heterogeneous 
areas? 

To answer the above-mentioned research questions we selected 4 study areas where to test two data 
fusion models for the base year 2015 (when there was availability of a training dataset), namely 
Dirichlet and Beta distributed linear regression models. The successful achievement of the overarching 
goal relied on the availability of a quantitative training dataset with fraction information for each target 
LULC class. We used Copernicus (Buchhorn et al. 2019) ground-truth fractional information at 100 m 
as reference database and seven multiscale (10-5000 m resolution) derived LULC maps as predictors. 
The fitted models were then used to predict LULC fraction information for cropland, grassland, 
shrubland, forest, urban and built-up area, bare land, water body and ‘other’. The accuracy of the 
predictions obtained with data fusion were then compared to the corresponding input maps used as 
predictors in both homogeneous areas characterized by pure-pixels (one LULC class per pixel unit) and 
heterogeneous areas to understand if the models can work with both types of landscape complexity. 
 

2.0 METHODOLOGY 
 
The workflow used during the study is reported in Figure 1. Four study areas were selected to test the 
models (described in section 2.1). The input data used are the ground-truth database with fraction 
information (described in section 2.2) and the seven derived remote sensing LULC maps (described in 



 
 

3 

section 2.3). The input data were pre-processed as described in the sections 2.2 and 2.3, and then 
used for models’ training detailed in section 2.4. The best models were selected to make fraction 
predictions for each LULC class as described in 2.4, and the results compared to each input map used 
in the data fusion by using the sub-pixel accuracy matrix described in 2.5  
 

 
Figure 1. Data fusion workflow diagram. Input data are shown in yellow (response and 
predictors). Pre-processing of the input data, that were pooled together for all testing areas and used 
individually, is shown in gray and the models training steps in blue. In green are indicated the global 
Dirichlet and Beta regressions fitted by pooling together all testing areas, while in red are indicated the 
regional Dirichlet and Beta regressions fitted in each individual study area. The module for prediction 
is shown in green, at the end of which model selection was performed. The selected model was used 
to make predictions and compare the sub-pixel thematic accuracy between the model’s output and 
each of the predictors used in the data fusion (module in pink). 
 
2.1 Study areas 
Four testing areas (Figure 2, panel A) were selected by taking into account both, the spatial density of 
locations available in the ground-truth sub-pixel database and the two different types of landscape 
(homogeneous and heterogeneous areas) (section 2.2). Preferred areas were those in which some of 
the locations were also checked for LULC change during the time-period 2015-2019. The reason for 
this choice is because the work may be extended to improve the fractional information not only spatially 
but also in time. 
 
2.2 Ground-truth sub-pixel database 
A 10 m ground-truth sub-pixel database was used as reference information during the data fusion. The 
database reports fractional information of LULC classes at each location, where the sum of the co-
occurring proportions is always 100. It was developed by expert judgement on the Geo-Wiki platform 
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(http://www.geo-wiki.org/) to build and validate the 100 m CGLS-LC100 layers (Buchhorn et al. 2019). 
LULC information was then aggregated in each 100 m grid to obtain the per class fraction information.  
 
At each available location we superimposed a 100x100 m grid based on the pixels of CGLS-LC100. LULC 
fractional information for fallow, bare land, cropland, lichens, shrubland, grassland, snow and ice, 
forest, urban and built-up, water body, wetland and burnt area was available. The LULC sub-pixel 
information of lichens, wetland and snow and ice was aggregated into a LULC class called ‘other’ as 
they were deemed rare classes and barely represented in derived remote sensing LULC maps. While 
the locations with fallow and burnt area greater than zero where removed from the database because 
the former may be confused with cropland, while the latter could be any of the LULC classes. 
Subsequently to the above pre-processing steps and cleaning of uncertain locations the LULC fraction 
information for bare land, cropland, shrubland, grassland, forest, urban and built-up, water body and 
‘other’ class was available at 13,254 locations pooled across the four testing areas. 
 
Based on the sub-pixel database, each location was categorized as pure or mixed-pixel. Pure pixels 
were those in which one of the LULC classes covered 100% of the 100 m grid. Mixed pixels were those 
in which none of the LULC classes covered 100% of the 100 m grid. In Western North-America, South-
western Europe and Eastern South-Africa more than 50% of the locations were mixed-pixels (Figure 2, 
panel B). South-western Europe was the study area with the lowest proportion of pure-pixels (still 
above 10%). While in Tropical South East Asia the fraction of pure and mixed-pixels was 50-50. 
 

 
Figure 2. Characterization of the ground-truth sub-pixel database. Panel A shows the locations 
of the database that were split between training in purple (70%) and validation in yellow (30%). The 
four selected areas were: Western North-America (upper left – area_1), area_2 (upper-right, South-
western Europe), area_3 (bottom-left, Eastern South-Africa) and area_4 (bottom-right, Tropical South 
East Asia). Panel B shows the proportion of pure (orange) and mixed (grey) pixels in each of the testing 
areas. 
 
The sub-pixel database was used for training and validation of the models. Thus, it was split between 
training and validation locations by doing random sampling with the function createDataPartition in the 
‘caret’ (version 6.0-88) R package. For each testing area, 70% of the locations were retained for training 

http://www.geo-wiki.org/
http://www.geo-wiki.org/
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the models while 30% for their validation. In the latter locations the models were used to make 
predictions (as described in 2.4.3) and measure the sub-pixel thematic accuracy. 
 
A common issue with LULC fractional data as input in regression models is data imbalance. The more 
LULC classes are mapped, the more likely it is that some of the classes are not present in a given 
location (have 0% fraction). The problem is shown in Figure 3 with fractional information’s distribution 
per LULC class pooled in all 4 testing areas. How to deal with the high presence of zeros in the data is 
treated in section 2.4.1. 
 

 
Figure 3. Fraction distribution. Fraction distributions for each of the 8 LULC classes in the ground-
truth sub-pixel database. 
 
The most abundant classes were cropland, grassland, shrubland, forest and bare land (Table 1). The 
rare ones were water body, urban and built-up area and ‘other’ LULC class. Exceptions were observed 
for cropland in Western North-America and bare land in Tropical South East Asia where not many 
locations were available with fraction greater than zero (Table 1). The spatial distribution of the LULC 
classes used during the study is reported in Appendix A (FigureA1-A4). 
 
