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Abstract: Tree cover (TC) and biomass carbon stocks (CS) are key parameters for characterizing
vegetation and are indispensable for assessing the role of terrestrial ecosystems in the global climate
system. Land use, through land cover change and land management, affects both parameters. In this
study, we quantify the empirical relationship between TC and CS and demonstrate the impacts of
land use by combining spatially explicit estimates of TC and CS in actual and potential vegetation (i.e.,
in the hypothetical absence of land use) across the global tropics (~23.4◦ N to 23.4◦ S). We find that
land use strongly alters both TC and CS, with stronger effects on CS than on TC across tropical biomes,
especially in tropical moist forests. In comparison to the TC-CS correlation observed in the potential
vegetation (biome-level R based on tropical ecozones = 0.56–0.90), land use strongly increases
this correlation (biome-level R based on tropical ecozones = 0.87–0.94) in the actual vegetation.
Increased correlations are not only the effects of land cover change. We additionally identify land
management impacts in closed forests, which cause CS reductions. Our large-scale assessment of the
TC-CS relationship can inform upcoming remote sensing efforts to map ecosystem structure in high
spatio-temporal detail and highlights the need for an explicit focus on land management impacts in
the tropics.

Keywords: tree cover; biomass carbon stocks; land use change; tropical ecosystems; ecosystem change

1. Introduction

Terrestrial vegetation plays a pivotal role in the global carbon cycle by absorbing,
sequestering and releasing vast amounts of carbon each year [1,2]. The modification of
naturally-occurring vegetation through land use is now a major driver of global change [3].

Tree cover (TC) and biomass carbon stocks (CS) are key parameters for characterizing
vegetation. Intuitively, TC and CS are spatially correlated. The relationship between these
two parameters can be considered as a function of environmental conditions and stand
age: an initial linear relationship as a tree-bearing stand grows, followed by a saturation of
TC while biomass accumulation continues over time, such that a given stand with high TC
can be associated with a range of biomass stocks [4–7]. Therefore, we hypothesize that in
closed forests, the correlation between TC and CS is poor, while in open forests and other
wooded lands, the correlation is stronger.

However, land use, both through land cover change (for example, through defor-
estation) and land management (i.e., the modification of ecosystem parameters without
changing the land cover type, such as through forestry or livestock grazing in natural grass-
lands [8]), impacts both TC and CS to varying degrees, and consequently, may influence
the TC-CS relationship [9,10].

Here, we systematically explore the TC-CS relationship in the global tropics and
identify the impacts of land use on this relationship. Such an understanding is important
for two reasons.
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First, upcoming remote sensing-based missions like BIOMASS [11,12], GEDI [13] and
NISAR [14] are expected to map TC and CS and their changes over time in unprecedented
spatio-temporal detail. However, because of the very nature of remote sensing, the antici-
pated datasets will capture the combined effects of land use and natural drivers on these
parameters. Attribution of identified changes to respective drivers is not straightforward
and requires additional information from plot-level studies as well as regional insights.
Highly aggregated analyses that isolate and quantify the role of land use on both TC and
CS could help in the robust interpretation of the considerable amount of data that these
missions will generate.

Second, existing studies often utilize TC information as a surrogate to conclude on
CS dynamics when evaluating contemporary carbon fluxes from land use change and
their interrelation with the provision of biomass products [15]. Studies either assume a
consistent and homogeneous relationship between TC and CS based on average stocking
densities [16–18] or explore forest area changes (closely related to TC, but not identical [19])
as surrogates for assessing the carbon emissions from biomass consumption [20,21]. An
empirical assessment of the TC-CS relationship can inform these studies and increase the
reliability of such assessments.

Improving the understanding of land use impacts on TC and CS is particularly im-
portant in the tropics. The pivotal role of the tropical region in the global carbon cycle is
well-known: tropical forests store almost two-thirds of the total biomass of all terrestrial
biomes [22] and are currently undergoing unprecedented rates of land use changes [9].
While in temperate and boreal regions, data on CS can usually be derived from statistical
data, for example, from forest inventories, and uncertainties can be narrowed by triangulat-
ing spatial information from remote sensing, census statistics and ground-based invento-
ries [23,24], this is not currently possible for large parts of the tropics [25]. In these regions,
large data gaps prevail and the paucity of ground-truthed information [6,26,27] represents
a formidable scientific challenge. Ensuing, in the tropics easily accessible datasets, such as
remotely-sensed TC information from land use/land cover assessments, will continue to
play a key role for quantifying land use-induced carbon fluxes or restoration potentials.

In this study, we quantify the empirical relationship between TC and CS and isolate
the impacts of land use (through land cover change and land management) by comparing
the actually-observed vegetation, which is co-determined by existing land use and the
natural environment, with the ‘potential vegetation’, i.e., the vegetation that would prevail
in the absence of land use but under current climatic conditions. The construct of the
potential vegetation originates back to vegetation-ecological principles formulated in the
1950s [26]. A similar potential-actual comparison approach has previously proven useful to
determine the impacts of land use on ecosystem production [27] and biomass turnover [28]
at the global scale. Only recently, data for the potential as well as actual vegetation, related
to carbon stocks [10] as well as tree cover [18,29,30] have become available, enabling for
the first time such an approach for analyzing the TC-CS relationship at large spatial scales.

We aim to answer the following questions:

(1) What is the impact of land use on TC and CS in the tropics? Is the impact similar, or
different, for TC and CS?

(2) How are TC and CS spatially correlated in the potential and actual vegetation?
(3) How does land use affect the correlation between actual TC and CS in different

tropical biomes?

To answer these questions, we compiled information from existing pantropical spatially-
explicit datasets for the year 2000. More recent data for TC as well as CS have become
available in the recent past at the regional [31,32] as well as at the global level [33]. How-
ever, the year 2000 represents a point in time for which the full coverage required for
a potential-actual vegetation comparison is available. This enables us to systematically
explore the spatial variation of the TC-CS relationship in the tropics and the impacts of
land use, even though our analysis remains limited to the reference year 2000. We discuss
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our findings in the context of upcoming high-resolution ecosystem monitoring missions as
well as existing efforts to map tropical ecosystem structure and carbon fluxes.

2. Materials and Methods
2.1. Input Maps and Uncertainty Analysis

We compiled four sets of maps for this study: one potential and two actual tree
cover (TC) maps as well as five potential and five actual biomass carbon stocks (CS)
maps, including both aboveground and belowground biomass. All maps refer to the year
2000, cover the tropical extent (~23.4◦ N to 23.4◦ S) and were scaled to a common spatial
resolution of 5 arc minutes where required. Our analysis is not restricted to forests but
encompasses all terrestrial ecosystems in the tropics. Thus, our results are independent
from forest area classifications [34] and refer to the complete pantropical region.

For potential TC, we used the only available source [18], a recent machine learning-
based map developed by using reference forest cover plots to extrapolate potential TC
under similar environmental conditions globally. This global map was originally available
at a resolution of 30 arc seconds (approx. 1 km) and was scaled to the spatial resolution
of 5 arc minutes using bilinear interpolation to enable comparison with the CS datasets
(see below).

The input datasets for the actual TC were the global wall-to-wall datasets derived
from land use/land cover assessments using Landsat imageries [29] and using harmonized
multiple satellite sensors [30]. These datasets of global actual TC extents are available at
30 m and 0.05◦ (approximately 5 km at the equator) spatial resolution, respectively. These
maps were scaled to the spatial resolution of 5 arc minutes using bilinear interpolation.

