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Abstract 22 

There is a growing awareness of the need to integrate climate and biodiversity policies. As forests play 23 

an important role in mitigating biodiversity loss and climate change, numerous countries have 24 

established goals and are managing their forests to achieve them. However, forest management 25 
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measures and land prioritization may differ depending on the target chosen, leading to conflicts. This 26 

research aims to seek optimized national afforestation plans in the Republic of Korea by assessing trade-27 

offs between plant biodiversity persistence and carbon stocks. To this end, afforestation scenarios were 28 

spatially established based on the national forest management plans, with a target of 5,800 ha expansion 29 

by 2022. Generalized Dissimilarity Modelling (GDM) and Global Forest Model (G4M) were applied 30 

to the selected afforestable regions to obtain scenarios that maximize biodiversity and carbon, 31 

respectively. Furthermore, another afforestation scenario that considers both objectives equally, 32 

was proposed using spatial simulated annealing (SSA) optimization algorithm to mitigate trade-offs. 33 

The constructed scenarios were compared, both spatially and quantitatively. As a result, the 34 

maximization scenarios were found to have few overlapping areas, with both scenarios resulting in ~50% 35 

trade-offs. These findings reveal that there is no universal solution and different management strategies 36 

are needed to enhance biodiversity persistence and carbon stocks. Thus, to strike a balance among the 37 

various goals, forest management requires a compromise solution to minimize trade-offs. Our national-38 

scale assessment can help to guide future planning of national forest management with the consideration 39 

of the joint goals of biodiversity and carbon enhancement. 40 

 41 
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1. Introduction 44 

Biodiversity loss and climate change are the most intractable threats to humans (Folke et al., 2004; 45 

Thompson et al., 2009; IPCC, 2014; Oliver et al., 2015; Lecina‐Diaz et al., 2018; McVittie and Faccioli, 46 

2020). Climate change is a major driver of biodiversity loss; conversely, biodiversity is the most 47 

important basis of ecosystem services, and is an important contributor to climate change adaptation and 48 

mitigation (Munang et al., 2013; Pereira et al., 2013; Choi et al., 2019). Accordingly, international 49 

organizations, such as the Intergovernmental Panel on Climate Change (IPCC) and the 50 
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Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services (IPBES) are 51 

engaged in increasing awareness of the need to integrate climate and biodiversity policy (Ferreira et al., 52 

2018; Biodiversity and Climate Change Working Group II, 2018; Soto-Navarro et al., 2020). They 53 

encourage parties to incorporate climate change issues and related national goals into national 54 

biodiversity strategies and action plans; conversely, they want nations to incorporate biodiversity and 55 

ecosystem agendas into national policies, strategies, and plans for climate change (Biodiversity and 56 

Climate Change Working Group II, 2018).  57 

Forests, accounting for one-third of the Earth’s land surface, provide a wide range of ecosystem 58 

services (FAO, 2020; Lee et al., 2020), and in particular, play a major role in the global carbon cycle 59 

(Sedjo, 1993; Schimel, 1995; Keith et al., 2019). In addition, as they provide important habitats for 60 

terrestrial biodiversity (Thompson et al., 2012), forest management remains one of the most effective 61 

strategies for enhancing ecosystem services. Accordingly, many countries have established ambitious 62 

targets to promote forest conservation, afforestation, and restoration at the national level (Thompson et 63 

al., 2009; Shepherd et al., 2016; Bastin et al., 2019). However, these targets differ in their emphasis on 64 

increasing carbon stocks or enhancing biodiversity, and may be constrained by limited resources and 65 

available land (Lecina‐Diaz et al., 2018; Obersteiner et al., 2018; Arneth et al., 2019). Furthermore, it 66 

remains unclear whether these goals can be achieved simultaneously. If forests with high carbon stocks 67 

do not spatially coincide with biodiversity priorities, this can cause a conflict between which goal is 68 

achieved (Reside et al., 2017).  69 

 Although a number of studies have been conducted to identify the relationship between 70 

biodiversity and carbon stocks, their correlation remains controversial (Evans et al., 2015; Murray et 71 

al., 2015; Reside et al., 2017; Ferreira et al., 2018; Girardello et al., 2019; Grass et al., 2020; Blattert et 72 

al., 2020). In addition, previous research has focused on existing forests to identify and compare regions 73 

with high biodiversity or carbon stocks (Murray et al., 2015; Reside et al., 2017; Lecina‐Diaz et al., 74 

2018; Soto-Navarro et al., 2020). However, as afforestation or restoration of degraded forests has been 75 

recommended as an efficient strategy to increase carbon stocks or biodiversity, it is necessary to 76 
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investigate the most suitable areas for its implementation and evaluate its effectiveness. Even though 77 

the potential benefits of forest restoration and afforestation on carbon sequestration have been 78 

highlighted (Potapove et al., 2011; Erb et al., 2018; Bastin et al., 2019), their implications on 79 

biodiversity have not been sufficiently studied; instead, most research has concentrated on biodiversity 80 

loss due to degradation of forests or climate change (WWF, 2008; Araújo et al., 2011; Thompson et al., 81 

2012; Newbold et al., 2016; Drielsma et al., 2017; Chaudhary and Mooers, 2018; Choi et al., 2019; Lim 82 

et al., 2019a; Di Marco et al., 2019a).  83 

Afforestation and forest restoration are opportunities for both conservation organizations (NGOs), 84 

corporations, government, and other stakeholders to conserve species and increase carbon stocks. 85 

Conservation organizations need to identify the locations of areas that should not be damaged or that 86 

need to be restored to promote species conservation. On the other hand, individual forest owners, local 87 

governments, national forest managers, and corporate forestland owners, who wish to obtain 88 

certification of carbon absorption through forest management activities, need information on the 89 

location and species of trees to plant that can maximize carbon storage (Shin and Yeo-Chang, 2019). 90 

For governments that need to simultaneously promote the achievement of biodiversity conservation 91 

targets (e.g., Aichi targets) and ‘Net Zero’ emissions, a balanced environmental plan should be 92 

established with spatially explicit guidelines for afforestation or restoration. Therefore, in order to 93 

establish an effective environmental plan, research should focus on whether forest management can 94 

both maximize carbon stocks and ensure biodiversity conservation, simultaneously, or whether 95 

biodiversity requires a separate planning approach different from forest management plans that focus 96 

on carbon stocks.  97 

This study aims to seek ways to optimize the national afforestation plans of the Republic of Korea 98 

(ROK) in consideration of the balance between these competing objectives. The Korean government 99 

has devised various forest management plans based on predictions of future environmental changes. 100 

For example, due to a decline in human population, development is set to decline, leading to a reduction 101 

in forest degradation, and the increase in abandoned lands in rural areas is expected to be converted into 102 
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forests (Korea Forest Service, 2018). Furthermore, the President of South Korea has declared that the 103 

ROK will commit to achieving carbon neutrality (Net Zero) by 2050 during the national assembly on 104 