Table 1. Abundance* of LULC classes per study area in mixed and pure pixels 
Region cropland grassland shrubland forest water bare urban other 
North-America 112 2080 1591 1220 183 742 129 69 
Europe 609 1975 1489 1669 149 730 393 33 
North-Africa 914 3062 1853 1491 206 742 380 118 
Asia-tropical 567 1223 1031 2726 227 307 282 61 
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*when fraction greater than zero 
 
2.3 Predictors 
Seven maps derived from remote sensing images were used as predictors in the tested models. To 
exploit the useful information coming from different scales, the spatial resolution of the predictors used 
was ranging between 10 and 5000 m. The number of LULC classes was different per predictor as 
reported in Table 2. 
 
For each LULC map used as predictor we selected the year 2015 to have the same LULC information in 
time between the reference database and the predictors. Their LULC classes were reclassified to the 8 
LULC classes of interest as reported in Appendix A Table A1. The Hansen map was the only one with 
fraction information for forest class. Thus, the values were not converted to a ‘hard’ classification and 
each pixel value greater than zero was considered as the fraction of forest present in the 30 m pixel of 
the derived map. 
 
Table 2. Predictors used in the study 
map url LULC classes resolution (m) 
GLASS 
 
 

https://doi.pangaea.de/10.15
94/PANGAEA.913496 

bare land, cropland, 
grassland, forest, shrubland 

5000 

ESA-CCI https://cds.climate.copernicu
s.eu/cdsapp#!/dataset/satelli
te-land-cover?tab=form  

bare land, cropland, 
grassland, forest, 
shrubland, water body, 
urban and built-up, other 
LULC 
 

300 

GLC-FCS30 https://zenodo.org/record/39
86872#.YN7ZPkyxWUk  

bare land, cropland, 
grassland, forest, 
shrubland, water body, 
urban and built-up, other 
LULC 
 

30 

GFSAD https://e4ftl01.cr.usgs.gov/M
EASURES/  
 

cropland, water body 30 

Hansen http://earthenginepartners.a
ppspot.com/science-2013-
global-forest  
 

forest 30 

Pekel https://global-surface-
water.appspot.com/download
;https://developers.google.co
m/earth-
engine/datasets/catalog/JRC
_GSW1_2_YearlyHistory#ter
ms-of-use  
 

water body 30 

WSF https://springernature.figshar
e.com/articles/dataset/World

urban and built-up 30 

https://doi.pangaea.de/10.1594/PANGAEA.913496
https://doi.pangaea.de/10.1594/PANGAEA.913496
https://doi.pangaea.de/10.1594/PANGAEA.913496
https://cds.climate.copernicus.eu/cdsapp#!/dataset/satellite-land-cover?tab=form
https://cds.climate.copernicus.eu/cdsapp#!/dataset/satellite-land-cover?tab=form
https://cds.climate.copernicus.eu/cdsapp#!/dataset/satellite-land-cover?tab=form
https://cds.climate.copernicus.eu/cdsapp#!/dataset/satellite-land-cover?tab=form
https://zenodo.org/record/3986872#.YN7ZPkyxWUk
https://zenodo.org/record/3986872#.YN7ZPkyxWUk
https://zenodo.org/record/3986872#.YN7ZPkyxWUk
https://e4ftl01.cr.usgs.gov/MEASURES/
https://e4ftl01.cr.usgs.gov/MEASURES/
https://e4ftl01.cr.usgs.gov/MEASURES/
http://earthenginepartners.appspot.com/science-2013-global-forest
http://earthenginepartners.appspot.com/science-2013-global-forest
http://earthenginepartners.appspot.com/science-2013-global-forest
http://earthenginepartners.appspot.com/science-2013-global-forest
https://global-surface-water.appspot.com/download;https:/developers.google.com/earth-engine/datasets/catalog/JRC_GSW1_2_YearlyHistory#terms-of-use
https://global-surface-water.appspot.com/download;https:/developers.google.com/earth-engine/datasets/catalog/JRC_GSW1_2_YearlyHistory#terms-of-use
https://global-surface-water.appspot.com/download;https:/developers.google.com/earth-engine/datasets/catalog/JRC_GSW1_2_YearlyHistory#terms-of-use
https://global-surface-water.appspot.com/download;https:/developers.google.com/earth-engine/datasets/catalog/JRC_GSW1_2_YearlyHistory#terms-of-use
https://global-surface-water.appspot.com/download;https:/developers.google.com/earth-engine/datasets/catalog/JRC_GSW1_2_YearlyHistory#terms-of-use
https://global-surface-water.appspot.com/download;https:/developers.google.com/earth-engine/datasets/catalog/JRC_GSW1_2_YearlyHistory#terms-of-use
https://global-surface-water.appspot.com/download;https:/developers.google.com/earth-engine/datasets/catalog/JRC_GSW1_2_YearlyHistory#terms-of-use
https://global-surface-water.appspot.com/download;https:/developers.google.com/earth-engine/datasets/catalog/JRC_GSW1_2_YearlyHistory#terms-of-use
https://springernature.figshare.com/articles/dataset/World_Settlement_Footprint_WSF_2015/10048412
https://springernature.figshare.com/articles/dataset/World_Settlement_Footprint_WSF_2015/10048412
https://springernature.figshare.com/articles/dataset/World_Settlement_Footprint_WSF_2015/10048412


 
 

7 

_Settlement_Footprint_WSF_
2015/10048412  

 
To prepare each predictor for the data fusion we derived their information at 100 m resolution by 
following two different methods. In both methods, the 100 m extent of the reference locations was 
used to crop the predictors. The LULC maps with coarser resolution than 100 m (ESA-CCI and GLASS) 
were prepared as dummy variables (0-1) depending on the presence/absence of each LULC class as 
shown in Figure 4 (panel A). Because more than one LULC class could potentially be intersected, the 
one covering the largest portion of the grid was considered as presence (value 1) and the remaining 
LULC classes as absence (value 0) at each location. The LULC maps with resolution higher than 100 m 
(GLC-FCS30, GFSAD, Hansen, Pekel and WSF) were prepared in each location as fractions with a value 
between 0 and 1 indicating the percentage of the 100 m grid covered by the co-existing LULC classes 
(Figure 4, panel B). 
 

