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    2 December 2021 

Dear Editor, 

Reducing Uncertainty in Ecosystem Service Modelling through Weighted Ensembles 

I am pleased submit the above paper for your consideration, which has been revised in accordance with 
comments from both the Editors and two reviewers. This manuscript presents a study, unprecedented in 
scope, on maximising the accuracy of ensembles of models of ecosystem services. As such, we feel our 
paper is a good fit for Ecosystem Services given that the journal's content seeks to understand science, 
policy and practice of Ecosystem Services. 

The important knowledge-gap we address in our manuscript is that global efforts to quantify ecosystem 
services (e.g. through the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem 
Services [IPBES]) are lagging behind those of other grand challenges (e.g. the Intergovernmental Panel on 
Climate Change [IPCC]). For example, whilst the IPCC use ensembles of models to provide robust 
estimates of plausible futures, the latest state-of-the-art ES models produced via IPBES rely on single 
model outputs with little/no validation (e.g., see Chaplin-Kramer et al., 2019). This is because, unlike 
climate models, ecosystem service models often differ in the forms of their outputs – even when 
modelling the same services. As a result, it is currently not known how best to combine distinct ecosystem 
service model outputs to provide reliable ensemble products. In this manuscript we show how best to 
overcome these issues. 

Our study – which uses ten models for carbon storage and nine for water supply, to test ten contrasting 
ensemble approaches against 2,597 validation data points in the UK – is the first assessment of different 
approaches to creating ecosystem service model ensembles. Our findings represent important advances 
of significance to scientists and policy-makers working within ecosystem services, environmental science 
and sustainability, as well as the wider natural science modelling community.  

We show that using an individual ecosystem service model is fraught with concerns as a priori it is not 
known which is the most accurate and choosing only one model can, at worst, result in perverse decisions. 
Deriving decisions from an ensemble of ES models provides an improvement over using one model for 
any location, but also more consistency over larger scales. Using weighted average ensemble approaches 
further improves accuracy but also substantially decreases uncertainty among ensemble approaches 
compared to uncertainty among models, a further indication of increased fit to reality. Thus, particularly 
when validation data are not available, we recommend the use of weighted ensembles in ES research to 
substantially reduce uncertainty and to support robust decision-making for sustainable development. 

In partnership with decision-makers, the important advances suggested in our manuscript could help to 
ensure ecosystem service research contributes to and informs ongoing policy processes (such as IPBES, 
the Sustainable Development Goals and CBD Aichi targets) and facilitates the development of indicators 
for the monitoring of human well-being in United Kingdom and beyond. 

We thank you in advance for considering our manuscript. 

Yours sincerely, 

 

Prof Simon Willcock 
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1. Introduction 31 

If the United Nations’ sustainable development goals (SDG) are to be achieved worldwide (Griggs et al. 32 
2013), it is vital to understand and manage “nature’s contributions to people” (termed ecosystem services; 33 
ES; Pascual et al. 2017). The empirical data needed to quantify ES are sparse in many parts of the world 34 
(Suich et al. 2015; Willcock et al. 2016), which is problematic as ES need to be accurately assessed and 35 
mapped to be incorporated in policy making and planning decisions (UKNEA 2011; de Groot et al. 2012). 36 
Such decisions require assessment of multiple ES, and the synergies and trade-offs among these ES, in order 37 
to estimate potential effects of land/water use change or other impacts (Willcock et al. 2016). Spatially-38 
explicit models produce maps of estimated ES – typically based on globally available datasets of land cover 39 
combined with other predictor variables – and so can provide credible information of the spatial distributions 40 
of multiple ES, particularly where empirical data are lacking (Malinga et al. 2015; Costanza et al. 2017).  41 
 42 
Over the last 10 years, many ES models have been developed, by different teams, often using dissimilar 43 
approaches, and with little reference to the other models (Bagstad et al. 2013; Ochoa & Urbina-Cardona 44 
2017). For example, carbon stocks for climate change mitigation can be modelled by ‘look-up tables’ 45 
relating land cover to stocks, by deterministic statistical inference, or by simulating complex processes 46 
(Willcock et al. 2019). However, most applications of ES models rely on only a single model for each ES 47 
(Englund et al. 2017; Bryant et al. 2018). Furthermore, while models can only approximate reality, few 48 
applications explicitly validate ES models against independent datasets (Chaplin-Kramer et al. 2019), 49 
although there are notable exceptions (Redhead et al. 2016; Sharps et al. 2017; Willcock et al. 2019). This 50 
is a particular issue as the results of location-specific validation (e.g. that performed during model 51 
development) may not be transferable to new locations (Redhead et al. 2016), or up-scalable to the regional 52 
and national extents over which ES model outputs are required to achieve the SDG (Willcock et al. 2016; 53 
Willcock et al. 2019). From a user and stakeholder perspective, not knowing the accuracy of the available 54 
ES models for the region of interest typically leads to either selection of a single suboptimal model – at 55 
worst leading to perverse decision-making – or a reluctance to use ES models altogether, causing an 56 
implementation gap between research, incorporation into policy and subsequent decision-making (Wong et 57 
al. 2014; Willcock et al. 2016).  58 
 59 
Despite claims for predictive superiority of certain modelling techniques and platforms, independent 60 
evaluations have been unable to demonstrate the pre-eminence of any single approach. In fact, while more 61 
complex models on average perform better in terms of fit to validation data, the best-fit model varies 62 
regionally and often according to the validation data used (Sharps et al. 2017; Willcock et al. 2019; Willcock 63 
et al. 2020). So, if no single ES model is always the most accurate, how should a suitable approach be 64 
selected?  65 

 66 
Across the sciences, one solution to address uncertainty surrounding the accuracy of any single model is to 67 
use an ensemble of models (Araújo & New 2007; Willcock et al. 2020) – using individual models as 68 
replicates with different input parameters and boundary conditions (Araújo & New 2007; Dormann et al. 69 
2018). Variation among models in their assumptions and formats can result in large differences in 70 
predictions, in terms of predicted values and how they vary over space, especially when there is uncertainty 71 
as to the state and processes of the system being modelled (van Soesbergen & Mulligan 2018; Willcock et 72 
al. 2019). Ensembles of models are hypothesised to have enhanced accuracy over individual models due to 73 
fewer overall errors in prediction by reducing the influence of idiosyncratic outcomes from single models 74 
(Araújo & New 2007; Dormann et al. 2018). Individual models rarely capture all potentially relevant 75 
processes or are often tuned to particular ecosystem characteristics. A combination of models might provide 76 
a more comprehensive coverage of processes and their forms, and avoids the chance of (unknowingly) 77 
selecting a model with a high prediction error at the location and scale of interest for a particular study 78 
(Willcock et al. 2020).  79 
 80 



Model ensembles are common in other disciplines – e.g. in niche modelling (Araújo & New 2007, 81 
Grenouillet et al. 2011), agroecology (Refsgaard et al. 2014), hydrology and water resources management 82 
(Wang et al. 2019; He et al. 2021), and climate and weather modelling (Knutti et al. 2013), as well as market 83 
forecasting (He et al. 2012). However, ensembles have been largely neglected in ES studies (Bryant et al. 84 
2018). The only current exception is the simplest ensemble approach (i.e. ‘committee averaging’ – taking 85 
the unweighted mean of a group of individual models per location –) which was applied to ES models in 86 
Sub-Saharan Africa, and gave higher accuracy in terms of fit to validation data (Willcock et al. 2020). 87 
Approaches that use more information might yield even more accurate estimates. Thus, here we explore the 88 
outstanding question of “what are the best ways to build ES model ensembles to realise the benefits such 89 
ensembles can bring to sustainability science?” 90 