October 27, 2020 (“Statement attributable,” 2020). The Government of South Korea announced the 105 

‘2050 carbon neutral strategy’ to achieve this goal, including innovative forest management strategies 106 

to secure carbon sinks (The Government of the Republic of Korea, 2020). The majority of forests in 107 

Korea are over 40 years old, and at these ages, they tend to have lower carbon dioxide uptake (Li et al., 108 

2011; An et al., 2019). Recognizing this, the Korea Forest Service plans to increase carbon absorption 109 

sources by building urban green spaces, restoring degraded lands and planting trees in underutilized 110 

lands, and establishing a management system for the newly forested areas (Korea Forest Service, 2018; 111 

The Government of the Republic of Korea, 2020). Moreover, as biodiversity decline is predicted due to 112 

multiple drivers, including climate change, habitat destruction, and degradation (Choi et al., 2017; Choi 113 

et al., 2021), the Government has established various biodiversity conservation strategies under the goal 114 

of equitable sharing of natural resources for all citizens through biodiversity conservation and 115 

enhancement, and risk management, such as: habitat loss reduction, pressure reduction on vulnerable 116 

ecosystems, prevention and control of invasive species, and protection of biodiversity through the 117 

expansion of protected areas and restoration of ecosystems (The Government of the Republic of Korea, 118 

2014).  119 

We put the forest management goals and plans currently being pursed in a geographic context to 120 

identify strategies to maximize both biodiversity and carbon storage. In particular, we focus on 121 

enhancing plant biodiversity and carbon stocks secured through afforestation. Multiple spatial 122 

afforestation scenarios using detailed national environmental datasets, global spatial modeling, and 123 

optimization algorithms are constructed to maximize biodiversity and carbon storage respectively, and 124 

simultaneously consider both objectives. Through a comparative analysis of biodiversity and carbon 125 

stock gains for each scenario, the effectiveness of afforestation according to location is quantitatively 126 

evaluated, and compromise solutions are examined to minimize the trade-off between the two objectives.   127 

 128 
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2. Materials and Methods  129 

2.1 Study area  130 

The study area of this study is the whole of the ROK (Figure 1). The ROK is an interesting study 131 

area for assessing the effect of forest management, as it has had a successful reforestation history (Bae 132 

et al., 2014; Kim et al., 2017; Lee et al., 2018; Kim et al., 2019). During the Korean War (1950–1953), 133 

almost half of the forest land was destroyed, and the average volume of the growing stock dropped 134 

approximately 36%–40% of the pre-war estimate (Korea Forest Research Institute, 2014), and only 35% 135 

of the national land area was forest cover, excluding non-stocked forestland (Bae et al., 2012). However, 136 

since the national reforestation programme in the 1970s, 63% of the country area is currently covered 137 

by forests, and the government has been carrying out continuous forest management including 138 

afforestation (Korea Forest Research Institute, 2014). The eastern region of Korea is extensively 139 

mountainous, including the Taebaek Mountain range, which is the main ridge of the Korean Peninsula 140 

(Lim et al., 2019b). The Sobaek Mountain Range, which extends from the Taebaek Mountain Range, 141 

cut across the center of Korea. The southern tip of Korea is made up of Jeju Island, which has a distinct 142 

climate and unique geographical features. Figure 1 demonstrates the topographical characteristics of 143 

the study area (left), and land cover with the classification units used for biodiversity modeling (right).   144 

 145 
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    146 
Figure 1. Administrative boundary with elevation information (left) and land cover map with 147 
classification units (right) under the World Geodetic System (WGS84) obtained from National 148 

Geographic Information Institute in Korea and Ministry of Environment, respectively.  149 
 150 

2.2 Review of national plans and method to select afforestable area   151 

In this study, we reviewed two key national plans of the Korean government related to forest 152 

management for climate change mitigation, and biodiversity conservation, referring to “Comprehensive 153 

plans for improvement of carbon sinks (2018–2022)”, “and “The 3rd forest biodiversity master plan 154 

(2018–2022)”.  155 

The “Comprehensive plans for improvement of carbon sinks (2018–2022)” enacted under the “Act 156 

on the Management and Improvement of Carbon Sink” aims to reduce greenhouse gas emissions by 10% 157 

of reduction targets through forest management by 2030. Seven % of greenhouse gases are expected to 158 

be absorbed through domestic forest management and 3% through overseas REDD+ and forest 159 

restoration projects. Domestic forest management includes reduction plans of 20 million tons of 160 

greenhouse gas by reinforcing the carbon cycle, for example, promoting tree species renewal. Using 161 
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domestic timber and expanding new carbon sinks are expected to reduce greenhouse gas emissions by 162 

2.4 million tons and 77,000 tons respectively. The expansion of new carbon sinks, a focus area of this 163 

study, is expected to contribute towards 3,000 ha of forests within cities by 2022. It also includes plans 164 

to secure 300 ha per year from 2015 to 2020, and 500 ha per year during 2021–2022 through 165 

afforestation and restoration of idle land, coastal forests, and damaged areas. Taken together, it can be 166 

confirmed that the government plans to afforest a total of 5,800 ha (3,000 + 300 × 6 + 500 × 2) by 167 

2022.   168 

“The 3rd forest biodiversity master plan (2018–2022)” also sets various implementation goals such 169 

as the expansion of forest protection areas, conservation of forest species, and restoration of damaged 170 

areas. Afforestation includes a plan to restore forests about 96 ha of major mountain range and the 171 

Demilitarized Zone (DMZ) area, and 219 ha of other regions, including cities. Although the two plans 172 

set their respective targets, both plans have the same goal of restoration or afforestation. They are 173 

therefore likely to be applied to overlapping sites during implementation because of the limited land 174 

area available Hence, we chose to analyze the impact of achieving the larger 5,800 ha afforestation 175 

target from the carbon sinks enhancement plan  176 

Potential afforestation sites were selected by converting a national land cover map (1/25,000) 177 

produced by the Ministry of Environment (MoE) in 2007 to a 100-m resolution. We excluded urbanized 178 

areas, agricultural areas, forests, wetlands, and water bodies among the 22 land cover classes, as they 179 

were unsuitable for afforestation. We further excluded artificial lands, including golf courses, 180 

playgrounds, pastures for livestock production, and farms, as implementing public-led afforestation in 181 

these areas is difficult because they are private properties. Moreover, afforestation is not feasible in bare 182 

land as it includes rocky areas and sandy beaches that hinder vegetation growth. Hence, we only 183 

considered natural pastures as afforestable in this study. In Korea, natural pasture is mainly considered 184 

as an intermediate transitional stage to forests (Yun and Chang, 1969; Lee, 1992), as Korea's high 185 

annual precipitation and average temperature means that natural grasslands cannot achieve climatic 186 
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climax. In addition, natural pastures include areas of low current carbon and biodiversity value; for 187 

instance, small-scale herbaceous plant communities occupying neglected cultivated lands or places with 188 

high human interference around cultivated lands or forests destroyed by fires or logging (Lee, 1992), 189 

making them particularly suitable for afforestation. Accordingly, of the 53,298 ha of natural pasture in 190 