 
Figure 4. Predictors preparation. Blue grid is one location extent of the ground-truth sub-pixel 
database. Red grid is the spatial resolution of the predictors whose information is prepared at 100 m 
for the data fusion. Maps coarser than 100 m (panel A) were prepared as dummy variable (0-1). Maps 
with resolution higher than 100 m (panel B) were prepared as fractions indicating the percentage of 
the 100 m blue grid covered by the co-existing LULC classes (value between 0 and 1). 
 
2.4 Modelling 
 
2.4.1 Models 
Statistical analysis of proportions can present numerous difficulties. By definition, the observations are 
limited to numerical values between, and including, 0 and 1 (or 0 and 100). A common issue with the 
use of LULC fraction data as input into regression models is data skewness, and the more classes are 
mapped the more likely it is that one or more classes are not present in a given pixel, leading to zero 
inflation (Figure 3). These properties of proportional data mean that the standard techniques of 
statistical analyses are usually not appropriate. A common recommendation is to apply a data 
transformation to meet the normality assumption and proceed with ordinary linear models, but the 
solution has important drawbacks with respect to interpretability and the validity of the resulting 
inference. 
 
Generalized linear models (GLMs) extend linear regression to many types of response variables. When 
modelling proportional data coming from non-count data, two more flexible solutions than 

https://springernature.figshare.com/articles/dataset/World_Settlement_Footprint_WSF_2015/10048412
https://springernature.figshare.com/articles/dataset/World_Settlement_Footprint_WSF_2015/10048412
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transformation-based methods are available, namely Beta and Dirichlet regressions. The Beta 
regression is used to model univariate data, meaning that each LULC class is modelled independently 
and final rescaling is needed to ensure the unit-sum constraint. The second more sophisticated 
approach, the Dirichlet regression, is used to model multivariate data where the unit-sum constraint is 
maintained by an alpha parameter in the distribution that establishes the negative correlation between 
the LULC classes. For the Beta regression, the R package ‘betareg’ was used. For the Dirichlet 
regression, the R package ‘DirichletReg’ was used instead. Because of their implementation in a GLM-
like setting, where a logit-link function establishes a linear relationship between the predictors and the 
response variable, the regressions cannot deal with extract zero and ones in the data. Thus, the 
following transformation was done: 

𝑝𝑝∗ =  
𝑝𝑝(𝑛𝑛 − 1) + 1

𝐶𝐶
𝑛𝑛

    Equation 1 
 
with p being the proportion of a LULC class, n the total number of observations in a dataset and C the 
number of categories (Smithson and Verkuilen 2006). The data is compressed symmetrically around 
0.5, thus extreme values are more affected than values lying close to 0.5. With a large number of 
samples, the compression vanishes. 
 
2.4.2 Model fitting 
For both regressions we fitted one global model (non-spatial case) by pooling all study areas together 
(indicated in green in Figure 1), and 4 regional models (spatial case) for each of the study areas 
(indicated in red in Figure 1). Thus, a total of 10 models were fitted as shown in Appendix B (Table 
1B). The models were trained by using the 70% of the sub-pixel database locations prepared as 
described in section 2.2, and indicated in purple in Figure 2A. 
 
A problem which has long been acknowledged in regression modelling is that of collinearity among the 
predictor variables. Diagnostics to investigate the nature of collinearity should always be conducted 
and collinearity reduced in order to: i) delete redundancy between covariates, ii) avoid a biased 
assessment of variable importance (Strobl et al. 2008). Thus, the selection procedure for the predictors 
consisted in the following two steps: correlation analysis and step-wise selection. The correlation 
analysis was carried out as an initial step with the R package ‘corrplot’ to find the global and regional 
collinearity between predictors (Appendix B, Figure1B-5B). A quantified correlation higher than 0.5 was 
considered for further investigation with the step-wise selection. In the step-wise selection, for each 
set of LULC class predictors, the pair of covariates correlated above the 0.5 threshold were compared 
against the full model using ANOVA and the ones that gave the best model were used. Interaction 
terms between predictors were also checked, and the significant ones retained. The final list of selected 
predictors per fitted model is reported in column 2 of Table1B (Appendix B). For each LULC class the 
same set of predictors were used in the global and regional models, thus to compare the performance 
of Dirichlet versus Beta regression. 
 
Location data often implies spatial dependence (spatial autocorrelation) and spatial heterogeneity (non-
stationarity). Spatial heterogeneity was checked by using the function gwr.sel in the R package ‘spgwr’. 
The spatial autocorrelation for Dirichlet regression was tested by using the Mantel test with the R 
package ‘ade4’ and Moran’s I test for Beta regression using the R package ‘moranfast’. Significant 
(p<0.05) spatial autocorrelation can bias model selection because spatially autocorrelated variables 
may be picked up as having a significant contribution to the fitted model. The spatial autocorrelation 
was detected, but not yet addressed in the study.  
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2.4.3 Goodness of fit and model selection 
For each model fitted, the accuracy and the goodness of fit were measured for the observed and 
predicted values using the indicators: mean absolute error (MAE), root mean square error (RMSE) and 
R-squared (R2) (Appendix B, Table 2B). The R2 was calculated as the square of the correlation between 
the observed and predicted values. The MAE is not very influenced by a small number of large 
misclassifications, thus is more indicative of the overall model accuracy. RMSE is more indicative of the 
presence of large errors. R2 is used to measure the goodness of fit of a model. This metric shows how 
far the predicted values are from a 1:1 line with the observed values and it was used for model’s 
selection (see section 3.0). The indicators were measured separately per LULC class, but also for all 
LULC classes with the overall indicator that was calculated by taking the mean of the per-class means. 
 
The best performing regression (with highest R2) was then selected for making predictions in the 
locations chosen for validation (30% per testing area indicated in yellow in Figure 2A). Here the 
predicted values were used to measure and compare the sub-pixel thematic accuracy between the 
model’s output and each of the LULC maps used as input in the data fusion.  
 
2.5 Thematic accuracy 
The model’s predictions were post-stratified in mixed and pure-pixels to measure if the thematic 
accuracy obtained per study area was improved with the data fusion model in both types of landscape 
complexities. The thematic accuracy was compared versus each input map used as predictor and the 
CGLS-LC100 layer. The latter was not used as predictor during the modelling because the reference 
database used in the study was used to develop the CGLS-LC100 maps. 
 