 91 
Approaches to building model ensembles vary across disciplines, ranging from committee averaging 92 
(Marmion et al. 2009; Grenouillet et al. 2011) to complex Bayesian algorithms (Tebaldi & Knutti 2007). 93 
For example, species distribution models are generally deterministic statistical models; their fit to the data 94 
is often assessed with an accuracy metric and so ensembles are generally created using weighted averaging 95 
based on accuracy (Araújo & New 2007). By contrast, climate models are often treated as equal replicates 96 
with identical weights when making an ensemble (Tebaldi & Knutti 2007; Grenouillet et al. 2011) – we 97 
refer to such ensembles as ‘unweighted’. This difference may stem from the availability of suitable 98 
validation data, as well as different traditions. For example in species distribution models, biodiversity data 99 
are readily available and are used to train through cross-validation (Araújo & New 2007), whereas validation 100 
data on future climates obviously do not exist – although cross-validation against historic climate data is 101 
possible. 102 
 103 
As well as varying considerably in their underlying method, ES models often differ in the forms of their 104 
outputs, even when modelling the same ES (e.g. summed monetary value of the ES (de Groot et al. 2012) 105 
vs. specific biophysical predictions). By contrast, climate models generally have very similar forms of 106 
outputs. An important knowledge gap is therefore how to combine distinct ES model outputs as 107 
complementary inputs to provide a reliable ensemble. Outputs from different ES models can have different 108 
units and it is challenging to decide the relative weighting to place on each model. Models for a particular 109 
ES often have different structures, may include different processes, or may represent the same processes in 110 
different ways (Ochoa & Urbina-Cardona 2017). As a result, the different ES models will most likely not 111 
have equal accuracy, and so prediction errors (i.e. bias) may not be normally distributed among models 112 
(Dormann et al. 2018). If ES models had equal overall accuracies, unweighted averaging may provide a 113 
smoothing effect, reducing the impact of idiosyncratic outputs (e.g. at specific locations) of any particular 114 
model to reveal useful signals (Araújo & New 2007, Knutti et al. 2013; Diengdoh et al. 2020). In cases of 115 
varying overall accuracy, appropriate weighting of outputs based on model accuracy – i.e. models having 116 
unequal assigned weights – might re-adjust the distribution of prediction errors, and so improve the accuracy 117 
of the resulting ensemble (Refsgaard 2014; Dormann et al. 2018; Liu et al. 2020).   118 
 119 
However for ES, the lack of a priori validation data in many cases means that the distributions of accuracy 120 
among ES models are unknown. Furthermore, given that inferences about model accuracy at one location 121 
may not be transferable to others (Willcock et al. 2019), weighting using validation results from a separate 122 
study may not improve outcomes. Therefore where validation data are not available, the consensus among 123 
models could be used to weight their individual contribution to the ensemble value (Marmion et al. 2009; 124 
Grenouillet et al. 2011). This approach follows the logic that models whose output values are more different 125 
to those of the other models (i.e. are more distinct) are more likely to be incorrect. Therefore, weighting by 126 
consensus reduces the impact of outputs from more idiosyncratic models (i.e. those with extreme values, 127 
outliers or badly comparable processes) by comparison with the other models (Araújo & New 2007; 128 
Dormann et al. 2018), but does not exclude their information fully. The opposite may also be true – i.e. 129 
more distinct models are more accurate – for example in cases where more similar models have common 130 
inaccuracies. 131 
 132 



Here, we implement 10 alternative ensemble methods, restricting ourselves to methods feasible for a wide 133 
range of users, to evaluate whether weighting provides higher accuracy and if so which type of method 134 
produces the most accurate predictions against validation data. We focus on two services, water supply and 135 
carbon storage, in the United Kingdom. To support decision-making, we map the results for potential further 136 
use, which are available via https://doi.org/10.5285/a9ae773d-b742-4d42-ae42-2b594bae5d38. We use 137 
post-processing – specifically normalisation and per area correction – developed in earlier work (Willcock 138 
et al. 2019; Willcock et al. 2020) to make outputs among models comparable. 139 
 140 

2. Methods 141 
We developed and validated unweighted average and weighted average ensembles of models for a 142 
provisioning service (water supply; subsequently referred to as ‘water’) and a regulating service 143 
(aboveground carbon storage; subsequently referred to as ‘carbon’), for which there is both a variety of 144 
models available (Bagstad et al. 2013; Ochoa & Urbina-Cardona 2017; Willcock et al. 2019) and the 145 
presence of accessible validation data. We applied the models and ensemble methods in the United Kingdom 146 
(UK), for which there is a large quantity of reliable validation data; allowing us to assess ensemble 147 
accuracies. We compared accuracy (i.e. fit to validation data) of these individual models with those of the 148 
ensembles generated from them via multiple approaches, assessed if weighted ensembles were an 149 
improvement on the unweighted mean-averaged ensemble, and identified the methods of weighting 150 
ensembles that gave the highest accuracy.   151 
 152 

We modelled each ES at a 1 ha (100 × 100 m) resolution, and subsequently assessed performance of the 153 
different ensemble approaches using weighting approaches we organised into three categories (Table 1): 154 
deterministic consensus (i.e. always providing the same result), iterated consensus (i.e. using structured 155 
trial-and-error approaches) and attribute-based (e.g. spatial resolution or distinctiveness). Finally, we 156 
assessed the transferability of our UK results using independent data and models from a very different study 157 
area – Sub-Saharan Africa (Willcock et al. 2019). We depict our overall process in Figure 1 in 7-steps. Our 158 
calculations were performed using Matlab v7.14.0.739 and ArcMap 10.7.1, employing ArcPy coding for 159 
loops. Relevant codes can be found at github.com/EnsemblesTypes, with flow among codes explained in 160 
SI-1-3. 161 
 162 
Table 1. Approaches used to calculate accuracy (A) and ensembles (B). Ensemble approaches were 163 
applied to the outputs of ten models for carbon storage and nine for water supply (see Table 2). For weighted 164 
averaging, the procedure is described, and where applicable the Matlab tools used are mentioned; similar 165 
regression tools are available in most statistical packages (further explanation is provided in SI-1). Trained 166 
weighting (En-9 & En-10) uses validation data, whereas untrained weighting (En-3 to En-8) does not. En-1 167 
and En-2 are unweighted average ensemble approaches, and En-3 to En-10 are weighted average 168 
approaches; the latter comprising deterministic (En-3 & En-4), iterated (En-5, En-6 & En-10) and attribute 169 
weighted (En-7 to En-9) techniques. With ωi: weight for model i; E(x): the value of the ensemble; V(x): the 170 
normalised validation value; Yi(x) and Yj(x): the normalised value of model i or comparator j respectively, all 171 
for selected spatial point x; (y ≠ x) denoting a split dataset; C(i,j): the correlation coefficient between model 172 
i and j; with n the # models, m the # spatial data points; ng: the # models in distinctiveness group g (see SI-173 
1 for distinctiveness grouping). 174 
 175 

Approach Description Details & Matlab Tool  

A. Accuracy approaches 

 Spearman ρ 
Correlation coefficient between ranked variables V 

and T. 