The following five potential CS maps from previous literature were used. Three
estimates were taken from a study on land use impacts on global ecosystems (potential CS
maps 1, 2 and 5 from [10]). These maps were constructed by allocating typical CS densities
from the literature [35] or from remote sensing assessments [36,37] to ecozones resulting
from the intersection of three biome maps [38–40]. This spatial resolution is used in the
analysis of the potential and actual TC-CS relationship (see Section 2.2). Thus, while the
three potential CS maps are available at a spatial resolution of 5 arc minutes, the spatial
resolution adequate for the analysis of the TC-CS relationship are the ecozones delineated
by the intersect of these three biome maps.

For the first two potential CS maps, data on potential landscape-level CS densities
from the IPCC [35] were assigned to each ecozone separately for each world region. These
two potential CS maps were consistently matched with actual CS maps from the FAO [41]
or from a study on global forest carbon fluxes [42], respectively, assuming potential CS to
be always identical or larger than actual CS.

The third map considered the ecozones delineated by the intersection of the three
biome maps as a starting point and used information from two remote sensing assess-
ments [36,37] to define potential CS values for each ecozone. This potential CS map
assumed that remnants of potential vegetation still exist in each ecozone and considered
the 95th percentile of the actual CS values in that ecozone from these two remote sensing
assessments as the potential CS for that ecozone (for more details see [10]).

Two further independent potential CS maps were used: a vegetation-accounting
based map developed from landscape-level averages [43] available at a spatial resolution
of 5 arc minutes and a vegetation-model based assessment available at a spatial resolution
of 0.5◦ [44]. The latter map was resampled to match the common 5-min spatial resolution.

Five actual CS datasets were used for the study. Four of them were based on [10]
and available at 5-min spatial resolution: two building upon existing remote sensing
datasets of CS based on land use/land cover assessments [36,37] and two based on forest
inventories [41,42] downscaled from the national level to the grid with information on tree
height [45]. The fifth actual CS map was taken from the literature [46]. A description of
input datasets is also provided in Tables S1 and S2.
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In case of actual CS and potential CS, for which multiple datasets were available, we
calculated the pixel-based median, thus developing ‘median maps’. Such a ‘median-map’
was also calculated for actual TC, but since in this case only two datasets were available,
the pixel-based median is equal to the mean in this case. Only one map of potential TC
was available and was considered as it is.

As a measure of uncertainty for actual TC, actual CS and potential CS, we calculated
the coefficient of variation of the resulting maps.

For the potential TC dataset, where only one input map was available, we compared
potential TC with actual TC in well-defined ‘wilderness’ areas devoid of land use to detect
biases that would affect our findings and interpretations. By definition, in wilderness areas,
actual TC corresponds with potential TC [10]. To delineate wilderness areas, we used the
intact forests map [47] and a recent human footprint map [48]. We considered as wilderness
all individual pixels that were both designated as ‘intact’ and with a human footprint score
of zero (implying absence of any human activity). We compared the potential TC and
actual TC datasets in wilderness areas at the biome level.

2.2. Spatial Analysis of the TC-CS Relationship

We investigated TC and CS in the potential and actual vegetation in 8 tropical biomes—
Moist Forests, Dry Forests, Grasslands and Savannas, Montane Grasslands and Shrublands,
Flooded Grasslands and Savannas, Deserts, Mangroves, and Coniferous Forests [40].

To isolate land use impacts, we compared potential and actual TC and CS in absolute
terms and quantified the ratio of CS and TC (hereafter, the CS/TC Ratio) in their respective
potential (hereafter, the Potential CS/TC Ratio) and actual (hereafter, the Actual CS/TC Ratio)
vegetation states. We then investigated the extent to which the CS/TC Ratio differed between
potential and actual vegetation in each tropical biome. We calculated the ratio of the Actual
CS/TC Ratio and the Potential CS/TC Ratio, and called it the CS/TC Ratio of Ratios to identify
which parameter, CS or TC, was affected more by land use in these tropical biomes.

Further, we calculated Pearson correlations between TC and CS at the tropical biome
level based on the smallest common spatial unit with unique TC and CS values within each
biome across all maps. In our case, the smallest common spatial unit for comparing the
TC-CS correlations in the potential and actual vegetation were the ecozones resulting from
the intersection of the three biome maps described earlier [38–40], which was used in the
potential CS datasets in [10] to assign landscape-level CS densities. We excluded ecozones
where the number of individual pixels covered by the intersection at the 5-min spatial
resolution was less than 10 (n < 10) and selected 494 tropical ecozones for further analysis.

To investigate the impacts of land management on CS in dense tree-bearing regions,
we calculated the potential and actual CS densities only for individual pixels where the
actual TC > 90%.

3. Results
3.1. Spatial Variation in TC and CS

TC and CS display distinct geographic patterns in both potential and actual vegetation
(Figure 1). TC and CS latitudinal profiles are characterized by troughs in Dry Forests
and Grasslands and peaks in Moist Forests across Amazonia, Central Africa and South-
East Asia.

CS in the potential vegetation is 102 MgC/ha on average and 57.2 MgC/ha in the
actual vegetation (43.9% lower). Highest latitudinal averages of CS are 183.9 MgC/ha in
the potential vegetation and 133.1 MgC/ha in the actual vegetation. Lowest latitudinal
averages of CS are 47.8 MgC/ha in the potential vegetation and 13.0 MgC/ha in the actual
vegetation (Figure 1a,d).

TC on average over the tropics is 41.3% in the potential and 32.3% in the actual
vegetation (a reduction by 21.7%). In the Grasslands and Savannas biome, TC is on average
28.2% in the potential vegetation and 16.3% in the actual vegetation. Moist Forests show
average TC values of 75.4% in the potential and 68.3% in the actual vegetation (Figure 1b,e).
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tropics (CS/TC Ratio of Ratios < 1). This effect dominates the Moist Forests biome. In Dry 
Forests and Grasslands, we observe a dominance of areas where TC is more strongly af-
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Figure 1. Biomass carbon stocks and tree cover across the tropics. (a) Latitudinal profile for potential
CS with median and min–max envelopes. (b) Latitudinal profile for potential TC. (c) The CS/TC Ratio
in the potential vegetation. (d) Latitudinal profile for actual CS with median and min–max envelopes.
(e) Latitudinal profiles for both the actual TC maps used in the analysis, Hansen et al. (in green) and
Song et al. (in blue). (f) The CS/TC Ratio in the actual vegetation. The maps are constructed using the
potential TC map, for which only one dataset was available, and the pixel-based median of actual CS,
potential CS and actual TC. For details and sources of maps, refer to Materials and Methods Section.

The CS/TC Ratio for both the potential and actual vegetation, respectively, as well
show distinct spatial patterns across the tropics. We find that in the potential vegetation,
the CS/TC Ratio is relatively similar across large regions of equatorial Africa and Asia while
it remains relatively lower in South America (Figure 1c). In comparison, the CS/TC Ratio in
the actual vegetation is highest in Grasslands, while comparably lower values are found in
Moist Forests (Figure 1f). In particular, we find that Moist Forests across the tropics show
strongly altered patterns in the actual vegetation in comparison to the potential vegetation.

We find a stronger land use-induced effect on CS than on TC in 67% of the global
tropics (CS/TC Ratio of Ratios < 1). This effect dominates the Moist Forests biome. In
Dry Forests and Grasslands, we observe a dominance of areas where TC is more strongly
affected than TC (CS/TC Ratio of Ratios > 1), balancing the overall relative impacts of land
use on TC and CS (Figure 2a,b). However, uncertainties in the regions with higher impacts
on TC than on CS are particularly large (Figure S1).