To measure the thematic accuracy, we used the sub-pixel confusion-uncertainty matrix (SCM) for multi-
class classification developed by Silvan-Cardenas et al. 2008 and implemented in code by Masiliunas et 
al. 2021. The SCM is an adaptation of the classical confusion matrix to fractional data. We used the 
MIN-PROD operator as recommended by the authors and proposed by Pontius and Cheuk (2006). When 
using this operator, the diagonal of the matrix expressed the maximum overlap (minimum fraction - 
MIN) between the target and the predicted class fractions. The off-diagonal, instead, is an expression 
of which classes the non-overlapping fractions should belong to and it is calculated as the product 
(PROD) between the reference and the predicted class fraction. 
 
The overall accuracy was compared between the predicted values and the maps ESA-CCI, GLC-FCS30 
and Copernicus since these are the only maps with all the 8 LULC classes of interest. The per-class 
accuracy (user’s accuracy) allowed comparison with more input maps. E.g. for the class forest the 
accuracy comparison was done between the predicted values and the maps: ESA-CCI, GLC-FCS30, 
Copernicus, GLASS and Hansen.  
 
Significant differences between sub-pixel accuracies were shown by fitting a GLM from the R package 
‘glm’ with family quasibinomial and logit as link function. The least squares means were compared with 
the R package ‘lmerTest’ and the letters display for the pairwise comparisons were computed with the 
R package ‘multcomp’. The results of the analysis are shown in section 3.0. 
 

3.0 RESULTS 
 
When comparing the global models, Dirichlet regression resulted in slightly better fit than Beta 
regression for the LULC classes forest and water body (Table 3) but, for the overall and remaining LULC 
classes, higher goodness of fit was obtained with Beta regression. Exceptions are the classes cropland 
and ‘other’ for which the two regressions gave the same goodness of fit (Table 3). 
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When comparing the regional models, in Eastern South-Africa the Dirichlet regression gave slightly 
higher R2 when modelling the fraction of grassland (Table 3). In Western North-America higher R2 was 
observed with Dirichlet regression for the classes bare land, grassland, shrubland, forest and water 
body. In Tropical South East Asia Dirichlet regression did not give higher R2 than Beta regression with 
any of the LULC classes (Table 3). While in South-western Europe higher R2 was observed with Dirichlet 
regression for the classes cropland, shrubland, forest, urban and built-up and water body. 
 
Although with some LULC classes the R2 was slightly higher when fitting Dirichlet regression, the higher 
goodness of fit of some classes did not compensate the overall indicator. The same result was observed 
with the overall indicators MAE and RMSE that were lower (thus indicating better accuracy) when using 
Beta regression in both global and regional contexts (Appendix B, Table 2B). The result indicated that 
the best model to use for the data fusion, and obtain the predicted fractions per LULC class, was the 
Beta regression (Table 3). 
 
When comparing the R2 obtained by fitting one global and 4 regional Beta regressions it was observed 
that higher overall R2 was reached with the global model (Table 3), but regional models showed higher 
R2 for some LULC classes. For example, in Western North-America higher R2 compared to the global 
model was observed for the classes bare land and cropland. For the LULC class urban and built-up 
higher R2 was observed by fitting regional models in all testing areas except Tropical South East Asia 
(Table 3). 
 
Table 3. R2 of the fitted models per LULC class and overall 
 Bare 

land 
Cropland Grassland Shrubland Forest Urban 

and 
built-up 

Water 
body 

Other 
LULC 

Overall 

Global 
Dirichlet 

0.28 0.26 0.20 0.04 0.50 0.44 0.43 
 

0.01 0.27 

Dirichlet_Africa 0.01 0.37 0.15 0.05 0.28 0.66 0.54 0.01 0.26 
 

Dirichlet_America 0.33 
 

0.21 0.16 0.05 0.50 0.53 0.51 0.01 0.29 

Dirichlet _Asia 0.01 
 

0.20 0.10 0.04 0.31 0.35 0.27 0.01 0.16 

Dirichlet _Europe 0.03 
 

0.22 0.12 0.04 0.34 0.28 0.60 0.01 0.20 

Global Beta 0.29 0.26 0.36 0.25 0.49 
 

0.46 0.40 0.01 0.31 

Beta_Africa 0.04 0.38 
 

0.11 0.21 0.28 0.66 0.54 0.03 0.28 

Beta _America 0.32 0.32 0.11 0.03 0.49 
 

0.61 0.43 0.01 0.29 

Beta _Asia 0.01 0.23 0.28 0.22 0.34 
 

0.47 0.34 0.01 0.24 

Beta _Europe 0.05 0.21 0.33 0.03 0.32 0.27 0.55 0.01 0.22 
*in red R2 below 0.10, in yellow R2 between 0.10 and 0.39, in green R2 equal or greater than 0.40 
 
For the LULC classes bare land, cropland, grassland, shrubland and ‘other’, the R2 values were very low 
(indicated in red and yellow in Table 3). Therefore, during the study seemed feasible to use the Beta 
regressions to make predictions only for the LULC classes forest, urban and built-up and water body. 
The fractions of the remaining LULC classes were thus aggregated into the ‘other’ LULC class. Because 
for some LULC classes, as urban and built-up, higher R2 was observed when fitting the regional 
regressions (Table 3) we decided to select the regional Beta linear models to test the potential of data 
fusion and answer the research questions of the study.  
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By restricting the analysis to the 4 LULC classes (forest, urban and built-up, water body and ‘other’ 
class) higher goodness of fit for the ‘other’ LULC class (compared to Table 3) was observed, in both 
pure and mixed-pixels, with the regional Beta regressions (Appendix B, Figure 6B). When looking at 
the validation locations, higher R2 was always observed in pure-pixels compared to mixed-pixels 
(Appendix B, Figure 6B) except in Tropical South East Asia where slightly higher R2, with the ‘other’ 
LULC class, was observed in mixed-pixels. In the validation locations, after post-stratification of the 
predictions between pure and mixed-pixels, low R2 was observed in Tropical South East Asia for the 
LULC classes forest, water body and ‘other’ in mixed-pixels and for the ‘other’ LULC class in pure-pixels 
(Appendix B, Figure 6B). In Western North America low R2 was observed in mixed-pixels for the LULC 
classes water body and ‘other’. While in South-western Europe low R2 was observed in mixed-pixels for 
the classes forest and ‘other’ (Appendix B, Figure 6B). 
 