Korea, 5,800 ha were explored to maximize biodiversity and carbon storage.  191 

Figure 2 shows the overall flow of the study. An optimal area was sought to maximize biodiversity 192 

and carbon storage by applying generalized dissimilarity modelling (GDM) and the global forest model 193 

(G4M), which were used to simulate changes in biodiversity persistence and carbon stock, respectively. 194 

Using these, three different scenarios, viz. biodiversity-focused afforestation scenario (BfA), carbon-195 

focused afforestation scenario (CfA), and simultaneously focusing on biodiversity and carbon 196 

afforestation scenario (BCA) were derived, and the effectiveness of each scenario was quantitatively 197 

evaluated.  198 

 199 

 200 

Figure 2. Research flow 201 

 202 

  203 
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2.3 Biodiversity persistence modeling for Biodiversity-focused Afforestation scenario (BfA) 204 

This study adopted the Allnutt et al. (2008) approach to project biodiversity persistence (BP) which 205 

has been underpinned by several global studies (Hoskins et al., 2020; Di Marco et al., 2019a). This 206 

approach utilized GDM with estimates of habitat conditions for simulating BP (Hoskins et al., 2020; Di 207 

Marco et al., 2019a; Di Marco et al., 2019b; Choi et al., 2021). Under the assumption that species 208 

composition changes as environmental differences increase along with spatial distance, GDM analyzes 209 

the dissimilarity between pairs of sites and projects spatial pattern of species composition (β-diversity) 210 

across large regions (Ferrier et al., 2007; Fitzpatrick et al., 2011; Laidlaw et al., 2016; Drielsma et al., 211 

2017; Ware et al., 2018). The BP was calculated using equation (1), as described in detail by Allnutt et 212 

al. (2008) and Di Marco et al. (2019a, 2019b).  213 

p𝑖𝑖 = �
∑ 𝑆𝑆𝑖𝑖𝑖𝑖
𝑗𝑗=𝑛𝑛
𝑗𝑗=1 ℎ𝑗𝑗

∑ 𝑆𝑆𝑖𝑖𝑖𝑖
𝑗𝑗=𝑛𝑛
𝑗𝑗=1

�
0.25

 (1) 214 

 215 

Here, pi is the BP for each cell, which indicates the proportion at which the current species 216 

composition within cell i will be maintained for a long time. pi consists of sij and hj, which refer to the 217 

predicted similarity between cell i and all other cells j; and the habitat condition of cell j, respectively. 218 

To apply the aforementioned methodology, a GDM model-based similarity (sij) and habitat 219 

condition map for hj were constructed using the national dataset of the ROK. A total of 204,218 records 220 

of 2,940 plant species were obtained from the 3rd National Ecosystem Survey (2006–2010) for the 221 

application of GDM. We processed these data following Choi et al. (2021) to produce a similarity (sij) 222 

in species composition between pairs of sites using a function of environmental differences (Ferrier et 223 

al., 2007; Di Marco et al., 2019a), although we found that the model was more accurate when excluding 224 

altitude, land cover, and soil depth; accordingly, only 23 bioclimatic variables derived from CHELSA 225 

(Climatologies at high resolution for the earth’s land surface areas) climate dataset (Karger et al., 2017) 226 
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were utilized. We used the monthly climate average of 2004–2013 at a 1-km2 resolution, considering 227 

the period of the species survey. Supplementary Table 1 presents the details of predictor variables.  228 

The habitat condition index (HCI) developed by Choi et al. (2021) was also adopted. HCI is an 229 

index that evaluates habitat conditions based on the current distribution of species with a massive 230 

amount of survey data. Since the relationship between richness or abundance and ecosystem function 231 

as habitat is unclear, an equation of HCI weighted the species and abundance equally (see Choi et al., 232 

2021 for further details). Therefore, it reflects the total number of organisms that an ecosystem can 233 

support. Accordingly, the BP derived in this study could be regarded as the proportion of the total 234 

population expected to persist over a long time under the current environment, rather than the proportion 235 

of species as was the case in the study of Di Marco et al. (2019a).  236 

To create a BfA scenario that maximizes BP, the current spatial patterns in BP were simulated, and 237 

the points that produced the greatest improvement in BP by afforestation were selected. The calculated 238 

BP is non-linear because it depends on the similarity and habitat conditions of all other cells. This 239 

implies that it is difficult to obtain an analytical solution to determine the best afforestation area (Aerts 240 

and Heuvelink, 2002). Thus, we used a spatial simulated annealing (SSA) optimization algorithm to 241 

construct optimal afforestation scenarios. The SSA optimization algorithm is an iterative, combinational, 242 

model-based sampling optimization that yields the best quality alternative (in this case, the 243 

maximization of biodiversity persistence) by slightly and randomly changing the combination (van 244 

Groenigen and Stein, 1998; Brus and Heuvelink, 2007; Szatmári et al., 2015). By applying this 245 

optimization technique, we explored areas that can maximize their biodiversity persistence by replacing 246 

natural pastures with forests. However, a change in the habitat condition of one cell can affect the 247 

persistence of all other cells, leading to a computational challenge in cell-based optimization. 248 

Thus, we used classification units to represent a certain spatial range with similar environmental 249 

characteristics (Figure 1). In order to systematically survey and manage the natural environment in 250 

Korea, the Ministry of Environment has divided the nation into 794 small regions with respect to natural 251 
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ecological characteristics, administrative district boundaries, and areas of each zone. In addition, each 252 

region is subdivided into three classes: natural, semi-natural, and artificial. This division is based on 253 

biological habitats to ensure the homogeneity of each zone (Choi et al., 2017). A total of 2,349 zones 254 

were used to perform optimization, where persistence was repeatedly calculated using the similarities 255 

between zones with the average habitat conditions of each zone. Optimization was carried out by setting 256 

the objective function to select zones that maximized the overall average of biodiversity persistence 257 

across the country, when the zonal habitat condition score increased. We conducted SSA optimization 258 

using the spsann package of R Statistical Environment version 3.6.1. with an acceptance probability of 259 

0.95, a decreasing factor of 0.95, and 300 iterations. 260 

Selecting the optimal zones for biodiversity persistence selected more than the 5,800-ha target of 261 

natural pasture, so we subset this to the target amount using several additional criteria. Natural pastures 262 

belonging to legally protected areas were excluded, and areas with a deep effective soil depth, at which 263 

plants can spread their roots to breathe and absorb nutrients. In addition, low- altitude areas were chosen 264 

preferentially in consideration of the ease of afforestation and management. The increase in BP due to 265 

afforestation was derived by converting the habitat condition of the selected 5,800 ha natural pastures 266 

to that of forests. The natural pasture was selected on a land cover map with 100-m resolution, but BP 267 

simulation through GDM was performed at 1 km resolution. Accordingly, the habitat condition map 268 

integrating afforestation was resampled at a resolution of 1 km, using the bilinear resampling technique 269 

in ArcGIS 10.3.  270 

 271 

2.4 Carbon stock modeling for Carbon-focused Afforestation scenario (CfA) 272 

Carbon stocks were simulated using the species in their potential optimal habitats. The seven major 273 

tree species in Korea include Pinus densiflora, Pinus rigida , Pinus koraiensis, Quercus acutissima, 274 