T is either Yi or E, 

depending on ensemble 

method 

 Inverse Deviance (D↓) 
𝐷↓ = 1 − (

1

𝑚
× ∑ |𝑋(𝑥) − 𝑇(𝑥)|𝑚

𝑥 )   
T(x) is either Yi(x) or E(x) 

B. Ensemble approaches  

Unweighted Averaging:   

En-1. Mean  𝐸(𝑥) = (𝑌𝑖̅)(𝑥)  

https://doi.org/10.5285/a9ae773d-b742-4d42-ae42-2b594bae5d38
https://github.com/EnsemblesTypes


En-2. Median 𝐸(𝑥) = (𝑌𝑖̃)(𝑥)
 

Hypothesised to perform 

better than mean for 

skewed distributions. 

Untrained Weighted Ensembles: 𝑬(𝒙) = ∑ (
𝝎𝒊

∑ 𝝎𝒊
𝒏
𝒊

× 𝒀𝒊)
𝒏
𝒊

(𝒙)
with 𝝎𝒊

𝝎𝒊≥𝟎
following: 

Deterministic 

consensus 

En-3. PCA ωi = loadings of first Principal Component axis  Princomp-tool 

En-4. Correlation 

coefficients 
𝜔𝑖 =

1

𝑛
× ∑

𝐶(𝑖,𝑗)

√𝐶(𝑖,𝑖)×𝐶(𝑗,𝑗)

𝑛
𝑗 , for all 𝑗 ∈ 𝑖 with  

𝐶(𝑖,𝑗) =  
1

𝑚−1
× ∑ ((𝑌𝑖(𝑥) − 𝑌𝑖̅) × (𝑌𝑗(𝑥) − 𝑌𝑗̅))𝑚

𝑥         

 

Iterated 

consensus 

En-5. Regression to the 

median 
𝑌(𝑥)̃~(∑ 𝜔𝑖𝑌𝑖

𝑛
𝑖 )(𝑥)   nlmefit-tool, maximising 

Log Likelihood 

En-6. Exhaustive leave-

one-out cross-

validation2 

𝑌𝑗(𝑥)~ ∑ 𝜔𝑖𝑗𝑌𝑖(𝑥)
𝑛
𝑖≠𝑗 , for all 𝑗 ∈ 𝑖  

subsequently:  𝜔𝑖 =
1

𝑛
× ∑ ((

1

𝑛−1
) × ∑ 𝜔𝑖𝑗

𝑛
𝑖≠𝑗 )𝑛

𝑖  

nlmefit-tool, maximising 

Log Likelihood 

Attribute-

based 

En-7. Upweighted finer 

spatial resolution 
𝜔𝑖 =

1

𝑙𝑜𝑔10(𝑠𝑝𝑎𝑡𝑖𝑎𝑙 𝑟𝑒𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛)
  Finer spatial resolution: 

smaller grid size in 1-

dimensional meters (e.g. 

25 m) 

En-8. Attribute 

weighting: 

distinctiveness   

𝜔𝑖 = (
𝑛𝑔

𝑛
) when upweighted with 𝑛𝑔 = 𝑖 ∈ 𝑔 

𝜔𝑖 = (
𝑛

𝑛𝑔) when downweighted with 𝑛𝑔 = 𝑖 ∈ 𝑔 

 

Trained Weighted Ensembles: ω-transfer via jack-knife training  

Attribute-

based 

En-9. Accuracy-

weighted  
ωi = Ai, with 𝐴𝑖(𝑉(𝑦≠𝑥), 𝑌(𝑦≠𝑥)) With A, either Spearman ρ 

or D↓ accuracy 

Iterated 

consensus 

En-10. Log-likelihood 

regressions 
𝑉(𝑦≠𝑥)~(∑ 𝜔𝑖𝑌𝑖

𝑛
𝑖 )(𝑦≠𝑥)  Using nlmefit-tool, 

maximising Log 

Likelihood 

 176 

 177 
Figure 1.  Schematic representation of our ensemble analysis with arrows 178 
showing information flows. Numbers represent the steps with the method chapters 179 
indicated in italics, with respective detailing SIs; result figures are indicated. 180 
Parallelograms highlight the 10 ensembles approaches (Table 1), using models 181 
described in Table 2.   182 
 183 

2.1. Run and collate different models (step 1) 184 



We used outputs from 10 models for above ground carbon stocks based on per grid cell estimates, and 185 
outputs from nine models for annual water supply which provided accumulated flow estimates through 186 
specific pour points, either directly or through summation of run-off estimates per grid cell. We list these 187 
models in Table 2, including their output grid sizes (spatial resolution); we refer to SI-1-1 for full details, 188 
scales and supporting data. Acknowledging that model outputs have different units and sometimes model 189 
different constructs, we refer further to them in the general terms of carbon and water supply. Adhering to 190 
the aim of this paper, we do not compare individual model outputs, but focus on ensemble methods. All 191 
model outputs were set to the British National Grid transverse Mercator projection (EPSG 27700) with a 192 
0.9996 scale factor and units in metres. Not all models covered the whole of the UK, e.g. some excluded 193 
Northern Ireland or Scotland (see SI-1-1). Where applicable we corrected for this by using a standard error 194 

of means as (
𝜎(𝑥)

√𝑛(𝑥)
), instead of standard deviation (σ), with n the number of models per grid cell x. We 195 

collated models for this study according to their availability and to reflect different approaches to modelling 196 
ES.197 



Table. 2. Models and existing outputs used. Full details, input data, post processing descriptions, and coverage are provided in SI-1-1. Model names are 198 
shown as acronyms and in full.    199 

200 

†Output generated for this work; ‡online tool; §existing dataset; 1Kareiva et al. (2011); 2Smith et al. (2014); 3Ahlström et al. (2015); 4Thomas et al. (2020); 5de Groot et al. 201 
(2012); 6Costanza et al. (2014); 7Gassert et al. (2015) 8Martínez-López et al. (2019); 9land.copernicus.eu/tree-cover-density/ status-maps/2015; 10Coxon et al. (2019a; 2019b); 202 

Model Description 
Grid size ( spatial 

resolution) 
Model Type16 

InVest v3.7.01† 

(Integrated Valuation of Ecosystem Services 

and Trade-offs) 

Carbon module: above ground stocks 
25 × 25 meters 

Look-up table 

Water yield module: run-off per cell Process  

LPJ-GUESS2,3† 

(Lund-Potsdam-Jena General Ecosystem 

Simulator) 

Vegetation biomass stocks per cell, mean for years 

2009-2018 0.5° (≈ 46 × 46 km) Process  

Water run-off per cell, mean for years 2009-2018 

LUCI4† 

(Land Utilisation Capability Indicator) 

Above ground carbon stocks 10 × 10 meters Look-up table 

Accumulated water run-off 5   ×  5  meters Process  

$-benefit transfer using The Economics of 

Ecosystems and Biodiversity database5,6† 

Above ground carbon stock as monetary value 
25 × 25 meters Look-up table 

Water run-off as monetary value per cell 

Aqueduct v2.1 Total Blue Water7§ Accumulated water run-off 138 flow areas Deterministic  

ARIES k-Explorer8‡ 

(Artificial Intelligence for Environment & 

Sustainability) 

Joined above and below ground carbon stocks 1-hectare Look-up table 

Barredo et al. (2012)§ A European map of above ground biomass stocks 1 km2 Look-up table 

Copernicus, Tree Cover Density9§ 
Proxy for carbon: tree Cover Density 2015 from MODIS 

satellite imagery. 
20 × 20 meters Deterministic  

DECIPHeR10§ 

(Dynamic fluxEs and ConnectIvity for 

Predictions of HydRology) 