The overall sub-pixel accuracy of the Copernicus layer, pooled across the four testing areas, was 
significantly higher compared to the predictors ESA-CCI, GLC-FCS30 and the predictions obtained with 
the Beta regression (Figure 5, panel A). While no significant difference was observed between the Beta 
regressions’ output and the predictors ESA-CCI and GLC-FCS30. The result was expected since the 
Copernicus layer was developed and validated by using the reference database described in section 
2.2. Same result was observed for the overall accuracy in mixed-pixels (Figure 5, panel B). In pure-
pixels, instead, significantly higher overall accuracy was observed for the maps ESA-CCI, GLC-FCS30 
and Copernicus although non-significant difference was observed between the Beta regressions’ output, 
ESA-CCI and GLC-FCS30. The result indicated that slightly better overall accuracy with the data fusion 
model was obtained in mixed-pixels. 

 
Figure 5. Overall accuracy comparison (pooled study areas). Panel A shows the overall accuracy 
with non-distinction between mixed and pure-pixels. Panel B shows the overall accuracy in mixed-pixels 
(pink box-plots on the left) and pure-pixels (blue box-plots on the right). 
 
For the forest class significantly higher accuracy, compared to the Beta regressions’ output, was 
observed with the maps Hansen and Copernicus in mixed-pixels (Figure 6) although the Hansen layer 
did not show the forest accuracy to be significantly higher than the Beta regressions’ output and the 
maps ESA-CCI, GLC-FCS30 and GLASS. While in pure-pixels the accuracy of forest was the same across 
all maps. 
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Figure 6. Forest accuracy comparison (pooled study areas). Forest accuracy in mixed-pixels 
(pink box-plots on the left) and pure-pixels (blue box-plots on the right). 
 
Significantly higher urban accuracy was observed in mixed-pixels only with the map WSF (Figure 7). As 
with the forest accuracy, in pure-pixels difference in urban accuracy between maps was not observed. 
Significantly higher water body accuracy, compared to the Beta regressions’ output, was observed with 
the Copernicus map in mixed-pixels (Figure 8). While in pure-pixels the maps GLC-FCS30, GFSAD and 
Copernicus showed significantly higher water accuracy compared to the Beta regressions’ output. The 
‘other’ LULC class accuracy was not significantly different between any of the maps in both mixed and 
pure-pixels (Figure 9). 
 
Although the data fusion with the regional Beta regressions seemed to not give significant improvement 
compared to any of the predictors used as input, in Eastern South-Africa higher forest accuracy was 
observed with the data fusion in mixed-pixels compared to the predictors ESA-CCI, GLC-FCS30 and 
GLASS (Appendix B, Figure 7B). In pure-pixels instead, the forest accuracy was never higher than any 
of the predictors. In the same study area, the urban accuracy obtained with the regional Beta regression 
in mixed-pixels was higher compared to all predictors except WSF, while lower than all predictors in 
pure-pixels (Appendix B, Figure 7B). The water body accuracy obtained with the regional Beta 
regression was lower than any of the predictors in both mixed and pure-pixels (Appendix B, Figure 7B). 
While the ‘other’ LULC class accuracy obtained in mixed-pixels with the regional Beta regression was 
higher than the maps ESA-CCI, GLASS and Hansen, but never higher in pure-pixels (Appendix B, Figure 
7B). 
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Figure 7. Urban and built-up accuracy comparison (pooled study areas). Urban and built-up 
accuracy in mixed-pixels (pink box-plots on the left) and pure-pixels (blue box-plots on the right). 
 
In Tropical South-East Asia higher forest accuracy was observed with the data fusion in mixed-pixels 
compared to the predictors ESA-CCI, GLASS and Hansen (Appendix B, Figure 7B). In pure-pixels 
instead, the forest accuracy was never higher than any of the predictors. In the same study area, the 
urban accuracy obtained with the regional Beta regression in mixed-pixels was higher compared to the 
predictors ESA-CCI and GLC-FCS30, while always zero in pure-pixels (Appendix B, Figure 7B). The same 
result in pure-pixel was observed in Western North-America and South-western Europe. This is 
happening when the fraction of a class is always zero (as shown in Appendix B, Table 3B). In these 
cases, the sub-pixel thematic accuracy considers zero as maximum overlap between reference and 
predicted class fraction causing the accuracy to be zero. In Tropical South-East Asia the water body 
accuracy obtained with the regional Beta regression was lower than any of the predictors in pure-pixels, 
but higher than the map GFSAD in mixed-pixels (Appendix B, Figure 7B). While the ‘other’ LULC class 
accuracy obtained in mixed-pixels with the regional Beta regression was higher than the maps ESA-
CCI, GLASS and GLC-FCS30, but never higher in pure-pixels as in Eastern South-Africa (Appendix B, 
Table 3B). 
 
In Western North-America higher forest accuracy was observed with the data fusion in mixed-pixels 
compared to the predictors ESA-CCI, GLC-FCS30 and GLASS as in Eastern South-Africa (Appendix B, 
Figure 7B). In pure-pixels instead, the forest accuracy was never higher than any of the predictors. In 
the same study area, the urban, water body and ‘other’ class accuracies obtained with the regional 
Beta regression in both mixed and pure-pixels were never higher than any of the predictors (Appendix 
B, Figure 7B).  
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Figure 8. Water body LULC class accuracy comparison (pooled study areas). Water body 
accuracy in mixed-pixels (pink box-plots on the left) and pure-pixels (blue box-plots on the right). 
 
In South-western Europe higher forest accuracy was observed with the data fusion in mixed-pixels 
compared to the predictors ESA-CCI, GLC-FCS30 and GLASS as in Eastern South-Africa and Western 
North-America (Appendix B, Figure 7B). In pure-pixels instead, the forest accuracy was only higher 
than the GLASS map. In the same study area, the urban and water body accuracies obtained with the 
regional Beta regression in both mixed and pure-pixels were never higher than any of the predictors 
(Appendix B, Figure 7B). While the ‘other’ accuracy was higher than the Hansen and GLASS maps in 
mixed-pixels and lower than any map in pure-pixels. 
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Figure 9. ‘Other’ LULC class accuracy comparison (pooled study areas). ‘Other’ LULC class 
accuracy in mixed-pixels (pink box-plots on the left) and pure-pixels (blue box-plots on the right). 
 