The aggregate effects at the biome level are in line with this finding: the impact of
land use on CS is pronounced in all biomes (a decrease in more than 35% for all biomes
except Deserts), while the impact on TC shows a large variation. In the Moist Forest biome,
we find that CS show a reduction of 70 MgC/ha, while TC is not reduced (Figure 2c). In the
Coniferous Forests and Mangroves biomes, land use-induced differences in CS between
the potential and actual vegetation are even larger (the differences in median between
potential CS and actual CS of 80 and 127 MgC/ha, respectively).

The impacts of land use on TC are particularly pronounced in the Grasslands biome.
In this biome, we observe a reduction of more than 65% on average. In contrast to CS,
the inner quartiles of both potential and actual TC for several biomes largely overlap.
Thus, a clear separation of land use-induced impacts on TC remains harder to interpret in
this biome.
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Figure 2. Land use impacts on CS and TC across tropical biomes. (a) The CS/TC Rratio of Ratios across
the tropics. (b) Histogram of areal distribution of the CS/TC Ratio of Ratios classified by biome-type.
Values in A and B < 1 indicate a stronger effect of land use on CS than on TC; values > 1 indicate
the opposite. (c) Median of potential (red border circles) and actual (black border circles) TC and
CS, classified by biome-type. Whiskers indicate the inner quartiles of values in each biome in the
potential TC map, the median actual TC map, the median potential CS map, and the median actual
CS map. The circle size is proportional to the areal extent of the biome.

We find that variabilities in the actual TC datasets are particularly pronounced in the
Dry Forests and Grasslands biomes in Asia and South America (Figure S1). Furthermore,
a bias in the potential TC database, for which only one input dataset was available, may
influence our results. Such concerns have previously been raised in the literature [49]. Thus,
in Figure 3 we show a comparison of the potential TC with actual TC on areas devoid of
land use, i.e., wilderness areas. We find broad agreement between the potential and actual
TC datasets in these regions (see insert in Figure 3 for regions identified as wilderness
areas). The biome-averaged potential TC of humid biomes, such as Moist Forests and
Flooded Grasslands, falls well within the range of the actual TC maps and is close to their
means (difference between means < 2.5%). In Dry Forests and Grasslands, we find that
the mean of the potential TC is higher than the means of the respective actual TC maps. In
these biomes, the standard deviation of the potential TC map is smaller than for the actual
TC maps and falls within their distributions. This can be interpreted as a slight bias of the
potential TC map towards the higher end and indicates that land use-induced differences
in TC may be lower than observed in these biomes.
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Figure 3. Potential and actual tree cover (TC) in wilderness areas in four tropical biomes. Dots indicate the mean of all
individual pixels in a biome; whiskers refer to the standard deviation. The inset shows the location of wilderness areas
(highlighted in green) within tropical biomes. We selected biomes where no. of pixels per biome in wilderness areas, n > 100.
Here, Moist Forests, n = 54,755; Dry Forests, n = 1349; Grasslands and Savannas, n = 1016; Flooded Grasslands and Savannas,
n = 227. Potential TC refers to Bastin et al. (2019), actual TC maps are taken from Hansen et al. (2013) and Song et al. (2018).
‘Median of actual TC maps’ refers to the pixel-level median of the two actual TC maps. For information on how wilderness
areas were delineated, see Materials and Methods Section.

3.2. Correlations between TC and CS across Biomes

We find consistently higher biome-level correlations between TC and CS based on
ecozone values in the actual vegetation (biome-level R based on tropical ecozones = 0.87–0.94,
p < 0.01) than in the potential vegetation (biome-level R based on tropical ecozones = 0.56–0.90,
p < 0.01) (Figure 4). The difference in the observed correlations between the actual and
potential vegetation ranges between a factor of 1.04, for the Grasslands biome, to a factor 1.55,
for the Dry Forests biome.

For the same TC densities, CS are systematically lower in the actual vegetation than
the potential vegetation for all biomes. We find that this difference increases with increasing
TC densities (see slopes for potential vegetation and actual vegetation in Figure 4). We
observe a similarly high biome-level correlation based on individual pixel values between
TC and CS in the actual vegetation (Figure S2).
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4. Discussion
4.1. Major Findings and Underlying Mechanisms

Our pantropical analysis reveals that on average, CS are affected more strongly by
land use than TC in the global tropics. We find that the reduction in actual CS is 43.9% as
compared to potential CS. This reduction is complementary to a TC reduction of 21.7%.
Consequently, the CS/TC Ratio is lowered in overall terms in the actual vegetation as
compared to the potential vegetation. We find pronounced heterogeneities in the spatial
distribution of the potential versus actual CS/TC Ratio (Figures 1 and 2b).
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The overall pantropical effect is dominated by the Moist Forest biome, where land
use affects CS much more strongly than TC (Figure 2b,c). Our finding is in line with
recent evidence which has found widespread impacts of forest degradation over the last
3 decades [50]. Forest degradation, in the form of selective harvesting of individual trees
to spur shifts towards shorter-statured and younger stands [51], and other smaller-scale
disturbances in tree canopies are likely to result in disproportionate impacts on CS as
compared to TC.

The observed higher land use-induced impacts on CS can also potentially be explained
by forest recovery and regrowth. In such regions, crown closure is reached relatively soon
after (natural or human) disturbance [50], while biomass carbon accumulation is relatively
slower. A quick recovery from disturbance of the understory and short-statured trees (with
low tree heights, and thus exhibiting a comparatively lower recovery of CS identified from
space [45]) in tropical forests has already been described in the literature [52,53]. Based on
our findings, deducing land use impacts from TC information in these biomes would likely
underestimate the impact of land use on biomass stocks.

In the Grasslands biome however, we find some indications of a higher land use-
induced impact on TC than on CS (Figure 2b,c). In these sparse tree-bearing regions,
natural and anthropogenic disturbances disproportionately impact TC. An explanation
could be, potentially, that vegetation units with low biomass carbon but high tree cover, are
affected at disproportionally high rates, or conversely, that land management has resulted
in increased CS in these regions. It cannot be ruled out, however, that our finding is, at
least partly, an artifact of the input data and individual pixel-level variabilities.

We find large pixel-level uncertainties in actual TC in some sparse tree-bearing biomes
(Figure S1). Spatial products are known to underestimate actual TC extents in dry biomes
because of environmental and phylogenetic variabilities as well as satellite-based sensor
capabilities [6,54–56]. Indeed, analyses conducted at very high spatial resolutions have iden-
tified a higher extent of tree-covered areas in dry biomes than previously known [56,57].

On the other hand, we find a potential over-estimation of potential TC in the Dry
Forests and Grasslands biomes, which would undercut the land use-induced increase in
the CS/TC Ratio observed in these biomes (Figure 3). Such an overestimate of the potential
tree-bearing capacities in these biomes has also been suggested previously [49]. Thus, our
finding of stronger impacts of land use on TC than on CS in these biomes can partly be
explained by a bias in the potential TC dataset. Future research aimed at improving TC
and CS datasets for arid ecosystems, as well as the mechanistic understanding of land use
impacts on ecosystem properties, is warranted in this context [58,59].

We find a stronger correlation between TC and CS in the actual vegetation in compari-
son to the potential vegetation for all tropical biomes (Figure 4). This increased correlation
in the actual vegetation can be driven by land use-induced changes in land cover. Such land
conversions eliminate both TC and CS. At large spatial scales, this results in the emergence
of a stronger linear correlation between TC and CS, particularly in regions with high TC.