Accumulated water run-off through NRFA delineated 

catchment outlets, mean for years 1995-2015 

387 catchments in 

common with validation 
Process  

Grid-to-Grid11§ Accumulated water run-off, mean for years 1995-2015 1 km2 Process  

Henrys et al. (2016)§ Above ground carbon stocks 1 km2 Look-up table  

Kindermann et al. (2008)§ A global map of above ground forest biomass stocks 1 hectare Deterministic  

National Forest Inventory (2018)12† 
Woodland Land Cover Map15 with above ground carbon 

stocks based on added Look-up table (Table. SI-1-4) 
20 × 20 meters Look-up table 

Scholes Growth Days13,14† 
Proxy for water run off per cell: # Days precipitation 

exceeds evapotranspiration 
1 km2 Deterministic  

WaterWorld v215‡ Accumulated water run-off 0.0083° (≈ 1 km2) Process  

https://land.copernicus.eu/pan-european/high-resolution-layers/forests/tree-cover-density/status-maps/2015


11Bell et al. (2018a; 2018b); 12Forestry Commission (2018); 13Scholes (1998); 14Willcock et al. (2019); 15Mulligan (2013); 16following Ding & Bullock (2018), Willcock et al. 203 
(2019).  204 

205 



2.2. Validation datasets (step 2) 206 
Our carbon stock validation dataset was provided by Forest Research and comprises species inventories in 207 
all forest estates in England and Scotland in 2019 (data-forestry.opendata.arcgis.com/; density shown in 208 
Figure 3; locations in Figure SI-1-2). In 201,143 forest compartments of varying size (mean: 4.4 hectares. 209 
median 1.6 hectares, ± 22.1), tree species, stand age and thinning regime were recorded for three vegetation 210 
layers. For each compartment and layer therein, the unique combination of stand age, thinning regime and 211 
tree species of the inventory data was searched in the UK Carbon Code tables (woodlandcarboncod.org.uk) 212 
and life-time accumulated biomass was converted to total standing carbon per hectare estimates per 213 
compartment, with the layers summed per compartment (SI-1-2). Subsequently, compartments were 214 
spatially joined into 2078 polygons of ‘forest’ that were separated if more than 25 meters distance from each 215 
other. 216 
 217 
Our water supply validation dataset comprised 519 hydrometric gauging stations from the National River 218 
Flow Archive of the UK (NRFA; nrfa.ceh.ac.uk), with associated catchments representing a variety of sizes 219 
distributed across the whole of the UK (Figure 3). From the 1598 potential catchments in NRFA, we selected 220 
those that were >100 km2 to get a robust mean run-off from the catchments. In cases where multiple gauging 221 
stations were found along the same river, based on name, only the largest was chosen to avoid 222 
pseudoreplication. An additional set of 41 Welsh catchments was included which did not meet this size 223 
criterion. Wales contains mainly small catchments due its geography – mountain ranges close to the sea – 224 
and so we selected catchments >25 km2 to avoid this part of the UK being underrepresented. The data were 225 
polygons encompassing these catchments. Details are provided in SI-1-2. 226 
 227 

2.3. Model predictions, normalisation (step 3) and validation of model accuracy (step 4) 228 
For each individual model, predictions were obtained for each polygon in the validation dataset using the 229 
ArcGIS spatial analyst Zonal tool with a forced 2.5 m grid size environmental setting to minimise edge 230 

effects; i.e. all predicted values were obtained by resampling into 2.5 × 2.5 m grid cells. In most cases the 231 
modelled value per polygon was obtained by taking the sum of all constituent grid cell values, corrected for 232 
both actual grid size and the resampling to 2.5 m. In the case of accumulated flow models, we corrected for 233 
potential small scale differences in flow routing among these models by taking the maximum flow value 234 
within both a 2 km range of the NRFA reported location of the gauging station and the polygon associated 235 
with that gauging station.  236 
 237 
To ensure comparability among model outputs, we standardised by normalising among the outputs for each 238 
individual model and for the validation data-sets. Prior to this step all outputs were area corrected as either 239 
mean carbon stock – or proxy thereof – per hectare or water supply per hectare of catchment (with 240 
accumulated run-off estimates post-processed to give net run-off per cell; SI-1-1). This normalisation 241 
followed Willcock et al. (2019), and allowed us to address differences in units among models (such as 242 
monetary benefit transfer vs. satellite-based tree cover densities or run-off, and equalised carbon and 243 
biomass). To avoid impacts of extreme values without eliminating such data-points, we employed a double-244 
sided Winsorising protocol for normalisation (Willcock et al. 2019; Verhagen et al. 2017), using the values 245 
associated to the 2.5% and 97.5% percentiles of number of datapoints to define the 0 and 1 values (values 246 
below or above these percentiles became 0 or 1 respectively). This winsorising normalisation protocol 247 
assumes outlier data are valid, but skewed values, in our case mainly by per area averaging, and corrects for 248 
this by compressing the variance tails rather than trimming them (Keselman et al. 2008; Erceg & Mirosevich 249 
2008). Hence, we trade-off an even data distribution over the full 0-1 normalised range against the chance 250 
of having a true far outlier maximum (see SI-5 for a full investigation into the impact of the Winsorising 251 
protocol over standard normalisation for the validation data distribution). For each model, normalisation 252 
was done prior to creating ensembles. 253 
 254 
For validation, we employed two accuracy measures (Willock et al. 2019; Willock et al. 2020), which are 255 

related to different aims in modelling ES (Table 1): 256 

http://data-forestry.opendata.arcgis.com/
https://www.woodlandcarboncod.org.uk/
https://nrfa.ceh.ac.uk/


1) Comparing the rank order of predicted and validation data using Spearman ρ. This is relevant where 257 
modelling is used to discover, for example, the most important locations for delivering an ES, or 258 
conversely, those areas whose development may have least impact on ES delivery.  259 

2) Ascertaining the absolute difference of each modelled value from its validation value using the inverse 260 
of the deviance (D↓). This is relevant where modelled values are important, e.g. when testing where ES 261 
levels exceed a minimum threshold. We used the inverse of the deviance so that, like ρ, a higher value 262 
indicated greater accuracy. 263 

 264 
2.4. Generate ensembles (step 5) and compare accuracy among ensemble types (step 6) 265 

We tested whether model ensembles were more accurate than the individual constituent models and which 266 
approaches for creating ensembles were the most accurate in terms of fit to validation data. We created 267 
ensembles using a range of methods, from the simplest calculation of an average value of the models at each 268 
location (‘unweighted averaged ensembles’, e.g. Marmion et al. 2009, Grenouillet et al. 2011) to ensembles 269 
with the contributions from different models weighted unequally (‘weighted ensembles’), following 270 
Dormann et al. (2018) (Table 1; further explanation and a model flow are provided in SI-1-3). We used 271 
relatively straightforward approaches that would be feasible for a wide community of scientists and 272 
decision-makers, and avoided more complex mathematical and/or statistical techniques such as Bayesian 273 
networks (Bryant et al. 2018), which would require detailed specialist knowledge. Weights over all models 274 
were normalised to sum to 1. Together with normalisation of the ensemble outputs (see above), this assured 275 
equal scaling among all models and ensembles. 276 
 277 
For unweighted average ensembles, we calculated both the mean and the median of modelled values at each 278 
location as alternative measures of the central tendency which are differently affected by skew in the data 279 
(Table 1, En-1 & En-2).  280 
 281 
For weighted ensembles we calculated:  282 