Quercus variabilis, Quercus mongolica, and Larix kaempferi. Potential habitats were pre-selected using 275 

the optimal habitat range of bioclimatic indices assuming that maximum carbon stocks can be obtained 276 

in suitable habitats and that 35-year-old forests with the largest mean annual increment (MAI) are 277 
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planted. Choi et al. (2011) presented the optimal range of warmth index (WI), minimum temperature of 278 

the coldest month index (MTCI) and precipitation effectiveness index (PEI) for Korean major tree 279 

species by comparing with the actual habitat boundaries of each tree species (Lim et al., 2018). In this 280 

study, we extracted regions that met the optimal range of these three indices under the current climatic 281 

conditions (Table 1). To determine the optimal and non-optimal regions as conservatively as possible, 282 

regions within each optimal range of WI, MTCI, and PEI were detected for each tree species. Regions 283 

satisfying all three index conditions were then classified as optimal regions by overlapping them, and 284 

the remaining regions were classified as non-optimal. The maximum carbon stocks were simulated only 285 

for the selected optimal area. For the remaining regions, except for urban and aquatic regions that could 286 

not be reforested, a minimum value of carbon stock was assigned.  287 

 288 

Table 1. Major tree species with optimal range of Warmth Index (WI), Minimum Temperature of the 289 
Coldest Month Index (MTCI), and Precipitation Effectiveness Index (PEI) 290 
 291 

Species 
Code Scientific name English name 

Warmth Index 
(WI) 

Minimum 
Temperature of the 

Coldest Month 
Index (MTCI) 

Precipitation  
Effectiveness 
Index (PEI) 

Min Max Min Max Min Max 
PD Pinus densiflora  Red pine 71.9 105.2 −82.7 −37.5 77.8 112.6 
PR Pinus rigida  Pitch Pine 87.5 105.4 −68.2 −35 85.6 102.7 
PK Pinus koraiensis Korean pine 46.5 87.1 −102.2 −62.3 88 144.6 
LK Larix kaempferi Japanese larch 69 95.4 −85.8 −55.1 79.7 113.8 

QA Quercus 
acutissima Sawtooth oak 87.2 106.5 −68.8 −35.4 82.1 100.9 

QV Quercus 
variabilis Cork oak 74.9 101.6 −80.8 −41.7 80.3 108.5 

QM Quercus 
mongolica 

Mongolian 
Oak 

61.9 94.6 −94.6 −54.5 79.5 122.3 
 292 

The International Institute for Applied Systems Analysis (IIASA)’s Global Forest Model (G4M) 293 

was used to predict carbon stocks and derive a scenario that maximized carbon storage, which was 294 

observed to be CfA. G4M estimates the impact of climate, soil properties, landscape and management 295 
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activities on biomass, stem volume, and carbon stocks (Kindermann et al., 2008). As input parameters, 296 

it uses the growth curve for each species as well as the site index (SI) presenting the production capacity 297 

of the land, which is derived from the net primary productivity (NPP) for a specific region (Kraxner et 298 

al., 2014; Kim et al., 2018). The model is spatially explicit and was applied to a grid with regular pixels 299 

of approximately 1 square km in this study. 300 

We performed parameterization of growth curves for each species based on empirical forest yield 301 

tables. This illustrated the expected volume of wood according to characteristics, such as age and SI 302 

(Palahí et al., 2003). We used Chapman-Richards growth functions (Pieneaar and Turnbull. 1973) to 303 

estimate the growing stock volume with respect to age and site index: 304 

𝑓𝑓(𝐴𝐴𝐴𝐴𝐴𝐴, 𝑆𝑆𝑆𝑆) = 𝑝𝑝0(𝑆𝑆𝑆𝑆) ∙ (1 − exp(−𝑝𝑝1(𝑆𝑆𝑆𝑆) ∙ 𝐴𝐴𝐴𝐴𝐴𝐴))𝑝𝑝2(𝑆𝑆𝑆𝑆) (2)  305 

where 𝑓𝑓  is the growing stock volume, 𝑆𝑆𝑆𝑆  is the site index, and  𝑝𝑝0,𝑝𝑝1,𝑝𝑝2  are coefficients 306 

calibrated for each tree species. We applied G4M to estimate the potential forest NPP in the afforestable 307 

areas. The NPP block was calibrated based on the annual. MODIS NPP maps over 2006-2015 for forest 308 

areas in South Korea. A calibrated G4M model could predict the NPP values for non-forest areas based 309 

on bioclimatic variables, soil, and landscape information. In this study, the NPP model was based on 310 

random forest regression which is part of the machine learning toolbox “sci-learn” in Python (Pedregosa 311 

et al., 2011). Input variables included the four bioclimatic variables (WI, MTCI, PEI, and GDD), 312 

altitude, and effective soil depth. Afterwards the estimated NPP values were scaled to SI for each 313 

species based on their yield tables and calibrated growth curves (Equation 2). We used the mean 314 

absolute percentage error (MAPE) as a loss function in the machine learning procedure. MAPE was 315 

calculated using the following formula: 316 

𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 =
1
𝑛𝑛
⋅��

𝐴𝐴𝑡𝑡 − 𝐹𝐹𝑡𝑡
𝐴𝐴𝑡𝑡

�
𝑛𝑛

𝑡𝑡=1

  317 

where  𝐴𝐴𝑡𝑡 is the actual value, 𝐹𝐹𝑡𝑡   is the predicted value, 𝑛𝑛 is the dataset size. Therefore, the accuracy 318 

of the predicted NPP was assessed using the following formula: 319 

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 = 100% (1 −𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀) 320 
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 321 

The maximum stem volume (m3/ha) was estimated for the pre-selected habitats and converted to 322 

carbon storage (tC) by applying basic wood density, biomass expansion factor, and root-shoot ratio, 323 

which was proposed by the National Institute of Forest Science (Jung et al., 2014). Furthermore, the 324 

results were converted to annual CO2 absorption (tCO2/ha/yr). Additionally, we overlapped the results 325 

for all species and extracted the maximum carbon storage. Then, 5,800 ha of natural pastures that could 326 

achieve maximum carbon storage were selected as the afforestation area for the CfA scenario.  327 

The uncertainty analysis included uncertainty propagation from site index assessment to 328 

computation of carbon stocks per tree species within the G4M model, that is, spatially explicit 329 

confidence intervals were constructed for each species, which were aggregated to total carbon and 330 

associated uncertainty intervals. 331 

 332 

2.5 Simultaneously focusing on Biodiversity and Carbon Afforestation scenario (BCA) and assessing 333 

trade-offs  334 

The SSA optimization algorithm was used to generate an integrated scenario to consider both 335 

objectives with equal weighting; this scenario was BCA. To this end, we defined the objective function 336 

as: 337 

Objective = Minimize ��𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐−𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑖𝑖,𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐
𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐−𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐

� + �𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏−𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑖𝑖,𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏
𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏−𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏

��  338 

where, 𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 is the maximum carbon stocks and 𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐is the minimum carbon stocks 339 

that can be obtained by planting in 5,800 ha of land. The same is applicable to biodiversity; 340 

𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏  is the maximum of the biodiversity persistence and 𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏  is the 341 

minimum of the biodiversity persistence that can be obtained from planting in 5,800 ha of 342 

land. 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑖𝑖 is the gains in carbon stocks and biodiversity persistence secured according to 343 

the 5,800 ha of afforestation scenarios. This objective function indicates the rank of each scenario 344 

(alternatives of 5,800 ha selections) relative to the maximization scenario, that is, BfA and CfA. To 345 
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derive the BCA, zones that were applied to the BfA were used. Moreover, zones that maximized the 346 

sum of the performance of the two objectives were selected. Thus, 5,800 ha of natural pastures were 347 

extracted in the selected zones. 348 

Finally, spatial locations that were derived from each afforestation scenario, that is, BfA, CfA, and 349 

BCA were compared, and changes in biodiversity persistence and carbon stock were quantitatively 350 

evaluated for each scenario. To evaluate these scenarios, we normalized and summed the performance 351 

of these scenarios.  352 

  353 

3. Results  354 

3.1 Biodiversity focused Afforestation scenario  355 

The results of BP and afforestation areas (BfA) with maximum biodiversity potential, derived 356 

through the SSA optimization algorithm, are shown in Figure 3. The BP was found to be an average of 357 

90.6884% (between 89% and 92%) with spatial distribution, which reflects the characteristics of 358 

Korea’s environment (Choi et al., 2020). This indicates that under the current environment, 10% of the 359 

plant population on average are at risk of loss in the long term. From the perspective of spatial 360 

distribution, plant communities that are more likely to be vulnerable in terms of persistence are located 361 

on the southwest coast of Korea and Jeju Island. The reason behind the low BP found in the two regions 362 

was that the southwest coast region mainly consists of cities and croplands with a low habitat condition 363 

score, while Jeju Island has the lowest similarity owing to its unique geographical and climatic 364 

characteristics. On the other hand, as it is assumed that the climatic and land cover conditions will 365 

remain the same, the plant communities present in major mountain ranges nearby Taebaek and Sobaek 366 

were expected to be more stable.  367 

Afforestation areas (BfA) with maximum biodiversity potential, derived through the SSA 368 

optimization algorithm, are shown in Figure 3 and are marked as red triangles. When these areas are 369 

afforested, habitat conditions are improved, and these points show the greatest increase in overall 370 

persistence. These points are located mainly in low-altitude regions adjacent to cities or croplands. This 371 
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indicates that to enhance biodiversity persistence across the country, afforestation or restoration should 372 

be in areas with low habitat condition scores.  373 

 374 

Figure 3. a) Land cover map with forest naturalness grade, which is the basis of habitat condition map 375 
b) Biodiversity persistence map with BfA scenario. Values indicate the proportion of species expected 376 

to persist over the long term and BfA scenario (red triangles) represents the location that can 377 
maximize overall BP by afforestation.  378 
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3.2 Carbon stock focused Afforestation scenario  379 

NPP (SI) can be predicted using random forest regression estimation with an accuracy of 93.72% 380 

(Figure 4). MTCI was observed to be the most influential predictor, followed by altitude, PEI, GDD, 381 

WI, and effective soil depth. The mean absolute error was estimated at 54.95 gC/m2/yr. Using the 382 

predicted SI with high accuracy, the maximum carbon stocks were simulated for each species.  383 

   384 

Figure 4. Results of modeling forest NPP using G4M model based on annual MODIS NPP over 385 
2006-2015. Warmth Index (WI), Minimum Temperature of the Coldest Month Index (MTCI), 386 

Precipitation Effectiveness Index (PEI), and Growing Degree Days (GDD).   387 
 388 

Figure 5 shows the results of extracting optimal habitats for each species according to bioclimatic 389 

limiting factors. Optimal habitats listed in descending order were Pinus densiflora (PD), Quercus 390 

acutissima (QA), Quercus variabilis (QV), Pinus rigida (PR), Quercus mongolica (QM), Larix 391 

kaempferi (LK), and Pinus koraiensis (PK). PD, which is found in large parts of Korea, except in the 392 

western and southern regions; it is the most widely distributed tree species in the country. Due to its 393 

resilience, it is known to grow relatively well even in dry and barren areas. QA and QV are 394 

representative oak species in Korea. An ideal habitat for QA is the mid-range mountainous area, that 395 

is , having an altitude of less than 800 m. On the other hand, QV can be found at higher altitudes ranging 396 

from 50 m to 1800 m. PR has strong drought tolerance. As it grows well in dry and barren mountains, 397 
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its optimal habitat is observed to be the central region under the current bioclimatic conditions. For QM, 398 

LK, and PK, high-altitude mountainous areas were found to be optimal.  399 

  400 

Figure 5 Optimal habitat locations of major tree species. a) Pinus densiflora, b) Pinus rigida , c) 401 
Pinus koraiensis, d) Larix kaempferi, e) Quercus acutissima, f) Quercus variabilis, and g) Quercus 402 
mongolica. Black dots represent locations of optimal habitats of each species on the altitude map. 403 

 404 

Estimations and compilation of the maximum carbon storage within the optimum habitat range of 405 

each species are shown in Figure 6 and Table 2. Although PD had the largest optimal habitat area, it 406 

accounted for only 12% of the maximum carbon stocks. This is because pine trees typically have lower 407 

carbon stocks than oak trees. Thus, QV, QA, and QM accounted for 46%, 24%, and 13% of the 408 

maximum carbon stock, respectively. The ROK contains a large area of mountainous terrain, resulting 409 

in considerable differences in the climate and land cover, depending on the altitude (i.e., the distribution 410 

of each tree species is greatly affected by altitude) (Lim et al., 2018), thereby affecting carbon storage. 411 

Understanding the distribution of tree species representing the maximum carbon storage with altitude 412 
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can provide important insights into forest management. According to the distribution of carbon stocks 413 

by altitude inferred in this study (Table 2), an altitude between 200 m and 400 m accounted for 28% of 414 

the carbon stock, with large amounts of stock in QV and QM, followed by an altitude ranging from 400 415 

m to 600 m with carbon stocks of 27%. Carbon stocks showed a decreasing trend at altitudes above 600 416 

m. In the case of QM, the highest proportion of carbon stock was found at 800–1000 m, whereas the 417 

carbon stocks in QA and PD were mostly distributed in the lowlands, that is, below 400 m. Although 418 

the total amount of carbon stock in PK was small, more than half of it was distributed at an altitude of 419 