4.0 DISCUSSION 
 
Several points of improvement (detailed below) are needed to better answer the research questions of 
the study, but it was possible to observe that data fusion of multiscale and multiclass LULC maps can 
improve the fractional information of certain LULC classes compared to certain LULC maps used as 
input in the data fusion, especially in mixed-pixels. For example, in Eastern South-Africa, higher forest 
accuracy was reached with the data fusion’s output in mixed-pixels compared to the predictors ESA-
CCI, GLC-FCS30 and GLASS (Appendix B, Figure 7B), although it was found not significantly different 
(Figure 6). In Figure 6 the forest accuracy observed with Hansen’s layer was also not significantly higher 
than ESA-CCI, GLC-FCS30 and GLASS, despite the Hansen’s map is globally accepted as the best 
available product to map forest. The result indicates that improvement of forest accuracy was obtained 
in mixed-pixels with the data fusion in comparison to the maps ESA-CCI, GLC-FCS30 and GLASS (Figure 
6). 
 
While Dirichlet regression may seem a natural choice for modelling data with a unit-sum constraint, the 
implicit pairwise correlations established between all classes by the alpha parameter described in 
section 2.4.1 can be overly restrictive. Additionally, the fact that the mean of the Dirichlet distribution 
determines the covariance structure between all classes at each location is also restrictive. The model 
indeed has been criticized by authors such as Leininger et al. 2013. In this study we found that the 
LULC class fractions were better modelled by using the Beta regression followed by a post-rescaling of 
the predictions (Table 3). 
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Forest, urban and built-up and water body are easier LULC classes to be mapped than bare land, 
cropland, grassland and shrubland via remote sensing images. The confusion of their classification is 
linked, for example, to the rotation between bare land and cropland and the similar spectra signal 
between cropland and grassland. Depending on the used (and available) remote sensing images, as 
well as the time of collection of ground-truth data during the year, classified maps can disagree more 
easily on these LULC classes more difficult to be mapped. In this study was not possible to fit good 
models for the LULC classes bare land, cropland, grassland and shrubland (Table 3). In order to improve 
the goodness of fit to model the fractions of these classes, in the future, more accurate LULC maps will 
be used as predictors. In addition, localized weighting of the predictors could potentially help achieving 
higher goodness of fit. 
 
Although non-significant higher overall (Figure 5) as well as forest, urban and built-up, water body and 
‘other’ accuracies (Figure 6-9) were obtained with the Beta regressions’ output, in both mixed and pure-
pixels, higher forest, urban and built-up and ‘other’ accuracies were observed in some testing areas as 
described in section 3.0, especially in mixed-pixels. The worst accuracy obtained with the Beta 
regressions’ output was observed in mixed-pixels for the class water body (Appendix B, Figure 7B). A 
reason can be the abundance of the LULC class with a fraction equal 1. As shown in Appendix B, Table 
3B, the number of locations with a fraction greater than 0 for the water body class, in both pure and 
mixed-pixels, is similar in all testing areas. The result indicates that there are as many locations in 
which the fraction of water body is 1 as there are mixed-pixels. This data imbalance leaves little training 
data in the middle for the regression model to learn from, causing non-good predictions in mixed-pixels. 
The use of zero/one-inflated models may help solve the data skewness since the zeros and ones are 
here modelled independently.  
 
The use of zero/one-inflated models may also improve predictions in pure-pixels. As discussed in section 
3.0 the predictions obtained with the regional Beta regressions showed slightly higher overall accuracy 
in mixed-pixels (Figure 5). One reason can be that the pure-pixels are penalized because the Beta 
regressions fitted via the R package ‘betareg’ cannot model exact zeros and ones and the data 
transformation with Equation 1 was needed. 
 
In addition, to better answer the research questions of the study, higher goodness of fit of the data 
fusion model is needed. Besides the above mentioned zero/one-inflated models, model stratification 
can help in achieving more localized effects for each map used as predictor. Agro-ecological zones 
introduced as an additional fixed or random effect can help to further stratify the testing areas and 
potentially improve the modelling of the difficult LULC classes bare land, cropland, grassland and 
shrubland. As shown in Table 3, fitting the global Beta regression improved the R2 for the LULC class 
bare land in Eastern South-Africa, Tropical South East Asia and South-western Europe and for the LULC 
class shrubland in Western North-America and South-western Europe. Thus, for the LULC classes 
difficult to map, the use of the entire sub-pixel database in one model may be advantageous. 
 
Another future improvement will be to model the spatial autocorrelation detected, but not addressed, 
during the study. The reduction of the significant spatial autocorrelation identified with the Moran’s I 
test will help in estimating less biased model parameters and comply with the GLM assumption of 
independence of residuals. The Beta linear regression model will, thus, be formulated to control for 
spatial autocorrelation. 
 
In addition, modification of the sub-pixel thematic accuracy matrix to correctly cover cases of urban 
and built-up areas with pure-pixels characterized only by zero fraction is needed. As discussed in section 
3.0, in these cases the sub-pixel thematic accuracy considers zero as maximum overlap between 
reference and predicted class fraction causing the accuracy to be zero despite the high R2 shown in 
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Appendix B, Figure 6B. To adjust the sub-pixel thematic accuracy to correctly cover these cases, the 
MIN operator (see section 2.5) can be substituted by the difference in fractional information between 
the reference and the predicted class fractions.  
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APPENDIX 
 
Appendix A 
 

 
Figure A1. Spatial distribution of LULC classes in South-Africa. The 8 LULC classes (bare land, 
cropland, forest, grassland, shrubland, urban and built-up, water body and other LULC class) are plotted 
when their fraction is greater than zero. 
 

 
Figure A2. Spatial distribution of LULC classes in North-America. The 8 LULC classes (bare 
land, cropland, forest, grassland, shrubland, urban and built-up, water body and other LULC class) 
are plotted when their fraction is greater than zero. 
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Figure A3. Spatial distribution of LULC classes in Europe. The 8 LULC classes (bare land, 
cropland, forest, grassland, shrubland, urban and built-up, water body and other LULC class) are plotted 
when their fraction is greater than zero. 
 

 
Figure A4. Spatial distribution of LULC classes in Asia-tropical. The 8 LULC classes (bare land, 
cropland, forest, grassland, shrubland, urban and built-up, water body and other LULC class) are plotted 
when their fraction is greater than zero. 
 