𝐸(𝑥) = ∑ (
𝜔𝑖

∑ 𝜔𝑖
𝑛
𝑖

× 𝑌𝑖)𝑛
𝑖

(𝑥)
with positive weights ωi for model i of validation polygon x, weights ωi are 283 

normalised to sum to 1, Y the modelled values for i per polygon (step 3), and n the total number 284 
of models per service.  285 

 286 
To determine ωi, the weighting value for each model i, we employed a range of methods that can be broadly 287 
categorised as two main types of ensemble approach (untrained and trained), with further subdivision as: 288 
deterministic consensus, iterated consensus, and attribute-based. The ensembles are listed as equations in 289 
Table 1 (see SI-1-3 for further details). 290 
1) Untrained ensembles (En-3 to En-8) represent a situation in which there is no validation data. To generate 291 

uncertainty estimates allowing statistical comparison with the models and among ensembles we jack-292 
knifed (Araújo & New 2007; Refsgaard et al. 2014) with 50% of the spatial data polygons for 250 runs, 293 
i.e. every run contained a new selection of half the dataset. We tested three approaches to produce the 294 
ensembles: 295 
- Deterministic consensus among models can be calculated using several approaches, including the fit 296 

to a common consensus axis such as from a Principal Components Analysis (Marmion et al. 2009; 297 
Grenouillet et al. 2011) or weighting by correlation coefficients (En-3 & En-4; ensemble numbering 298 
follows Table 1). 299 

- Iterative approaches might more accurately quantify consensus among models through using 300 
structured trial-and-error (Dormann et al. 2018; Tebaldi & Knutti 2007). We use two regression 301 
techniques: between the individual models and the median (En-5) and leave-one-out cross-validation 302 
(En-6) following the suggestion in Dormann et al. (2018).  303 

- One might a priori place value on a particular model attribute and use this to create weights (Englund 304 
et al. 2017; Willcock et al. 2019; Brun et al. 2020; En-7, En-8 & En-9). For example, one could up- 305 
or down-weight more distinct model types through a binary matrix of differences (En-8 & En-9; S1-306 



1-4) in land cover map used, grid-size, measured or modelled climate, model extent, presence of 307 
time-series, time step-size and model type (i.e. look-up table, deterministic or process based). 308 
Alternatively models that run at coarser spatial resolutions are penalised (En-7): smaller grid sizes 309 
are deemed more useful for decision-making (Willcock et al. 2016). 310 

2) Trained ensembles (En-9 & En-10), as often used for species distribution models (e.g. Refsgaard et al. 311 
2014; Elith et al. 2011), represent a situation in which validation data are available from a similar region 312 
or part of the study area and so cannot be used to directly validate or substitute for the models in the 313 
study area, but can be used to weight these models. Here, ωi was trained with the validation data on a 314 
jack-knifed 50% of the dataset to achieve maximum accuracy (En-10) and subsequently ωi was 315 
transferred to the other half of the dataset. We used 250 such jack-knife runs (see above), with the same 316 
selections as above. Moreover, we included weighting by individual model accuracy (Marmion et al. 317 
2009; Liu et al. 2020)  using the same jack-knife approach (En-9) .  318 

 319 
After creating the ensembles, their accuracy was assessed following step 4 using the two measures (see 2.3): 320 
Spearman ρ and the inverse of the deviance (D↓). We assessed any improvement over the unweighted mean-321 
averaged ensemble as the reference with pairwise t-tests against the null hypothesis of equal accuracy 322 
(Matlab ttest-tool). A similar analysis against the median-averaged ensemble as reference can be found in 323 
SI-2. To avoid spurious findings of significance through having a large number of replicates, we assessed 324 
improvement using bootstrapped tranches of 50 runs each with 250 replicates, and averaging the P-values. 325 
Since we used the same statistical test 12-times per service per accuracy estimate, we employed a full 326 
conservative Bonferroni correction; (α = 0.05/12) on the resulting average P-values. To compare the 327 
ensembles with the individual models we calculated per replicate the mean difference in accuracy among 328 

all models (Ai) against accuracy of an ensemble (AE) following: ((∑ (
𝐴𝐸

𝐴𝑖
− 1)𝑛

𝑖 ) ×
1

𝑛
), with n the number 329 

models and i an individual model. 330 
 331 
Steps 5 and 6 were repeated using independent data and models from a different study area (sub-Saharan 332 
Africa; Willcock et al. 2019) to investigate the transferability of the results presented here (Figure SI-2-2). 333 
 334 

2.5. Spatial representation of ensembles and uncertainty (step 7) 335 
To better support decision-making, we mapped our ES ensembles for the UK. For all the water ensembles, 336 
the mean normalised value across jack-knifed ensemble predictions per ensemble method were mapped as 337 
catchment polygons (step 5, N = 519). For all carbon ensembles we mapped as 1 km2 grid cells. Here, for 338 
each ensemble approach, the estimated weights as calculated for the validation polygons – mean averaged 339 
among jack-knife runs– were transferred to the full area, with the result aggregated to a 1 km2 resolution 340 
based on the mean value among 1 hectare grid cells. In total, this carbon dataset has 253,802 cells that 341 
(partially) contain non-sea land cover. We transferred the weights calculated for the forests since running 342 
cross-validation approaches on over 250K data points would extremely time consuming to compute. 343 
However, since our validation data are only from forests/woodlands, we are aware of introducing a potential 344 
bias that could skew non-forested areas to lower values. Furthermore, we generated UK-scale maps of 345 
spatial variation in the differences among the untrained ensemble approaches, by calculating the standard 346 
error of the mean (SEM) among these spatial outputs. These maps are freely available online 347 
(https://doi.org/10.5285/a9ae773d-b742-4d42-ae42-2b594bae5d38), and spatial patterns of uncertainty are 348 
discussed in SI-4.  349 

 350 

3. Results 351 

 352 
3.1. Ensembles are more accurate than individual models 353 

The average accuracy of individual models, represented by the mean of accuracy values taken across all 354 
models, was lower than that for any of the ensembles we created. The accuracy of the unweighted averaged 355 
ensembles (of modelled values at each location, e.g. ‘mean ensemble’) was appreciably higher than the 356 

https://doi.org/10.5285/a9ae773d-b742-4d42-ae42-2b594bae5d38


mean value for accuracy of the individual models for both carbon and water: 19% ±1.1% [sd] for ρ and 357 
12.1% ±0.5% for D↓ improvement in fit to the validation data for carbon and 5.7% ±0.4% for ρ and 9.5% 358 
±1.7% for D↓ for water (Figure 2). Untrained weighted ensembles showed large improvements – for most, 359 
larger than the unweighted ensembles – over the mean accuracy of the individual models of 17% to 27% 360 
(ρ) and 7.6% to 15% (D↓) for carbon (Figure 2A and B), and 5.3% to 6.5% (ρ) and 7.7% to 18% (D↓) for 361 
water (Figure 2C and D). In all cases, pairwise t-tests indicated highly significant differences between each 362 
ensemble and the mean value of accuracy of individual models (all P<1E-10). Thus, creating an ensemble 363 
improves prediction accuracy against a randomly chosen individual model irrespective of the ensemble 364 
approach chosen.365 