800 m or more. PR and LK were found to have some areas with more carbon stocks than the other 420 

species. It was observed that it is difficult to secure carbon stocks in sub-alpine regions above 1200 m. 421 

Table 2. Percentage of maximum carbon storage distribution by species and altitude (unit: %) 422 

Altitude (m) PD PR PK LK QA QV QM Total 

1–200 2 0 0 0 9 2 0 13 

201–400 5 0 0 0 10 11 1 28 

401–600 3 0 1 0 4 18 2 27 

601–800 1 0 1 0 1 12 4 2 

801–1000 1 0 1 0 0 2 5 9 

1001–1200 0 0 1 0 0 0 1 2 

1201–2000 0 0 0 0 0 0 0 0 

Total 12 1 4 0 24 46 13 100 

 423 

Since previous studies have simulated carbon stocks for existing forests, a direct comparison of 424 

this value is difficult; however, the spatial distribution was found to be similar (Yu et al., 2013; Kraxner 425 

et al., 2014; Kim et al., 2019). The highest carbon stock was found in northeast and central South Korea, 426 

near the Taebaek Mountain Range and the Sobaek Mountain Range. The carbon stock value was about 427 

twice as high when compared with a previous study, species-wise (Yu et al., 2013). Given that natural 428 

pastures (CfA) can secure the highest carbon stock (Figure 6b), ~50% of the natural pastures were 429 
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selected in the 100–400-m mountain range and 40% were chosen in the middle-mountainous area near 430 

the main mountain range of Korea. When planting in 5,800 ha of pastures to secure the maximum 431 

carbon stock, QV should be planted in the largest area (44%); however, the largest carbon stock could 432 

be obtained in the QA afforested area, which accounted for less than this area (36%). This is because 433 

many regions where the carbon stock of QA is higher than the other species are located at altitudes of 434 

100–400 m, where most of the pastures are located. In the case of pastures that are situated above 1000 435 

m, planting PK seems to be suitable for securing carbon stocks.  436 

 437 
Figure 6. a) Species distribution representing maximum carbon stocks and b) maximum carbon 438 

storage (tC) with CfA scenario. CfA scenario (blue dots) represents the location that can maximize 439 
overall carbon stocks by afforestation. 440 

 441 

  442 
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3.3 Simultaneously focusing on Biodiversity and Carbon Afforestation scenario (BCA) and assessing 443 

trade-offs between biodiversity and carbon  444 

Figure 7 illustrates the overlapping locations of natural pastures derived from each scenario. As 445 

mentioned in previous reports, the BfA scenario revealed that pastures were found in regions with a low 446 

habitat condition score around the city and cropland, while in the CfA scenario, they were located in 447 

regions near the main mountain range with higher altitude and better habitat conditions. In the BCA 448 

scenario derived through optimization, the pastures were observed to be distributed between CfA and 449 

BfA. This is because it is advantageous to secure carbon stocks as one goes up toward the mountainous 450 

area, while it is better to enhance biodiversity in regions with a low habitat condition score at lower 451 

altitudes. 452 

Table 3 summarizes the distribution area and ratio for every 100-m altitude for each scenario. In 453 

the case of BfA, the average altitude of the afforestation location was 151 m. Approximately 48% of 454 

the pastures were located below 100 m. In the case of CfA, about 57% of the pastures were located 455 

between 200 m and 500 m, with an average altitude of 397 m. In the BCA scenario, pastures had an 456 

average altitude of about 236 m, located between BfA and CfA, of which 72% were distributed below 457 

300 m.  458 

There was only an 8% overlap between the two scenarios (overlapping points of BfA and CfA). 459 

These regions should be the highest priority for afforestation. With respect to biodiversity conservation, 460 

it is more effective to afforest areas with a low habitat condition score; however, it may be difficult to 461 

secure a large amount of carbon storage because the environment is not suitable for certain species to 462 

grow. These results suggest that afforestation or restoration priority should be decided based on each 463 

individual goal.  464 
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 465 

Figure 7. 5,800 ha of afforestation locations by scenarios. Red triangles, blue dots, green dots, and 466 
yellow dots indicate scenarios of BfA, CfA, and BCA, and overlapping points of BfA and CfA 467 

respectively.  468 
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Table 3. Distribution area (ha) and ratio (%) of natural pastures derived by altitude and scenarios  469 

  470 

Altitude 

(m) 

BfA CfA BCA 
Overlapping points of 

BfA and CfA 

Area (ha) % Area (ha) % Area (ha) % Area (ha) % 

0–100 2781 47.9 297 5.1 1820 31.4 93 21.0 

100–200 1344 23.2 729 12.6 1440 24.8 124 28.0 

200–300 847 14.6 1118 19.3 929 16.0 93 21.0 

300–400 375 6.5 1037 17.9 509 8.8 68 15.3 

400–500 257 4.4 1123 19.4 421 7.3 43 9.7 

500–600 151 2.6 563 9.7 239 4.1 12 2.7 

600–700 23 0.4 373 6.4 152 2.6 3 0.7 

700–800 15 0.3 268 4.6 153 2.6 2 0.5 

800–900 4 0.1 148 2.6 45 0.8 3 0.7 

900–1000 2 0.0 62 1.1 33 0.6 2 0.5 

1000–1100 1 0.0 35 0.6 32 0.6 0 0.0 

1100–1200 0 0.0 27 0.5 27 0.5 0 0.0 

1200–1300 0 0.0 16 0.3 0 0.0 0 0.0 

1300–1400 0 0.0 4 0.1 0 0.0 0 0.0 

Sum 5800 100.0 5800 100.0 5800 100.0 443 100.0 

Average 

altitude 
157.73 396.95 236.83  232.68 
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The amount of carbon stocks, total annual CO2 absorption, average biodiversity persistence, and 471 

additional persistence compared to current persistence are shown in Table 4. In the CfA scenario, a total 472 

of 741,207 (90% confidence interval [CI] ranges from 675,091 to 818,649) tons of carbon can be 473 

additionally secured, which equates to 77,650 [70,724 to 85,763] tCO2/yr of annual carbon dioxide 474 

absorption. This amount corresponds to 100.84% of the target value of 77,000 tCO2/yr, intended to be 475 

secured in the form of a new plantation by 2030. On the other hand, in the BfA scenario, only 347,264 476 

[342,645 to 352,502] tons of carbon, which is ~46.9% of CfA (47.25% of the national target), can be 477 

stored. In the case of BCA, approximately 417,703 [401,240 to 437,700] tons of carbon can be obtained, 478 

which is 56.4% of the CfA (56.8% of the national target) and 9.5% more than the BfA.  479 

In terms of biodiversity persistence, BfA was able to maintain an additional 0.141% of the current 480 

average biodiversity persistence of 90.54%. On the other hand, CfA can maintain 0.067% more than 481 

the current biodiversity persistence, whereas BCA can maintain 0.128% more.  482 

 483 

Table 4. Quantitative comparisons of carbon stocks and biodiversity persistence in different scenarios 484 