Table A1. Legend reconciliation (between original and translated terms) for the LULC 
classes of predictors used as input 
original_class translated_class translated_name predictor 

10 5 cropland ESA-CCI 
11 5 cropland ESA-CCI 
12 5 cropland ESA-CCI 
20 5 cropland ESA-CCI 
30 5 cropland ESA-CCI 
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40 10 other ESA-CCI 
50 7 forest ESA-CCI 
60 7 forest ESA-CCI 
61 7 forest ESA-CCI 
62 7 forest ESA-CCI 
70 7 forest ESA-CCI 
71 7 forest ESA-CCI 
72 7 forest ESA-CCI 
80 7 forest ESA-CCI 
81 7 forest ESA-CCI 
82 7 forest ESA-CCI 
90 7 forest ESA-CCI 

100 7 forest ESA-CCI 
160 7 forest ESA-CCI 
170 7 forest ESA-CCI 
110 1 grassland ESA-CCI 
130 1 grassland ESA-CCI 
180 9 wetland ESA-CCI 
190 8 urban  ESA-CCI 
120 2 shrubland ESA-CCI 
121 2 shrubland ESA-CCI 
122 2 shrubland ESA-CCI 
140 10 other ESA-CCI 
150 10 other ESA-CCI 
151 7 forest ESA-CCI 
152 2 shrubland ESA-CCI 
153 1 grassland ESA-CCI 
200 3 bare  ESA-CCI 
201 3 bare  ESA-CCI 
202 3 bare  ESA-CCI 
210 6 water ESA-CCI 
220 4 snow ESA-CCI 

0 0 no data GLC_FCS30 
10 5 cropland GLC_FCS30 
11 10 other GLC_FCS30 
12 2 shrubland GLC_FCS30 
20 5 cropland GLC_FCS30 
50 7 forest GLC_FCS30 
60 7 forest GLC_FCS30 
61 7 forest GLC_FCS30 
62 7 forest GLC_FCS30 
70 7 forest GLC_FCS30 
71 7 forest GLC_FCS30 
72 7 forest GLC_FCS30 
80 7 forest GLC_FCS30 
81 7 forest GLC_FCS30 
82 7 forest GLC_FCS30 
90 7 forest GLC_FCS30 
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120 2 shrubland GLC_FCS30 
121 2 shrubland GLC_FCS30 
122 2 shrubland GLC_FCS30 
130 1 grassland GLC_FCS30 
140 10 other GLC_FCS30 
150 10 other GLC_FCS30 
152 10 other GLC_FCS30 
152 2 shrubland GLC_FCS30 
180 9 wetland GLC_FCS30 
190 8 urban  GLC_FCS30 
200 3 bare  GLC_FCS30 
201 3 bare  GLC_FCS30 
202 3 bare  GLC_FCS30 
210 6 water GLC_FCS30 
220 4 snow GLC_FCS30 
250 0 no data GLC_FCS30 

0 6 water GFSAD 
1 10 other GFSAD 
2 5 cropland GFSAD 
0 10 other WSF 

255 8 urban  WSF 
1 1 grassland GLASS_GLC 
2 2 shrubland GLASS_GLC 
3 3 bare  GLASS_GLC 
5 5 cropland GLASS_GLC 
7 7 forest GLASS_GLC 
0 0 no data GLASS_GLC 

NA 10 other Pekel 
1 10 other Pekel 
2 6 water Pekel 
3 6 water Pekel 
0 10 other Hansen 

>0 7 forest Hansen 
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Appendix B 
 

 
Figure 1B. Global correlations. Global correlations for each of the LULC classes among the 
predictors and between the predictors and the ground-truth sub-pixel database (variables: water, 
urban, shrubland, forest, Other, grassland, bare and cropland). Value 1 (red) high positive correlation. 
Value -1 (blue) high negative correlation. 
 

 
Figure 2B. South-African correlations. Regional correlations for each of the LULC classes among 
the predictors and between the predictors and the ground-truth sub-pixel database (variables: water, 
urban, shrubland, forest, Other, grassland, bare and cropland). Value 1 (red) high positive correlation. 
Value -1 (blue) high negative correlation. 
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Figure 3B. North-American correlations. Regional correlations for each of the LULC classes among 
the predictors and between the predictors and the ground-truth sub-pixel database (variables: water, 
urban, shrubland, forest, Other, grassland, bare and cropland). Value 1 (red) high positive correlation. 
Value -1 (blue) high negative correlation. 

 
Figure 4B. European correlations. Regional correlations for each of the LULC classes among the 
predictors and between the predictors and the ground-truth sub-pixel database (variables: water, 
urban, shrubland, forest, Other, grassland, bare and cropland). Value 1 (red) high positive correlation. 
Value -1 (blue) high negative correlation. 
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Figure 5B. Asian-tropical correlations. Regional correlations for each of the LULC classes among 
the predictors and between the predictors and the ground-truth sub-pixel database (variables: water, 
urban, shrubland, forest, Other, grassland, bare and cropland). Value 1 (red) high positive correlation. 
Value -1 (blue) high negative correlation. 
 
Table 1B. List of 10 fitted models 

I. Global_DirichletRegression 
 

II. Global_BetaRegression  
Forest 

 
Urban and built-up 

 
Water body 

 
Shrubland  
Cropland 

 
Grassland  
Bare land 

 
Other LULC class 

 
III. DirichletRegression_SouthAfrica  
IV. DirichletRegression_AsiaTropical 

 
V. DirichletRegression_NorthAmeric

a  
VI. DirichletRegression_Europe 

 
VII. BetaRegression_SouthAfrica  

Forest 
 

Urban and built-up 
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Water body 
 

Shrubland  
Cropland 

 
Grassland  
Bare land 

 
Other LULC class 

 
VIII. BetaRegression_AsiaTropical  

Forest  
Urban and built-up 

 
Water body 

 
Shrubland  
Cropland  
Grassland 

 
Bare land 

 
Other LULC class 

 
IX. BetaRegression_NorthAmerica  

Forest 
 

Urban and built-up 
 

Water body 
 

Shrubland 
 

Cropland 
 

Grassland 
 

Bare land 
 

Other LULC class 
 

X. BetaRegression_Europe  
Forest 

 
Urban and built-up 

 
Water body 

 
Shrubland  
Cropland  
Grassland  
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Bare land 
 