 366 
Figure 2. Accuracy of above ground carbon stock ensembles (10 models; A and B), and of water supply ensembles (9 models; C and D) against validation 367 
data. The mean of accuracy values across the containing models – i.e. a randomly chosen model– is provided for comparison. For detail on the different ensemble 368 
types see Table 1 and SI-1-3. We show the average accuracy of 250 bootstrap runs with 50% of the dataset. The vertical dashed line indicates the reference 369 
unweighted mean-averaged ensemble (black dot, ‘mean ensemble’). Error bars indicate the standard deviation among runs in terms of proportional difference 370 
to the mean ensemble, calculated per bootstrap run as the difference in accuracy to the mean ensemble divided by the accuracy of the mean ensemble. The 371 
coefficient of variation among bootstraps for the mean carbon ensemble was 4% and 1%, for ρ and D↓ respectively, and 1 % and 2% for water (not shown). Blue 372 
coloured ensemble accuracies are significantly higher than the unweighted mean ensemble (Bonferroni corrected α = (0.05/12)); Red coloured bars are 373 
significantly lower; Black dashed bars are not significantly different to the mean ensemble. 374 



3.2. Weighted ensembles are more accurate than unweighted ensembles  375 
All weighted ensembles, whether trained or untrained, significantly outperformed the reference unweighted 376 
mean ensemble (Figure 2), with the exception of D↓ for carbon. In all cases, pairwise t-tests indicated these 377 
differences were highly significant (P<1E-10; see Figure SI-2-1 for similar analyses against the median-378 
averaged ensemble).  379 
 380 
For untrained weighted ensembles, prediction accuracy was elevated by up to 4.8% ±0.6% for carbon ρ 381 
(best: regression to median; Figure 2), with no improvement for carbon D↓, and 0.8% ±0.3% and 7.5% 382 
±1.1% for water supply ρ and D↓ respectively (regression to median; Figure 2). Conclusions as to the best 383 
model attributes to use for untrained weighting were dependent on the accuracy metric used (ρ or D↓). By 384 
comparison to the unweighted mean ensembles, upweighting model outputs with finer spatial resolution 385 
improved ρ by up to 6.6% ±0.5% and 0.2% ±0.1% for carbon and water respectively but contrastingly 386 
decreased D↓. Upweighting more distinctive models was positive for D↓ with 2.5% ±0.4% and 1.3% ±0.3% 387 
greater accuracy compared to the unweighted mean ensemble for carbon and water supply respectively, but 388 
was negative for ρ. In summary, creating untrained weighted ensembles through iterative approaches was 389 
overall the most robust – particularly regression to the median (Table 1: En-5), showing greater accuracy 390 
than the unweighted mean-averaged ensembles in 3 out of 4 of our tests, and lower accuracy in 1 (Figure 391 
2).  392 
  393 
For trained weighting ensembles, using an iterative log-likelihood regression approach (Table 1: En-10) to 394 
establish weights elevated prediction accuracy compared to the unweighted mean ensemble by up to 14.5% 395 
±2.6% for carbon ρ (no improvement for carbon D↓) and 0.8% ±0.7% and 11.1% ±3.4% for water supply ρ 396 
and D↓ respectively (Figure 2). Compared to such regressions, upweighting models with higher accuracy in 397 
the training set (accuracy-weighted ensembles; En-9; Figure 2) gave less improvement over the unweighted 398 
mean ensemble. Iteratively creating trained weighted ensembles using a log-likelihood regression approach 399 
(Table 1: En-10) was most robust – showing greater accuracy than the unweighted mean-averaged 400 
ensembles in 3 out of 4 of our tests, and is no worse in 1 (Figure 2). 401 
 402 
The reference unweighted mean ensembles for carbon and water are mapped for the UK in Figure 3. Maps 403 
for all other ensembles can be found in SI-3 and uncertainty among models and ensembles in SI-4. In 404 
accordance with a priori predictions, the uncertainty associated with selecting a single model was several 405 
times greater than that associated with selecting any single ensemble method for both ES. For carbon, the 406 
standard error of the means (SEM) among individual models per 1 km2 grid cell (SEM = 9.0% ±2.8%, SI-407 
4) was ca. 3.5-times larger than among ensembles (SEM = 2.5% ±1.1%). Similarly, the SEM among 408 
individual water models per watershed (SEM = 7.8% ±3.4%, SI-4) was substantially greater than among 409 
ensembles (SEM = 1.3% ±0.7%). In SI-4 we investigate spatial drivers for this uncertainty, discussing these 410 
patterns at length.  411 
 412 
We validated the robustness of our results using independent data and models from a different area (Sub-413 
Saharan Africa; Willcock et al. 2019), which gave similar results of weighted ensembles outperforming the 414 
reference mean ensemble (Figure SI-2-2). 415 
 416 



 417 
Figure 3. Spatial distribution of validation points and the reference mean ecosystem service value. A 418 
the Distribution of 2078 carbon validation forests as coverage of 10 × 10 km cells – many individual forest 419 
fragments would be too small to be clear at this scale, see SI SI-1-2 –, white cells are empty. B the reference 420 
unweighted mean ensemble of carbon across 10 models, normalised on scale 0-1. C the 519 catchments 421 
used for water validation and ensemble calculations coloured by their size – smaller watersheds that overlap 422 
larger ones are displayed on top; lines show underlying largest catchment level. D the reference unweighted 423 
mean ensemble of water supply across 9 models, normalised on scale 0-1. All maps here, in SI-3 (all 424 
ensembles) and SI-4 (uncertainty) could support landscape decisions in the UK and are available via 425 
https://doi.org/10.5285/a9ae773d-b742-4d42-ae42-2b594bae5d38. 426 