The fact that in the case of Grasslands the increase in correlation in the actual veg-
etation is relatively modest (Figure 4c) corroborates this hypothesis. Indeed, in sparse
tree-bearing areas already undisturbed stands show relatively high correlations between
TC and CS, which is then further impacted by land use.

The systematic decrease in actual CS compared to potential CS in all biomes, even at
similar TC densities, also reflect the impacts of land management. Management of forests
and grazing lands has been previously described as a key covariate for CS losses [10]. If
land management-induced changes in CS occur without proportional reductions in TC, in
line with what we observe, the wide range of CS values at a narrow range of TC extents
would be narrowed, inducing an increase in the correlation between CS and TC in the
actual vegetation.

Indeed, we find CS densities in actual vegetation are lower than in potential vegetation
even in pixels with dense tree cover (>90%) (Figure 5). This implies that land management
also plays an important role in the improved correlation observed between TC and CS in
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the actual vegetation. However, the heterogeneity within biomes is remarkable. Future
research is, thus, required to narrow uncertainties and quantitatively attribute the land
use-induced changes in the CS/TC Ratio we observed to either land cover changes or
land management.
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4.2. Implications for Measuring Carbon Stocks and Fluxes

The two main findings of our study, the differential impacts of land use on TC and
CS, and the strong correlations between TC and CS in the actual vegetation across tropical
biomes are directly relevant for current as well as future initiatives on mapping terres-
trial ecosystems.

While, in principle, the correlation of CS and TC in the actual vegetation suggests TC
to be a valid proxy for CS, some caveats are warranted. The spatial heterogeneity in the
TC-CS relationship is large, both at the pixel level and at the biome level. Furthermore,
recent attempts to quantify and map changes in tropical TC and CS [60,61], revealed strong
land use impacts on CS, while high-resolution spatial analyses have shown that large areas
with substantial CS losses are not co-located with large-scale forest disturbances [62].

In this context, our finding of a higher land use-induced impact on CS implies that
inferring carbon fluxes from TC changes may likely underestimate the impacts of land use
on CS. We find that land use impacts on CS occur not only in the form of land cover change,
but also in the form of land management changes in closed forests, where small-scale forest
degradation may persist. This highlights the need for an improved knowledge of the role
of land use in impacting TC and CS, as well as the need for approaches that go beyond
quantifying TC dynamics for inferring tropical carbon fluxes.
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Our findings relate to the year 2000 for the actual vegetation. However, because
the difference in observed correlations between TC and CS in the potential and actual
vegetation is large, we conclude that our findings are not an artifact of the choice of year
considered for the actual vegetation. Future research with recent datasets on actual TC and
CS can reveal how current land use trajectories have impacted the observed correlations
in the 21st century and whether observed differences are growing or levelling off, thus
yielding deeper insights into the underlying mechanisms of this phenomenon.

Our results are particularly relevant for upcoming ecosystem monitoring missions like
BIOMASS [11,12], GEDI [13] and NISAR [14]. These missions are expected to revolutionize
the analysis of ecosystem structure and function by undertaking repeated CS measurements
at a very high spatial resolution, dramatically reducing critical knowledge gaps related to
the spatial variation in carbon fluxes [63]. However, satellite-based data collection can only
yield snapshots of current surface properties that are, in many cases, a mosaic of many
ecosystems as well as the combined effects of land use and natural drivers. Our results
suggest that next to differences in site conditions [64] influencing parameters such as stem
mortality rates [65], information on land use and its impact on the TC-CS relationship are
important to consider. While high-resolution sensors can depict the impact of land cover
changes on these two parameters, remote sensing-based assessments of land management
impacts are much less straightforward [8,66]. Improving the representation of management
impacts requires auxiliary information to be gathered at the site level. Key parameters are,
for example, the distinction between natural and plantation systems, a clear representation
of forest management regimes or practices such as shifting cultivation [67], selective
logging [68] and livestock grazing [69]. In addition, the missions may encounter challenges
in characterizing the diversity of CS values even for similar TC profiles. Here, our findings
on the differential impacts of land management on CS estimates in closed forests remain
particularly relevant to calibrate upcoming remote sensing assessments [6].

Lastly, some tropical countries are said to have undergone a ‘forest transition’ recently,
marked by net reforestation after years of net deforestation [70,71]. In identifying these
transitions, questions around the ecological quality of regrowing forests, in terms of
changes in CS and biodiversity richness as well as other characteristics of forest change (for
example, the role of secondary succession [72]) are often not adequately represented [73–75].
While we find a strong TC-CS relationship in the actual vegetation in the tropics, our
analysis cannot distinguish between natural forests and plantations. Such a qualitative
understanding of land cover is key to characterize ecosystem structure, as our findings
of land management impacts in dense tree-bearing areas suggest. Future research should
account for the complexities in the relationship between land use, tree cover and target
ecological parameters, which would enable a more comprehensive understanding of
ecosystem recovery and restoration [76].

5. Conclusions

Using evidence from existing data products, our analysis extends the investigation of
the TC-CS relationship to the global tropics. Our findings provide empirical evidence of
the landscape-level TC-CS relationship across tropical biomes and describe the impacts of
land use on the relationship. We show that land use affects CS and TC differently. While
robust evidence indicates that, in humid biomes, CS are affected more strongly than TC,
the opposite is found for Grasslands, albeit with much larger uncertainties. We show that
land cover change and land management collectively improve the correlation between
TC and CS, which ranges from 0.56 to 0.90 in the potential and 0.87 to 0.94 in the actual
vegetation for tropical ecozones. We conclude that a sole observational focus on TC is not
sufficient to infer information on carbon stocks and fluxes, and that land use information,
especially on the diversity of land management practices that currently exist in the tropics,
remains fundamental to characterize the state of, and changes in, tropical ecosystems.
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stocks datasets used in the study.

Author Contributions: Conceptualization, M.B., S.G. and K.-H.E.; formal analysis, M.B., S.G., S.M.,
S.F. and K.-H.E.; funding acquisition, S.G. and K.-H.E.; methodology, M.B. and K.-H.E.; project ad-
ministration, S.G. and K.-H.E.; supervision, S.G. and K.-H.E.; writing—original draft, M.B.; writing—
review & editing, M.B., S.G., S.M., S.F., K.-H.E. All authors have read and agreed to the published
version of the manuscript.

Funding: This work was supported by the Deutsche Forschungsgemeinschaft (DFG, German Re-
search Foundation; Project number KA 4815/1-1) and the European Research Council (ERC) for
the Starting Grant HEFT (Grant Agreement No 757995). A part of the research was conducted
in the Young Scientists Summer Programme (YSSP) at the International Institute for Applied Sys-
tems Analysis in Laxenburg (Austria) with financial support from the Austrian National Member
Organization (NMO).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Supporting datasets of potential and actual biomass carbon stocks and
tree cover are available online at 10.5281/zenodo.5545603.

Acknowledgments: The authors would like to thank Navin Ramankutty for helpful comments to an
earlier version of the manuscript.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Houghton, R.A.; Nassikas, A.A. Global and Regional Fluxes of Carbon from Land Use and Land Cover Change 1850-2015:

Carbon Emissions From Land Use. Glob. Biogeochem. Cycles 2017, 31, 456–472. [CrossRef]
2. IPCC. Climate Change and Land: Summary for Policymakers; Intergovernmental Panel on Climate Change: Geneva, Switzerland, 2019.
3. Arneth, A.; Denton, F.; Fahmuddin, A.; Elbehri, A.; Erb, K.H.; Elasha, B.O.; Rahimi, M.; Rounsevell, M.; Spence, A.; Valentini,

R. Framing and context. In IPCC, 2019: Climate Change and Land: An IPCC Special Report on Climate Change, Desertification, Land
Degradation, Sustainable Land Management, Food Security, and Greenhouse Gas Fluxes in Terrestrial Ecosystems; Shukla, P.R., Skea, J.,
Calvo Buendia, E., Masson-Delmotte, V., Pörtner, H.-O., Roberts, D.C., Zhai, P., Slade, R., Connors, S., van Diemen, R., et al., Eds.;
Intergovernmental Panel on Climate Change: Geneva, Switzerland, 2019; pp. 77–129.