 485 

In our trade-offs assessments, it was indicated that achieving individual objectives would 486 

inevitably result in trade-offs on other objectives; in terms of carbon stocks, maintenance of high levels 487 

of biodiversity persistence (BfA) entails a loss in carbon stock of 393,943 tons compared to the 488 

  BfA CfA BCA 

Carbon 

Max carbon stock (tC) 
347,264 

(342,645-352,502) 
741,207 

(675,091-818,649) 
417,703 

(401,240-437,700) 
Annual CO2 absorption 

(tCO2/yr) 
36,380 

(35,896-36,929) 
77,650 

(70,724-85,763) 
43,759 

(42,035-45,854) 
% of the national 

targets 
47.25 100.84 56.8 

Biodiversity 

Average % of 
biodiversity persistence 

90.6884 
(89.9636-91.3394) 

90.615  
(89.8668-91.2808) 

90.6763 
(89.9306-91.3325) 

Average % of 
additional persistence 
compared to current 

persistence 

0.141 0.067 0.128 
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maximum storage capacity (CfA). In contrast, by applying CfA, 0.073% of BP will be lost compared 489 

to the maximum BP that can be secured (BfA). In case of BCA, the trade-offs are slightly lower in both 490 

aspects, that is, losses of 323,504 tons of carbon stocks and 0.012% of BP.  491 

This inevitable trade-off implicates the need to choose a suitable scenario. To provide a guide for 492 

scenario selection, an evaluation was performed when both aspects were considered simultaneously. To 493 

evaluate these scenarios, we normalized and added the performance in terms of biodiversity and carbon 494 

(Figure 8). The BCA and CfA scenarios exhibited the same performance at different ratios, followed 495 

by BfA. However, this is a simple comparison, given that the values of biodiversity and carbon stocks 496 

were considered equally. The scenario evaluation can be modified depending on the weighting of each 497 

aspect by the decision makers.  498 

 499 
Figure 8. Assessing trade-offs based on performance evaluation. Bar graphs represent the 500 

performances of each scenario (red for BfA, blue for CfA, and grey for BCA). Total indicates the sum 501 
of carbon and biodiversity performances. 502 

4. Discussions 503 

4.1 Assessments of national plans  504 
 505 

Plans for carbon enhancement 506 
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The national plans for carbon enhancement aim to absorb 77,000 tons of CO2 through the 507 

expansion of new carbon sinks. The findings of this study conclude that this target can be achieved only 508 

in the CfA scenario, in which the carbon target was set as the top priority. The BfA and BCA scenarios 509 

were found to be 47% and 57% lower than the target, respectively. This study assumed an ideal situation 510 

in the CfA scenario. Tree species that can represent the maximum regional carbon storage in the age of 511 

35 years showing the largest mean annual increment, were planted. The maximum carbon stocks that 512 

can be secured through planting are likely to be less than the maximum value, as this assumption is 513 

ideal. Accordingly, it is necessary to set an afforestation target for a wider area to achieve the target 514 

sufficiently.  515 

In addition, considering that most of the regions with high carbon storage are southern parts of 516 

major mountain ranges suitable for oak tree growth, efforts to explore afforestable areas in these regions 517 

are necessary to maximize carbon storage. Damaged areas are considered suitable for afforestation 518 

within mountainous areas; therefore, efforts to detect damaged areas in advance and present them as 519 

potential candidates for afforestation are required nationally. By pre-simulating the amount of carbon 520 

storage that can be secured through afforestation in the detected damaged areas, it will be possible to 521 

secure more carbon by preferentially inducing restoration where carbon storage can be maximized.  522 

Plans for biodiversity enhancement 523 

Although the ROK’s national plan includes a variety of action indicators (e.g. the expansion area 524 

of protected areas), biodiversity state indicators (e.g. the number of species to be maintained) promoted 525 

by the implementation of the plan are not presented; therefore, this limits the direct evaluation of the 526 

target achievement through afforestation scenarios. However, the finding that only 89% to 92% of plant 527 

species are expected to persist means that approximately 10% of species (or populations) are 528 

endangered. Enhancing this up to 0.14% through afforestation of 5,800 ha may not be sufficient to 529 

preserve the integrity of biodiversity. Therefore, the government should adopt more ambitious goals 530 

and make additional investments in effective conservation projects to halt biodiversity loss. In addition, 531 

developing quantitative indicators to represent the state of biodiversity and evaluate national 532 
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biodiversity conservation plans is necessary. Accordingly, a variety of biodiversity indicators 533 

measuring state and progress have been developed to evaluate global biodiversity loss; such as the Red 534 

List Index (Butchart et al., 2007), Living Planet Index (Collen et al., 2008), and Biodiversity Intactness 535 

Index (Newbold et al., 2016). These indicators need to be incorporated into national plans; we can then 536 

measure the status of biodiversity with a consistent indicator, evaluate the effectiveness of national 537 

plans, and guide management. In addition, the BP presented in this study could be used as an indicator.  538 

In the discussion of integrating climate action and biodiversity conservation policy in South Korea, 539 

a specific strategy has not been proposed yet, and each plan established by the government pays little 540 

attention to potential impact on the other. If both goals are difficult to achieve, even though afforestation 541 

strategies have been established to maximize the performance of each goal, additional strategic 542 

measures are required. However, policy documents to date have not mentioned these measures or 543 

provided methods to quantitatively evaluate actions taken, including afforestation, and way to consider 544 

both targets simultaneously.  545 

A portion of our study area had lands that could be simultaneously managed for both biodiversity 546 

and carbon assessment. Results from the comparisons between scenarios, however, suggest that trade-547 

offs are inevitable if the two strategies are implemented separately, and that choices are needed 548 

depending on the value pursued by policymakers and planners. Therefore, this study emphasizes that 549 

solutions which provide compromises between the two objectives should be explored. Our national-550 

scale assessment can help guide future planning of afforestation by considering the simultaneous goal 551 

of maximizing biodiversity and carbon stocks.  552 

  553 
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4.2 Technical significance and limitations  554 

Even though our analysis is carried out at the broad-scale, if finer-scale specific proposals emerge 555 

for tracking the change of biodiversity and carbon stock according to the forest management, then future 556 

studies can employ the methodology demonstrated in this study. For further extension of our study, the 557 

technical significance and limitations of each step are presented, as follows: 558 

 559 

Constructing afforestation scenarios 560 

This study presented the potential trade-offs between plant biodiversity persistence and carbon 561 

stocks secured through afforestation and derived a scenario to mitigate trade-offs using multi-spatial 562 

modeling. To the best of our knowledge, this was the first attempt at applying multi-spatial modeling 563 

including GDM, G4M, and SSA optimization algorithm to identify optimal afforestation areas.  564 