 427 

4. Discussion  428 
We have shown that predictions from ensembles of models have substantially higher accuracy than a 429 
randomly selected single ES model, and especially that weighting approaches increase ensemble accuracy. 430 
Finding increased performance through use of ensemble approaches is common in other fields. For example, 431 
the increased accuracy of ensemble species distribution models ranges from 1-2% (Crossman et al. 2012; 432 
Abrahms et al. 2019) to 12% (Grenouillet et al. 2011), although an increase is not universal (Hao et al. 433 
2020). Similarly, 2% accuracy increases were found for market forecasting ensembles (He et al. 2012), and 434 
neural network ensemble averaging resulted in up to 7% improvements in accuracy (Inoue & Narisha 2000).  435 
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 436 
Specific to ES, unweighted averaged ensembles have been shown to be 5.0–6.1% more accurate than 437 
individual models (Willcock et al. 2020). Our improvements with ES ensembles are at minimum 5%-17%, 438 
suggesting substantial differences among models in their adequacy (Dormann et al. 2018), but also that 439 
ensemble approaches that use more information offer greater increases in accuracy. We found that taking 440 
the median generally outperforms a mean ensemble, probably because the latter is more influenced by 441 
outliers. Our results provide evidence that weighted ES ensembles created using consensus techniques 442 
produce more accurate outputs than unweighted ensembles. This finding is supported by our additional 443 
analysis using independent models and data from Sub-Saharan Africa (in a biome with very different 444 
climatic and soil characteristics; SI-2), suggesting our findings may be generalisable, although investigating 445 
this specifically (e.g., for different ES, regions and validation datasets) is an important avenue for future 446 
research. 447 
 448 
Predictions from models, including those from ES models, are all potentially biased in direction and amount 449 
because of their underlying assumptions. These biases could differ among models due to their specific 450 
construction. Therefore, models are likely to differ in their accuracy when compared to reality (Dormann et 451 
al. 2018). The improvement in accuracy when using ensembles, as we have shown here, is referred to as a 452 
‘portfolio effect’ by which a (weighted) combination of replications of possible states of a system suppresses 453 
idiosyncratic differences and provides a more reliable average estimate (Thibaut & Connolly 2013; 454 
Dormann et al. 2018; Lewis et al. 2021). However, this effect is lessened if models share similar 455 
assumptions and, therefore, concomitant biases – highlighting the importance of including multiple model 456 
outputs (Ding & Bullock 2018) and, where data are available, model validation (Willcock et al. 2019). In 457 
particular, the use of models not usually packaged as ES models – such as LPJ-GUESS – might help with 458 
increasing the variety of inputs for ensembles. If some models systematically overestimate and other models 459 
underestimate, averaging delivers smaller prediction errors when models are weighted (Dormann et al. 460 
2018). Hence, the resulting weighted ensemble is more accurate than most individual models and 461 
unweighted approaches (Marmion et al. 2009, Grenouillet et al. 2011); see Dormann et al. (2018) for 462 
theoretical explorations.  463 
 464 
We have shown the general potential of weighting to re-balance the contribution of different ES models, 465 
but also find that some weighting approaches seem more suitable. Specifically, structured trial-and-error 466 
iterative approaches may more accurately maximise consensus among models than deterministic approaches 467 
(Dormann et al. 2018; Gobeyn et al. 2019). The PCA and correlation coefficient approaches (Table 1: En-468 
3 & En-4) deterministically assess consensus among individual models. By contrast, regression to the 469 
median, leave-one-out cross validation, and log-likelihood approaches (Table 1: En-5, En-6, En-10) are 470 
examples of iterative processes that optimise for the highest level of consensus in full parameter space 471 
(Dormann et al. 2018). Attribute-based approaches as used by Masson & Knutti (2011) and Willcock et al. 472 
(2019) (e.g. weighting by model distinctiveness or grid size; Table 1: En-7 and En-8) produce conflicting 473 
results. Model attributes such as these may not correctly describe why model outputs vary, or capture their 474 
complexity (Willcock et al. 2019; Brun et al. 2020) and so weighting by among-model agreement produces 475 
more accurate ensemble outputs. One might expect accuracy-weighted ensembles (Table 1: En-9) to 476 
perform best. However, model accuracy can be location specific and poorly transferable elsewhere – even 477 
with similar model accuracy, some grid cells may be well represented by some models and less by others 478 
(Graham et al. 2008; Marmion et al. 2009; Zulian et al. 2018). As a result accuracy-derived weights show 479 
high uncertainty in areas where training data were not available (i.e. non-forested areas; SI-4), likely because 480 
of over-fitting to areas with available data (i.e. forests/woodlands) producing correlative patterns that 481 
explain other areas less well. In SI-4, we investigated environmental and spatial drivers of uncertainty 482 
among predictions. Broadly, these supplementary results show that carbon models and ES ensembles are 483 
less accurate in urban areas. We also find that ensembles for water are less accurate in areas of high rainfall, 484 
seasonality and rugosity (see SI-4 for full details). That said, as uncertainty among ES ensembles is almost 485 
4-times lower than among individual models, this suggests less need to make the ‘right choice’ of method 486 



when selecting an ensemble approach. Thus, although there is some chance of picking a superior individual 487 
model (Willcock et al. 2018), the risk of a sub-optimal prediction is substantially lowered by applying any 488 
ensemble method and this risk is further reduced when a weighted ensemble is used.  489 
 490 
Our results should serve as a ‘call to arms’ for ES researchers and practitioners to increasingly use ensembles 491 
of models to support decision-making for sustainability. Using an individual ES model is fraught with 492 
concerns as a priori it is not known which is the most accurate and choosing only one model can, at worst, 493 
result in perverse decisions (Willcock et al. 2019). Deriving decisions from an ensemble of ES models 494 
provides an improvement over using one model for any location (which may be large or small, depending 495 
on the local context and the models used), but also more consistency over space, as model accuracy varies 496 
spatially (see results in SI-4). Therefore, using ensemble approaches, and especially weighted ensembles, 497 
would increase credibility and so help reduce the implementation gap between research and policy- and 498 
decision-making (Wong et al. 2014; Willcock et al. 2016). We acknowledge the lack of standardised metrics 499 
across models and limited computational and financial resources that could restrict the uptake of ensembles 500 
– indeed, many practitioners only run a single model. However, given the errors associated with single 501 
models (this paper; Willcock et al. 2020; Eigenbrod et al. 2010), we argue that a single model is inadequate, 502 
although more complex models are sometimes more accurate (Willcock et al. 2019). The most complex (a 503 
priori best) ES models require substantial inputs (i.e. data, computational power, subscription fees, and staff 504 
time), and so running multiple models – whilst requiring additional resources – results in a large gain per 505 
extra unit resource. For example, as even untrained weighted ensembles developed using iterative 506 
approaches (e.g. regression to the median, leave-one-out cross validation) enable a 3-fold reduction in 507 
variation, such an ensemble approach seems a reasonable minimum standard for ES modelling – striking 508 
the right balance between feasibility and robustness (Willcock et al. 2016). Whilst such ensembles will be 509 
outperformed by the best-performing individual models, these cannot be identified without running multiple 510 
models – a ‘Catch-22’ (Willcock et al. 2019). Thus, we recommend that multiple models be developed for 511 
ES where they are lacking (e.g. cultural services; Martínez-Harms and Balvanera, 2012; Wong et al. 2014), 512 
and that those with access to sufficient resources to run multiple models ensure the ensemble outputs are 513 
freely available, making the use of these ensembles more feasible and accessible for all (Willcock et al. 514 
2020). 515 

 516 

5. Conclusion 517 
We show that in situations with no a priori validation evidence guiding model selection, predictions from 518 
ensembles of models have a higher accuracy than selecting an individual model by chance. Weighted 519 
averaging further improves accuracy, supressing idiosyncratic differences through producing consensus 520 
(Araújo & New 2007; Dormann et al. 2018). Doing so not only elevates accuracy but substantially decreases 521 
uncertainty among ensemble approaches compared to uncertainty among models, a further indication of 522 
increased fit to reality (Chaplin-Kramer et al. 2019; Willcock et al. 2020). In summary, even if a less 523 
accurate ensemble weighting approach is used, one would on average have lower uncertainty than selecting 524 
an individual model by chance. Thus, particularly when validation data are not available, we recommend 525 
the use of weighted ensembles in ES research to substantially reduce uncertainty and to support robust 526 
decision-making for sustainable development.  527 