4. Gibbs, H.K.; Brown, S.; Niles, J.O.; Foley, J.A. Monitoring and Estimating Tropical Forest Carbon Stocks: Making REDD a Reality.
Environ. Res. Lett. 2007, 2, 045023. [CrossRef]

5. Luyssaert, S.; Hessenmöller, D.; von Lüpke, N.; Kaiser, S.; Schulze, E.D. Quantifying Land Use and Disturbance Intensity in
Forestry, Based on the Self-Thinning Relationship. Ecol. Appl. 2011, 21, 3272–3284. [CrossRef]

6. Rodríguez-Veiga, P.; Wheeler, J.; Louis, V.; Tansey, K.; Balzter, H. Quantifying Forest Biomass Carbon Stocks From Space. Curr.
For. Rep. 2017, 3, 1–18. [CrossRef]

7. Luedeling, E.; Börner, J.; Amelung, W.; Schiffers, K.; Shepherd, K.; Rosenstock, T. Forest Restoration: Overlooked Constraints.
Science 2019, 366, 315. [CrossRef]

8. Erb, K.-H.; Luyssaert, S.; Meyfroidt, P.; Pongratz, J.; Don, A.; Kloster, S.; Kuemmerle, T.; Fetzel, T.; Fuchs, R.; Herold, M.; et al.
Land Management: Data Availability and Process Understanding for Global Change Studies. Glob. Change Biol. 2017, 23, 512–533.
[CrossRef] [PubMed]

9. Curtis, P.G.; Slay, C.M.; Harris, N.L.; Tyukavina, A.; Hansen, M.C. Classifying Drivers of Global Forest Loss. Science 2018, 361,
1108–1111. [CrossRef] [PubMed]

10. Erb, K.-H.; Kastner, T.; Plutzar, C.; Bais, A.L.S.; Carvalhais, N.; Fetzel, T.; Gingrich, S.; Haberl, H.; Lauk, C.; Niedertschei-
der, M.; et al. Unexpectedly Large Impact of Forest Management and Grazing on Global Vegetation Biomass. Nature 2018, 553,
73–76. [CrossRef] [PubMed]

11. Carreiras, J.M.B.; Quegan, S.; Le Toan, T.; Ho Tong Minh, D.; Saatchi, S.S.; Carvalhais, N.; Reichstein, M.; Scipal, K. Coverage
of High Biomass Forests by the ESA BIOMASS Mission under Defense Restrictions. Remote Sens. Environ. 2017, 196, 154–162.
[CrossRef]

https://www.mdpi.com/article/10.3390/land10111217/s1
https://www.mdpi.com/article/10.3390/land10111217/s1
http://doi.org/10.1002/2016GB005546
http://doi.org/10.1088/1748-9326/2/4/045023
http://doi.org/10.1890/10-2395.1
http://doi.org/10.1007/s40725-017-0052-5
http://doi.org/10.1126/science.aay7988
http://doi.org/10.1111/gcb.13443
http://www.ncbi.nlm.nih.gov/pubmed/27447350
http://doi.org/10.1126/science.aau3445
http://www.ncbi.nlm.nih.gov/pubmed/30213911
http://doi.org/10.1038/nature25138
http://www.ncbi.nlm.nih.gov/pubmed/29258288
http://doi.org/10.1016/j.rse.2017.05.003


Land 2021, 10, 1217 13 of 15

12. Schepaschenko, D.; Chave, J.; Phillips, O.L.; Lewis, S.L.; Davies, S.J.; Réjou-Méchain, M.; Sist, P.; Scipal, K.; Perger, C.; Her-
ault, B.; et al. The Forest Observation System, Building a Global Reference Dataset for Remote Sensing of Forest Biomass. Sci.
Data 2019, 6, 198. [CrossRef]

13. Dubayah, R.; Blair, J.B.; Goetz, S.; Fatoyinbo, L.; Hansen, M.; Healey, S.; Hofton, M.; Hurtt, G.; Kellner, J.; Luthcke, S.; et al. The
Global Ecosystem Dynamics Investigation: High-Resolution Laser Ranging of the Earth’s Forests and Topography. Sci. Remote
Sens. 2020, 1, 100002. [CrossRef]

14. Silva, C.A.; Duncanson, L.; Hancock, S.; Neuenschwander, A.; Thomas, N.; Hofton, M.; Fatoyinbo, L.; Simard, M.; Marshak, C.Z.;
Armston, J.; et al. Fusing Simulated GEDI, ICESat-2 and NISAR Data for Regional Aboveground Biomass Mapping. Remote Sens.
Environ. 2021, 253, 112234. [CrossRef]

15. Bhan, M.; Gingrich, S.; Roux, N.; Le Noë, J.; Kastner, T.; Matej, S.; Schwarzmueller, F.; Erb, K.-H. Quantifying and Attributing
Land Use-Induced Carbon Emissions to Biomass Consumption: A Critical Assessment of Existing Approaches. J. Environ. Manag.
2021, 286, 112228. [CrossRef]

16. DeFries, R.S.; Houghton, R.A.; Hansen, M.C.; Field, C.B.; Skole, D.; Townshend, J. Carbon Emissions from Tropical Deforestation
and Regrowth Based on Satellite Observations for the 1980s and 1990s. Proc. Natl. Acad. Sci. USA 2002, 99, 14256–14261.
[CrossRef] [PubMed]

17. Harris, N.L.; Brown, S.; Hagen, S.C.; Saatchi, S.S.; Petrova, S.; Salas, W.; Hansen, M.C.; Potapov, P.V.; Lotsch, A. Baseline Map of
Carbon Emissions from Deforestation in Tropical Regions. Science 2012, 336, 1573–1576. [CrossRef] [PubMed]

18. Bastin, J.-F.; Finegold, Y.; Garcia, C.; Mollicone, D.; Rezende, M.; Routh, D.; Zohner, C.M.; Crowther, T.W. The Global Tree
Restoration Potential. Science 2019, 365, 76–79. [CrossRef]

19. Tropek, R.; Sedla ek, O.; Beck, J.; Keil, P.; Musilova, Z.; Imova, I.; Storch, D. Comment on “High-Resolution Global Maps of
21st-Century Forest Cover Change”. Science 2014, 344, 981. [CrossRef]

20. Henders, S.; Persson, U.M.; Kastner, T. Trading Forests: Land-Use Change and Carbon Emissions Embodied in Production and
Exports of Forest-Risk Commodities. Environ. Res. Lett. 2015, 10, 125012. [CrossRef]

21. Pendrill, F.; Persson, M.; Godar, J.; Kastner, T. Deforestation Displaced: Trade in Forest-Risk Commodities and the Prospects for a
Global Forest Transition. Environ. Res. Lett. 2019, 1–17. [CrossRef]

22. Pan, Y.; Birdsey, R.A.; Phillips, O.L.; Jackson, R.B. The Structure, Distribution, and Biomass of the World’s Forests. Annu. Rev.
Ecol. Evol. Syst. 2013, 44, 593–622. [CrossRef]