However, this study considered only natural pastures as afforestable areas, even though the plan 565 

included plantations in abandoned lands, urban forests, and damaged area as these areas were difficult 566 

to detect spatially. The actual afforestable area must be preferentially detected before applying the 567 

methodology to produce more realistic results. If spatial data for these areas are constructed, the same 568 

method can be applied to select the optimal afforestation location within them. In addition, this study 569 

spatially constructed only forest area expansion as a scenario. Thus, further studies are needed to 570 

evaluate the effects of diverse forest management scenarios, such as an expansion of conservation areas, 571 

forest thinning, or tree species selection that could cause qualitative changes in forests.  572 

 573 

Biodiversity persistence modeling 574 

To cope with biodiversity loss, the most common approach to predicting consequences has been 575 

to simulate expected changes in individual species (Guisan and Thuiller, 2005; Elith and Leathwick, 576 

2009; Guisan et al. 2017). These predictions can be useful to make a plan for conserving specific species 577 

of interest but they are less relevant to establish conservation strategies for biodiversity as a whole 578 

(Mokany and Ferrier, 2011). As an alternative strategy to individual species modeling, the focus is 579 
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shifting to community-level modelling of the attributes of biodiversity (Ferrier and Guisan, 2006; 580 

Mokany and Ferrier, 2011). Accordingly, this study employed BP, which is simulated based on 581 

composition turnover modeling with detailed national survey datasets of the ROK. As a result, we 582 

explored areas where plant communities suffer from the highest decline in persistence, based on 583 

similarities in bioclimatic conditions between sites and current land cover. We also presented a 584 

methodology for exploring optimal afforestation areas to maximize biodiversity persistence by applying 585 

optimization algorithms.  586 

However, given that plants are fundamental components of most ecosystems (Giam et al., 2010), 587 

and with consideration of their relationship with carbon stocks, our estimates considered only plant 588 

species. Therefore, future research that considers biodiversity as a whole is needed by adopting other 589 

taxa to explore the most efficient conservation and restoration areas. In addition, the application of HCI 590 

in this study to other regions requires thorough examination, because the HCI has only been shown to 591 

be suitable for the ROK thus far (Choi et al., 2021).  592 

Moreover, these estimates rely heavily on model-based predictions and inferences (Ferrier et al., 593 

2007; Hoskins et al., 2020; Di Marco et al., 2019a), which have inherent uncertainties. Using the 594 

classification units to simulate optimization with the average value of habitat conditions was one of the 595 

factors that can cause uncertainty. We considered that this strategy is valid in GDM, which simulates 596 

the distribution of species composition. Since the modeling considers the species distributed within a 597 

certain area as a community, clustering areas with similar environmental conditions and using the 598 

average habitat conditions in those areas were reasonable. In addition, using regional blocks has the 599 

advantage of allowing the selection of natural pastures and other afforestable areas within the selected 600 

zone. However, this spatial aggregation is likely to cause uncertainties; the result obtained using fine-601 

resolution habitat conditions may differ from those obtained using an aggregate or summary of the fine-602 

resolution data. Despite this limitation, the strategy discussed above was applied because this study 603 

focused on the comparison of BP predicted under different afforestation scenarios, rather than the 604 

absolute valuation of individual scenarios. The degree of uncertainty is likely to operate equally across 605 
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all scenarios because our methodology was applied consistently. This facilitated a direct comparison of 606 

estimates obtained under different scenarios.  607 

 608 

Carbon stocks modeling 609 

In order to simulate the maximum carbon stocks that can be secured by newly planted species, the 610 

optimal habitat for each species was extracted and the maximum carbon stocks were predicted, 611 

regardless of the current forest distribution. To this end, the random forest regression was applied based 612 

on national environmental datasets, including climate, altitude, and soil depth to estimate forest NPP 613 

across the country including non-forest areas. Coupled with the growth curves calibration in the 614 

framework of the G4M model this method allowed us to assess spatially explicit SI per species in 615 

afforestable areas. Application of machine learning technique is a new development of the G4M model 616 

that allows for more flexibility in terms of input parameters, which may vary in different regions of the 617 

world. In this study, the method was successfully applied to bioclimatic variables calculated for ROK, 618 

as well as national soil and landscape information.  619 

However, accuracy may be reduced due to the spatial resolution (1-km2) compared to the amount 620 

of afforested target. Simulating at a higher resolution than 1 km2 on a national scale is very difficult by 621 

considering the available climate and environmental data. Basically, since climate data has a resolution 622 

lower than 1 km2, other studies also were performed at 1-km2 (Sung et al., 2016) or lower resolution at 623 

0.25 degree (Kraxner et al., 2014) to estimate NPP or biomass with this model. Despite this limitation, 624 

we tried to analyze the trade-offs by evaluating the effects of afforestation between scenarios since this 625 

study aimed at relative comparisons among scenarios rather than precise estimates of carbon storage. 626 

In addition, it was simulated for all the optimal regions, assuming 35-year-old forests consisting of 627 

species with the largest mean annual increment (MAI). Therefore, this scenario can be considered 628 

optimistic. Moreover, a minimum value is assigned to the remaining regions where the tree species that 629 

are selected in this study cannot survive. To derive more realistic results, detailed studies would apply 630 

particular species and the forest age for actual afforestation to afforestable areas.  631 
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Optimization and trade-offs assessment 632 

The SSA optimization algorithm was applied to generate an afforestation scenario that reduces 633 

trade-offs between the two objectives. The optimization results yielded a good scenario, i.e., BCA, for 634 

mitigating trade-offs between the two scenarios. However, a realistic plan requires more detailed 635 

modeling. Although, only two goals were considered in this study, the optimal afforestation location 636 

can be explored by including more goals, such as minimizing costs and maximizing other ecosystem 637 

services (i.e., reducing landslides and purifying air quality). The weights can also be adjusted, 638 

depending on the decision maker’s opinion. This study assigned equal weighting to both objectives. 639 

Thus, the derived scenarios may be evaluated differently depending on the value assigned to each 640 

purpose.  641 

 642 

5. Conclusions  643 

This study offers several insights into forest management and provides useful information for 644 

policy support and design. Herein we investigated the potential trade-offs between plant biodiversity 645 

persistence and carbon stocks secured through afforestation, which is one of the important strategies for 646 

biodiversity conservation and climate change mitigation. This study constructed optimal afforestation 647 

scenarios (i.e., BfA and CfA) in order to maximize each objective and quantitatively compare them. 648 

These two scenarios were found to have few overlapping areas; furthermore, both scenarios resulted in 649 

approximately 50% trade-off at the other objective. These findings reveal that there is no one-size-fits-650 

all solution and different management strategies may be needed to enhance carbon stocks and 651 

biodiversity persistence. Moreover, herein we proposed another afforestation scenario, i.e. BCA, that 652 

can mitigate trade-offs to a certain extent. Thus, in order to strike a balance among the separate goals, 653 

a compromised forest management solution should minimize trade-offs. This research can be referred 654 

to by policy-makers and planners in establishing the next phase of forest planning, and the approach 655 

presented here can also be adapted to any spatial units with consideration of other multi-objectives.  656 

  657 
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