Other LULC class 
 

 
Table 2B. Accuracy and goodness of fit obtained with the fitted models 
Global_DirichletRegression  MAE RMSE R2 
 Bare soil 0.11 0.17 0.28 
 Cropland 0.17 0.28 0.26 
 Grassland 0.30 0.39 0.20 
 Shrubland 0.17 0.25 0.04 
 Forest 0.24 0.32 0.50 
 Urban and built-up 0.08 0.09 0.44 
 Water body 0.09 0.14 0.43 
 Other LULC 0.09 0.13 0.01 
 Tot 0.16 0.22 0.27 
Global_BetaRegression     
 Bare soil 0.11 0.16 029 
 Cropland 0.23 0.28 0.26 
 Grassland 0.31 0.37 0.36 
 Shrubland 0.19 0.25 0.25 
 Forest 0.25 0.29 0.49 
 Urban and built-up 0.03 0.06 0.46 
 Water body 0.03 0.13 0.40 
 Other LULC 0.08 0.13 0.01 
 Tot 0.16 0.21 0.31 
BetaRegression_SouthAfrica     
 Bare soil 0.04 0.07 0.04 
 Cropland 0.27 0.31 0.38 
 Grassland 0.36 0.40 0.11 
 Shrubland 0.15 0.21 0.21 
 Forest 0.17 0.22 0.28 
 Urban and built-up 0.02 0.05 0.66 
 Water body 0.07 0.11 0.54 
 Other LULC 0.11 0.16 0.03 
 Tot 0.15 0.16 0.28 
BetaRegression_AsiaTropical     
 Bare soil 0.04 0.08 0.01 
 Cropland 0.2 0.26 0.23 
 Grassland 0.23 0.28 0.28 
 Shrubland 0.16 0.22 0.22 
 Forest 0.32 0.36 0.34 
 Urban and built-up 0.02 0.06 0.47 
 Water body 0.09 0.13 0.34 
 Other LULC 0.06 0.10 0.01 
 Tot 0.14 0.19 0.24 
BetaRegression_NorthAmerica     
 Bare soil 0.23 0.27 0.32 
 Cropland 0.13 0.17 0.32 
 Grassland 0.32 0.37 0.11 
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 Shrubland 0.23 0.28 0.03 
 Forest 0.21 0.26 0.49 
 Urban and built-up 0.01 0.04 0.61 
 Water body 0.11 0.15 0.43 
 Other LULC 0.08 0.13 0.01 
 Tot 0.16 0.21 0.17 
BetaRegression_Europe     
 Bare soil 0.06 0.10 0.05 
 Cropland 0.24 0.29 0.21 
 Grassland 0.29 0.33 0.33 
 Shrubland 0.23 0.28 0.03 
 Forest 0.25 0.30 0.32 
 Urban and built-up 0.05 0.09 0.27 
 Water body 0.05 0.10 0.55 
 Other LULC 0.03 0.07 0.01 
 Tot 0.15 0.20 0.22 
DirichletRegression_SouthAfrica     
 Bare soil 0.09 0.10 0.01 
 Cropland 0.21 0.32 0.37 
 Grassland 0.38 0.45 0.15 
 Shrubland 0.15 0.21 0.05 
 Forest 0.15 0.22 0.28 
 Urban and built-up 0.08 0.09 0.66 
 Water body 0.09 0.13 0.54 
 Other LULC 0.10 0.16 0.01 
 Tot 0.16 0.21 0.26 
DirichletRegression_AsiaTropical     
 Bare soil 0.08 0.10 0.01 
 Cropland 0.15 0.25 0.20 
 Grassland 0.17 0.27 0.10 
 Shrubland 0.13 0.21 0.04 
 Forest 0.35 0.41 0.31 
 Urban and built-up 0.08 0.09 0.35 
 Water body 0.09 0.14 0.27 
 Other LULC 0.08 0.11 0.01 
 Tot 0.14 0.20 0.16 
DirichletRegression_NorthAmerica     
 Bare soil 0.16 0.28 0.33 
 Cropland 0.18 0.17 0.21 
 Grassland 0.30 0.38 0.16 
 Shrubland 0.20 0.28 0.05 
 Forest 0.20 0.27 0.50 
 Urban and built-up 0.08 0.09 0.53 
 Water body 0.10 0.16 0.51 
 Other LULC 0.09 0.14 0.01 
 Tot 0.16 0.22 0.29 
DirichletRegression_Europe     
 Bare soil 0.09 0.12 0.03 
 Cropland 0.18 0.29 0.22 
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 Grassland 0.27 0.35 0.12 
 Shrubland 0.20 0.29 0.04 
 Forest 0.24 0.31 0.34 
 Urban and built-up 0.09 0.11 0.28 
 Water body 0.09 0.12 0.60 
 Other LULC 0.08 0.10 0.01 
 Tot 0.16 0.21 0.20 

 
Summary 1B. Selected models’ summary 
South-Africa: regional beta regression 
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North-America: regional beta regression 
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Asia-tropical: regional beta regression 
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Europe: regional beta regression 
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Figure 6B. Selected models’ goodness of fit. R-squared in each study area obtained with the 
selected regional beta regressions for the selected 4 LULC classes (and overall) in mixed (pink) and 
pure (blue) pixels with both fitted (training) and predicted (validation) locations. 
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Figure 7B. Sub-pixel thematic accuracy comparison in each study area. User accuracy is 
shown for each of the 4 LULC classes in the study areas. Value 1 (green) means high accuracy. Value 
0 (red) means low accuracy. Grey boxes indicate that the accuracy wasn’t possible to be calculated for 
some classes of the maps.  
 
Table 3B. Number of validation locations with fraction greater than zero for each LULC 
class in pure and mixed-pixels. 

  Pure Mixed 
South-Africa  

 Water 21 25 
 Urban 3 98 
 Forest 40 403 
 Other 327 745 

North-America  
 Water 25 33 
 Urban 0 30 
 Forest 32 304 
 Other 195 607 

Asia-tropical  
 Water 13 43 
 Urban 0 75 
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 Forest 386 409 
 Other 76 464 

Europe    
 Water 11 25 
 Urban 0 99 
 Forest 49 370 
 Other 83 559 
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