23. Stinson, G.; Kurz, W.A.; Smyth, C.E.; Neilson, E.T.; Dymond, C.C.; Metsaranta, J.M.; Boisvenue, C.; Rampley, G.J.; Li, Q.; White,
T.M.; et al. An Inventory-Based Analysis of Canada’s Managed Forest Carbon Dynamics, 1990 to 2008: CANADA’S MANAGED
FOREST C DYNAMICS. Glob. Change Biol. 2011, 17, 2227–2244. [CrossRef]

24. Neigh, C.S.R.; Nelson, R.F.; Ranson, K.J.; Margolis, H.A.; Montesano, P.M.; Sun, G.; Kharuk, V.; Næsset, E.; Wulder, M.A.;
Andersen, H.-E. Taking Stock of Circumboreal Forest Carbon with Ground Measurements, Airborne and Spaceborne LiDAR.
Remote Sens. Environ. 2013, 137, 274–287. [CrossRef]

25. Mitchard, E.T.; Saatchi, S.S.; Baccini, A.; Asner, G.P.; Goetz, S.J.; Harris, N.L.; Brown, S. Uncertainty in the Spatial Distribution of
Tropical Forest Biomass: A Comparison of Pan-Tropical Maps. Carbon Balance Manag. 2013, 8, 1–13. [CrossRef] [PubMed]

26. Zerbe, S. Potential Natural Vegetation: Validity and Applicability in Landscape Planning and Nature Conservation. Appl. Veg.
Sci. 1998, 1, 165–172. [CrossRef]

27. Haberl, H.; Erb, K.H.; Krausmann, F.; Gaube, V.; Bondeau, A.; Plutzar, C.; Gingrich, S.; Lucht, W.; Fischer-Kowalski, M.
Quantifying and Mapping the Human Appropriation of Net Primary Production in Earth’s Terrestrial Ecosystems. Proc. Natl.
Acad. Sci. USA 2007, 104, 12942–12947. [CrossRef]

28. Erb, K.-H.; Fetzel, T.; Plutzar, C.; Kastner, T.; Lauk, C.; Mayer, A.; Niedertscheider, M.; Körner, C.; Haberl, H. Biomass Turnover
Time in Terrestrial Ecosystems Halved by Land Use. Nat. Geosci. 2016, 9, 674–678. [CrossRef]

29. Hansen, M.C.; Potapov, P.V.; Moore, R.; Hancher, M.; Turubanova, S.A.; Tyukavina, A.; Thau, D.; Stehman, S.V.; Goetz, S.J.;
Loveland, T.R.; et al. High-Resolution Global Maps of 21st-Century Forest Cover Change. Science 2013, 342, 850–853. [CrossRef]

30. Song, X.-P.; Hansen, M.C.; Stehman, S.V.; Potapov, P.V.; Tyukavina, A.; Vermote, E.F.; Townshend, J.R. Global Land Change from
1982 to 2016. Nature 2018, 560, 639–643. [CrossRef]

31. Bouvet, A.; Mermoz, S.; Le Toan, T.; Villard, L.; Mathieu, R.; Naidoo, L.; Asner, G.P. An Above-Ground Biomass Map of African
Savannahs and Woodlands at 25 m Resolution Derived from ALOS PALSAR. Remote Sens. Environ. 2018, 206, 156–173. [CrossRef]

32. Fan, L.; Wigneron, J.-P.; Ciais, P.; Chave, J.; Brandt, M.; Fensholt, R.; Saatchi, S.S.; Bastos, A.; Al-Yaari, A.; Hufkens, K.; et al.
Satellite-Observed Pantropical Carbon Dynamics. Nat. Plants 2019, 5, 944–951. [CrossRef]

33. Spawn, S.A.; Sullivan, C.C.; Lark, T.J.; Gibbs, H.K. Harmonized Global Maps of above and Belowground Biomass Carbon Density
in the Year 2010. Sci. Data 2020, 7, 112. [CrossRef] [PubMed]

34. Chazdon, R.L.; Brancalion, P.H.S.; Laestadius, L.; Bennett-Curry, A.; Buckingham, K.; Kumar, C.; Moll-Rocek, J.; Vieira, I.C.G.;
Wilson, S.J. When Is a Forest a Forest? Forest Concepts and Definitions in the Era of Forest and Landscape Restoration. Ambio
2016, 45, 538–550. [CrossRef] [PubMed]

35. Eggleston, H.S.; Buendia, L.; Miwa, K.; Ngara, T.; Tanabe, K. IPCC Guidelines for National Greenhouse Gas Inventories. Inst.
Glob. Environ. Strateg. Hayama Jpn. 2006, 48–56.

http://doi.org/10.1038/s41597-019-0196-1
http://doi.org/10.1016/j.srs.2020.100002
http://doi.org/10.1016/j.rse.2020.112234
http://doi.org/10.1016/j.jenvman.2021.112228
http://doi.org/10.1073/pnas.182560099
http://www.ncbi.nlm.nih.gov/pubmed/12384569
http://doi.org/10.1126/science.1217962
http://www.ncbi.nlm.nih.gov/pubmed/22723420
http://doi.org/10.1126/science.aax0848
http://doi.org/10.1126/science.1248753
http://doi.org/10.1088/1748-9326/10/12/125012
http://doi.org/10.1088/1748-9326/ab0d41
http://doi.org/10.1146/annurev-ecolsys-110512-135914
http://doi.org/10.1111/j.1365-2486.2010.02369.x
http://doi.org/10.1016/j.rse.2013.06.019
http://doi.org/10.1186/1750-0680-8-10
http://www.ncbi.nlm.nih.gov/pubmed/24161143
http://doi.org/10.2307/1478945
http://doi.org/10.1073/pnas.0704243104
http://doi.org/10.1038/ngeo2782
http://doi.org/10.1126/science.1244693
http://doi.org/10.1038/s41586-018-0411-9
http://doi.org/10.1016/j.rse.2017.12.030
http://doi.org/10.1038/s41477-019-0478-9
http://doi.org/10.1038/s41597-020-0444-4
http://www.ncbi.nlm.nih.gov/pubmed/32249772
http://doi.org/10.1007/s13280-016-0772-y
http://www.ncbi.nlm.nih.gov/pubmed/26961011


Land 2021, 10, 1217 14 of 15

36. Saatchi, S.S.; Harris, N.L.; Brown, S.; Lefsky, M.; Mitchard, E.T.A.; Salas, W.; Zutta, B.R.; Buermann, W.; Lewis, S.L.; Hagen, S.;
et al. Benchmark Map of Forest Carbon Stocks in Tropical Regions across Three Continents. Proc. Natl. Acad. Sci. USA 2011, 108,
9899–9904. [CrossRef] [PubMed]

37. Baccini, A.; Goetz, S.J.; Walker, W.S.; Laporte, N.T.; Sun, M.; Sulla-Menashe, D.; Hackler, J.; Beck, P.S.A.; Dubayah, R.; Friedl, M.A.;
et al. Estimated Carbon Dioxide Emissions from Tropical Deforestation Improved by Carbon-Density Maps. Nat. Clim. Chang.
2012, 2, 182–185. [CrossRef]

38. Ramankutty, N.; Foley, J.A. Estimating Historical Changes in Global Land Cover: Croplands from 1700 to 1992. Glob. Biogeochem.
Cycles 1999, 13, 997–1027. [CrossRef]

39. FAO. Global Forest Resources Assessment 2000; Food and Agriculture Organization of the United Nations: Rome, Italy, 2001.
40. Olson, D.M.; Dinerstein, E.; Wikramanayake, E.D.; Burgess, N.D.; Powell, G.V.N.; Underwood, E.C.; D’amico, J.A.; Itoua, I.;

Strand, H.E.; Morrison, J.C.; et al. Terrestrial Ecoregions of the World: A New Map of Life on Earth. BioScience 2001, 51, 933.
[CrossRef]

41. FAO. Global Forest Resource Assessment 2010; Food and Agriculture Organization of the United Nations: Rome, Italy, 2010.
42. Pan, Y.; Birdsey, R.A.; Fang, J.; Houghton, R.; Kauppi, P.E.; Kurz, W.A.; Phillips, O.L.; Shvidenko, A.; Lewis, S.L.; Canadell, J.G.;

et al. A Large and Persistent Carbon Sink in the World’s Forests. Science 2011, 333, 988–993. [CrossRef]
43. West, P.C.; Gibbs, H.K.; Monfreda, C.; Wagner, J.; Barford, C.C.; Carpenter, S.R.; Foley, J.A. Trading Carbon for Food: Global

Comparison of Carbon Stocks vs. Crop Yields on Agricultural Land. Proc. Natl. Acad. Sci. USA 2010, 107, 19645–19648. [CrossRef]
44. Searchinger, T.D.; Wirsenius, S.; Beringer, T.; Dumas, P. Assessing the Efficiency of Changes in Land Use for Mitigating Climate

Change. Nature 2018, 564, 249–253. [CrossRef]
45. Simard, M.; Pinto, N.; Fisher, J.B.; Baccini, A. Mapping Forest Canopy Height Globally with Spaceborne Lidar. J. Geophys. Res.

2011, 116, G04021. [CrossRef]
46. Ruesch, A.S.; Gibbs, H.K. New IPCC Tier-1 Global Biomass Carbon Map For the Year 2000. Environ. Syst. Sci. Data Infrastruct.

Virtual Ecosyst. 2008. [CrossRef]
47. Potapov, P.; Hansen, M.C.; Laestadius, L.; Turubanova, S.; Yaroshenko, A.; Thies, C.; Smith, W.; Zhuravleva, I.; Komarova, A.;

Minnemeyer, S.; et al. The Last Frontiers of Wilderness: Tracking Loss of Intact Forest Landscapes from 2000 to 2013. Sci. Adv.
2017, 3, e1600821. [CrossRef] [PubMed]

48. Venter, O.; Sanderson, E.W.; Magrach, A.; Allan, J.R.; Beher, J.; Jones, K.R.; Possingham, H.P.; Laurance, W.F.; Wood, P.; Fekete,
B.M.; et al. Sixteen Years of Change in the Global Terrestrial Human Footprint and Implications for Biodiversity Conservation.
Nat. Commun. 2016, 7, 12558. [CrossRef]

49. Veldman, J.W.; Aleman, J.C.; Alvarado, S.T.; Anderson, T.M.; Archibald, S.; Bond, W.J.; Boutton, T.W.; Buchmann, N.; Buisson, E.;
Canadell, J.G.; et al. Comment on “The Global Tree Restoration Potential”. Science 2019, 366, eaay7976. [CrossRef] [PubMed]

50. Vancutsem, C.; Achard, F.; Pekel, J.-F.; Vieilledent, G.; Carboni, S.; Simonetti, D.; Gallego, J.; Aragão, L.E.O.C.; Nasi, R. Long-Term
(1990–2019) Monitoring of Forest Cover Changes in the Humid Tropics. Sci. Adv. 2021, 7, eabe1603. [CrossRef] [PubMed]

51. McDowell, N.G.; Allen, C.D.; Anderson-Teixeira, K.; Aukema, B.H.; Bond-Lamberty, B.; Chini, L.; Clark, J.S.; Dietze, M.; Grossiord,
C.; Hanbury-Brown, A.; et al. Pervasive Shifts in Forest Dynamics in a Changing World. Science 2020, 368, eaaz9463. [CrossRef]

52. Poorter, L.; Bongers, F.; Aide, T.M.; Almeyda Zambrano, A.M.; Balvanera, P.; Becknell, J.M.; Boukili, V.; Brancalion, P.H.S.;
Broadbent, E.N.; Chazdon, R.L.; et al. Biomass Resilience of Neotropical Secondary Forests. Nature 2016, 530, 211–214. [CrossRef]

53. Almeida, D.R.A.; Stark, S.C.; Schietti, J.; Camargo, J.L.C.; Amazonas, N.T.; Gorgens, E.B.; Rosa, D.M.; Smith, M.N.; Valbuena, R.;
Saleska, S.; et al. Persistent Effects of Fragmentation on Tropical Rainforest Canopy Structure after 20 Yr of Isolation. Ecol. Appl.
2019, 29, e01952. [CrossRef]

54. Cunningham, D.; Cunningham, P.; Fagan, M.E. Identifying Biases in Global Tree Cover Products: A Case Study in Costa Rica.
Forests 2019, 10, 853. [CrossRef]

55. Fagan, M.E. A Lesson Unlearned? Underestimating Tree Cover in Dryland Biases Global Restoration Maps. Glob. Change Biol.
2020, 26, 4679–4690. [CrossRef]

56. Brandt, M.; Tucker, C.J.; Kariryaa, A.; Rasmussen, K.; Abel, C.; Small, J.; Chave, J.; Rasmussen, L.V.; Hiernaux, P.; Diouf, A.A.;
et al. An Unexpectedly Large Count of Trees in the West African Sahara and Sahel. Nature 2020, 587, 78–82. [CrossRef]

57. Bastin, J.-F.; Berrahmouni, N.; Grainger, A.; Maniatis, D.; Mollicone, D.; Moore, R.; Patriarca, C.; Picard, N.; Sparrow, B.; Abraham,
E.M.; et al. The Extent of Forest in Dryland Biomes. Science 2017, 356, 635–638. [CrossRef] [PubMed]

58. Ryan, C.M.; Hill, T.; Woollen, E.; Ghee, C.; Mitchard, E.; Cassells, G.; Grace, J.; Woodhouse, I.H.; Williams, M. Quantifying
Small-Scale Deforestation and Forest Degradation in African Woodlands Using Radar Imagery. Glob. Change Biol. 2012, 18,
243–257. [CrossRef]

59. Brandt, M. Reduction of Tree Cover in West African Woodlands and Promotion in Semi-Arid Farmlands. Nat. Geosci. 2018, 11,
328–333. [CrossRef]

60. Keenan, R.J.; Reams, G.A.; Achard, F.; de Freitas, J.V.; Grainger, A.; Lindquist, E. Dynamics of Global Forest Area: Results from
the FAO Global Forest Resources Assessment 2015. For. Ecol. Manag. 2015, 352, 9–20. [CrossRef]

61. Baccini, A.; Walker, W.; Carvalho, L.; Farina, M.; Sulla-Menashe, D.; Houghton, R.A. Tropical Forests Are a Net Carbon Source
Based on Aboveground Measurements of Gain and Loss. Science 2017, 358, 230–234. [CrossRef] [PubMed]

62. Hansen, M.C.; Potapov, P.; Tyukavina, A. Comment on “Tropical Forests Are a Net Carbon Source Based on Aboveground
Measurements of Gain and Loss”. Science 2019, 363. [CrossRef]

http://doi.org/10.1073/pnas.1019576108
http://www.ncbi.nlm.nih.gov/pubmed/21628575
http://doi.org/10.1038/nclimate1354
http://doi.org/10.1029/1999GB900046
http://doi.org/10.1641/0006-3568(2001)051[0933:TEOTWA]2.0.CO;2
http://doi.org/10.1126/science.1201609
http://doi.org/10.1073/pnas.1011078107
http://doi.org/10.1038/s41586-018-0757-z
http://doi.org/10.1029/2011JG001708
http://doi.org/10.15485/1463800
http://doi.org/10.1126/sciadv.1600821
http://www.ncbi.nlm.nih.gov/pubmed/28097216
http://doi.org/10.1038/ncomms12558
http://doi.org/10.1126/science.aay7976
http://www.ncbi.nlm.nih.gov/pubmed/31624182
http://doi.org/10.1126/sciadv.abe1603
http://www.ncbi.nlm.nih.gov/pubmed/33674308
http://doi.org/10.1126/science.aaz9463
http://doi.org/10.1038/nature16512
http://doi.org/10.1002/eap.1952
http://doi.org/10.3390/f10100853
http://doi.org/10.1111/gcb.15187
http://doi.org/10.1038/s41586-020-2824-5
http://doi.org/10.1126/science.aam6527
http://www.ncbi.nlm.nih.gov/pubmed/28495750
http://doi.org/10.1111/j.1365-2486.2011.02551.x
http://doi.org/10.1038/s41561-018-0092-x
http://doi.org/10.1016/j.foreco.2015.06.014
http://doi.org/10.1126/science.aam5962
http://www.ncbi.nlm.nih.gov/pubmed/28971966
http://doi.org/10.1126/science.aar3629


Land 2021, 10, 1217 15 of 15

63. Harris, N.L.; Gibbs, D.A.; Baccini, A.; Birdsey, R.A.; de Bruin, S.; Farina, M.; Fatoyinbo, L.; Hansen, M.C.; Herold, M.; Houghton,
R.A.; et al. Global Maps of Twenty-First Century Forest Carbon Fluxes. Nat. Clim. Chang. 2021, 11, 234–240. [CrossRef]

64. Drake, J.B.; Knox, R.G.; Dubayah, R.O.; Clark, D.B.; Condit, R.; Blair, J.B.; Hofton, M. Above-Ground Biomass Estimation in
Closed Canopy Neotropical Forests Using Lidar Remote Sensing: Factors Affecting the Generality of Relationships: Biomass
Estimation in Neotropical Forests Using Lidar. Glob. Ecol. Biogeogr. 2003, 12, 147–159. [CrossRef]

65. Johnson, M.O.; Galbraith, D.; Gloor, M.; De Deurwaerder, H.; Guimberteau, M.; Rammig, A.; Thonicke, K.; Verbeeck, H.;
von Randow, C.; Monteagudo, A.; et al. Variation in Stem Mortality Rates Determines Patterns of Above-Ground Biomass in
Amazonian Forests: Implications for Dynamic Global Vegetation Models. Glob. Change Biol. 2016, 22, 3996–4013. [CrossRef]
[PubMed]

66. Kuemmerle, T.; Erb, K.; Meyfroidt, P.; Müller, D.; Verburg, P.H.; Estel, S.; Haberl, H.; Hostert, P.; Jepsen, M.R.; Kastner, T.; et al.
Challenges and Opportunities in Mapping Land Use Intensity Globally. Curr. Opin. Environ. Sustain. 2013, 5, 484–493. [CrossRef]

67. Heinimann, A.; Mertz, O.; Frolking, S.; Egelund Christensen, A.; Hurni, K.; Sedano, F.; Parsons Chini, L.; Sahajpal, R.; Hansen, M.;
Hurtt, G. A Global View of Shifting Cultivation: Recent, Current, and Future Extent. PLoS ONE 2017, 12, e0184479. [CrossRef]
[PubMed]

68. Hosonuma, N.; Herold, M.; De Sy, V.; De Fries, R.S.; Brockhaus, M.; Verchot, L.; Angelsen, A.; Romijn, E. An Assessment of
Deforestation and Forest Degradation Drivers in Developing Countries. Environ. Res. Lett. 2012, 7, 044009. [CrossRef]

69. Fetzel, T.; Havlik, P.; Herrero, M.; Kaplan, J.O.; Kastner, T.; Kroisleitner, C.; Rolinski, S.; Searchinger, T.; Van Bodegom, P.M.;
Wirsenius, S.; et al. Quantification of Uncertainties in Global Grazing Systems Assessment: Uncertainties in Global Grazing Data.
Glob. Biogeochem. Cycles 2017, 31, 1089–1102. [CrossRef]

70. Mather, A.S. Recent Asian Forest Transitions in Relation to Foresttransition Theory. Int. For. Rev. 2007, 9, 491–502. [CrossRef]
71. Youn, Y.-C.; Choi, J.; de Jong, W.; Liu, J.; Park, M.S.; Camacho, L.D.; Tachibana, S.; Huudung, N.D.; Bhojvaid, P.P.; Damayanti,

E.K.; et al. Conditions of Forest Transition in Asian Countries. For. Policy Econ. 2017, 76, 14–24. [CrossRef]
72. Wang, C.; Yu, M.; Gao, Q. Continued Reforestation and Urban Expansion in the New Century of a Tropical Island in the Caribbean.

Remote Sens. 2017, 9, 731. [CrossRef]
73. Kauppi, P.E.; Ausubel, J.H.; Fang, J.; Mather, A.S.; Sedjo, R.A.; Waggoner, P.E. Returning Forests Analyzed with the Forest Identity.

Proc. Natl. Acad. Sci. USA 2006, 103, 17574–17579. [CrossRef]
74. Gingrich, S.; Lauk, C.; Niedertscheider, M.; Pichler, M.; Schaffartzik, A.; Schmid, M.; Magerl, A.; Le Noë, J.; Bhan, M.; Erb, K.

Hidden Emissions of Forest Transitions: A Socio-Ecological Reading of Forest Change. Curr. Opin. Environ. Sustain. 2019, 38,
14–21. [CrossRef]

75. Drummond, M.A.; Loveland, T.R. Land-Use Pressure and a Transition to Forest-Cover Loss in the Eastern United States. BioScience
2010, 60, 286–298. [CrossRef]

76. Kull, C.A. Forest Transitions: A New Conceptual Scheme. Geogr. Helvetica 2017, 72, 465–474. [CrossRef]

http://doi.org/10.1038/s41558-020-00976-6
http://doi.org/10.1046/j.1466-822X.2003.00010.x
http://doi.org/10.1111/gcb.13315
http://www.ncbi.nlm.nih.gov/pubmed/27082541
http://doi.org/10.1016/j.cosust.2013.06.002
http://doi.org/10.1371/journal.pone.0184479
http://www.ncbi.nlm.nih.gov/pubmed/28886132
http://doi.org/10.1088/1748-9326/7/4/044009
http://doi.org/10.1002/2016GB005601
http://doi.org/10.1505/ifor.9.1.491
http://doi.org/10.1016/j.forpol.2016.07.005
http://doi.org/10.3390/rs9070731
http://doi.org/10.1073/pnas.0608343103
http://doi.org/10.1016/j.cosust.2019.04.005
http://doi.org/10.1525/bio.2010.60.4.7
http://doi.org/10.5194/gh-72-465-2017

	Introduction 
	Materials and Methods 
	Input Maps and Uncertainty Analysis 
	Spatial Analysis of the TC-CS Relationship 

	Results 
	Spatial Variation in TC and CS 
	Correlations between TC and CS across Biomes 

	Discussion 
	Major Findings and Underlying Mechanisms 
	Implications for Measuring Carbon Stocks and Fluxes 

	Conclusions 
	References