 528 
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1. Introduction 33 
If the United Nations’ sustainable development goals (SDG) are to be achieved worldwide (Griggs et al. 34 
2013), it is vital to understand and manage “nature’s contributions to people” (termed ecosystem services; 35 
ES; Pascual et al. 2017). The empirical data needed to quantify ES are sparse in many parts of the world 36 
(Suich et al. 2015; Willcock et al. 2016), which is problematic as ES need to be accurately assessed and 37 
mapped to be incorporated in policy making and planning decisions (UKNEA 2011; de Groot et al. 2012). 38 
Such decisions require assessment of multiple ES, and the synergies and trade-offs among these ES, in order 39 
to estimate potential effects of land/water use change or other impacts (Willcock et al. 2016). Spatially-40 
explicit models produce maps of estimated ES – typically based on globally available datasets of land cover 41 
combined with other predictor variables – and so can provide credible information of the spatial distributions 42 
of multiple ES, particularly where empirical data are lacking (Malinga et al. 2015; Costanza et al. 2017).  43 
 44 
Over the last 10 years, many ES models have been developed, by different teams, often using dissimilar 45 
approaches, and with little reference to the other models (Bagstad et al. 2013; Ochoa & Urbina-Cardona 46 
2017). For example, carbon stocks for climate change mitigation can be modelled by ‘look-up tables’ 47 
relating land cover to stocks, by deterministic statistical inference, or by simulating complex processes 48 
(Willcock et al. 2019). However, most applications of ES models rely on only a single model for each ES 49 
(Englund et al. 2017; Bryant et al. 2018). Furthermore, while models can only approximate reality, few 50 
applications explicitly validate ES models against independent datasets (Chaplin-Kramer et al. 2019), 51 
although there are notable exceptions (Redhead et al. 2016; Sharps et al. 2017; Willcock et al. 2019). This 52 
is a particular issue as the results of location-specific validation (e.g. that performed during model 53 
development) may not be transferable to new locations (Redhead et al. 2016), or up-scalable to the regional 54 
and national extents over which ES model outputs are required to achieve the SDG (Willcock et al. 2016; 55 
Willcock et al. 2019). From a user and stakeholder perspective, not knowing the accuracy of the available 56 
ES models for the region of interest typically leads to either selection of a single suboptimal model – at 57 
worst leading to perverse decision-making – or a reluctance to use ES models altogether, causing an 58 
implementation gap between research, incorporation into policy and subsequent decision-making (Wong et 59 
al. 2014; Willcock et al. 2016).  60 
 61 
Despite claims for predictive superiority of certain modelling techniques and platforms, independent 62 
evaluations have been unable to demonstrate the pre-eminence of any single approach. In fact, while more 63 
complex models on average perform better in terms of fit to validation data, the best-fit model varies 64 
regionally and often according to the validation data used (Sharps et al. 2017; Willcock et al. 2019; Willcock 65 
et al. 2020). So, if no single ES model is always the most accurate, how should a suitable approach be 66 
selected?  67 

 68 
Across the sciences, one solution to address uncertainty surrounding the accuracy of any single model is to 69 
use an ensemble of models (Araújo & New 2007; Willcock et al. 2020) – using individual models as 70 
replicates with different input parameters and boundary conditions (Araújo & New 2007; Dormann et al. 71 
2018). Variation among models in their assumptions and formats can result in large differences in 72 
predictions, in terms of predicted values and how they vary over space, especially when there is uncertainty 73 
as to the state and processes of the system being modelled (van Soesbergen & Mulligan 2018; Willcock et 74 
al. 2019). Ensembles of models are hypothesised to have enhanced accuracy over individual models due to 75 
fewer overall errors in prediction by reducing the influence of idiosyncratic outcomes from single models 76 
(Araújo & New 2007; Dormann et al. 2018). Individual models rarely capture all potentially relevant 77 
processes or are often tuned to particular ecosystem characteristics. A combination of models might provide 78 
a more comprehensive coverage of processes and their forms, and avoids the chance of (unknowingly) 79 



selecting a model with a high prediction error at the location and scale of interest for a particular study 80 
(Willcock et al. 2020).  81 
 82 
Model ensembles are common in other disciplines – e.g. in niche modelling (Araújo & New 2007, 83 
Grenouillet et al. 2011), agroecology (Refsgaard et al. 2014), hydrology and water resources management 84 
(Wang et al. 2019; He et al. 2021), and climate and weather modelling (Knutti et al. 2013), as well as market 85 
forecasting (He et al. 2012). However, ensembles have been largely neglected in ES studies (Bryant et al. 86 
2018). The only current exception is the simplest ensemble approach (i.e. ‘committee averaging’ – taking 87 
the unweighted mean of a group of individual models per location –) which was applied to ES models in 88 
Sub-Saharan Africa, and gave higher accuracy in terms of fit to validation data (Willcock et al. 2020). 89 
Approaches that use more information might yield even more accurate estimates. Thus, here we explore the 90 
outstanding question of “what are the best ways to build ES model ensembles to realise the benefits such 91 
ensembles can bring to sustainability science?” 92 

 93 
Approaches to building model ensembles vary across disciplines, ranging from committee averaging 94 
(Marmion et al. 2009; Grenouillet et al. 2011) to complex Bayesian algorithms (Tebaldi & Knutti 2007). 95 
For example, species distribution models are generally deterministic statistical models; their fit to the data 96 
is often assessed with an accuracy metric and so ensembles are generally created using weighted averaging 97 
based on accuracy (Araújo & New 2007). By contrast, climate models are often treated as equal replicates 98 
with identical weights when making an ensemble (Tebaldi & Knutti 2007; Grenouillet et al. 2011) – we 99 
refer to such ensembles as ‘unweighted’. This difference may stem from the availability of suitable 100 
validation data, as well as different traditions. For example in species distribution models, biodiversity data 101 
are readily available and are used to train through cross-validation (Araújo & New 2007), whereas validation 102 
data on future climates obviously do not exist – although cross-validation against historic climate data is 103 
possible. 104 
 105 
As well as varying considerably in their underlying method, ES models often differ in the forms of their 106 
outputs (e.g. summed monetary value of the ES (de Groot et al. 2012) vs. specific biophysical predictions), 107 
even when modelling the same ES (e.g. summed monetary value of the ES (de Groot et al. 2012) vs. specific 108 
biophysical predictions). By contrast, climate models generally have very similar forms of outputs. An 109 
important knowledge gap is therefore how to combine distinct ES model outputs as complementary inputs 110 
to provide a reliable ensemble. Outputs from different ES models can have different units and it is 111 
challenging to decide the relative weighting to place on each model. M, with potentially different units, to 112 
provide reliable ensemble products using different model approaches as complementary inputs, and the 113 
potential role of weighting doing so. Since models for a particular ES often have different structures, may 114 
include different processes, or may represent the same processes in different ways (Ochoa & Urbina-115 
Cardona 2017). As a result, the different ES models, they will most likely not have equal accuracy, and so 116 
prediction errors (i.e. bias) will may not be normally distributed among models (Dormann et al. 2018). If 117 
ES models had equal overall accuracies, unweighted averaging may provide a smoothing effect, reducing 118 
the impact of idiosyncratic outputs (e.g. at specific locations) of any particular model to reveal useful signals 119 
(Araújo & New 2007, Knutti et al. 2013; Diengdoh et al. 2020). In cases of varying overall accuracy, 120 
appropriate weighting of outputs based on model accuracy – i.e. models having unequal assigned weights – 121 
might re-adjust the distribution of prediction errors, and so improve the accuracy of the resulting ensemble 122 
(Refsgaard 2014; Dormann et al. 2018; Liu et al. 2020).   123 
 124 
However for ES, the lack of a priori validation data in many cases means that the distributions of accuracy 125 
among ES models are unknown. Furthermore, given that inferences about model accuracy at one location 126 
may not be transferable to others (Willcock et al. 2019), weighting using validation results from a separate 127 
study may not improve outcomes. Therefore where validation data are not available, the consensus among 128 
models could be used to weight their individual contribution to the ensemble value (Marmion et al. 2009; 129 
Grenouillet et al. 2011). This approach follows the logic that models whose output values are more different 130 
to those of the other models (i.e. are more distinct) are more likely to be incorrect. Therefore, weighting by 131 
consensus reduces the impact of outputs from more idiosyncratic models (i.e. those with extreme values, 132 



outliers or badly comparable processes) by comparison with the other models (Araújo & New 2007; 133 
Dormann et al. 2018), but does not exclude their information fully. The opposite may also be true – i.e. 134 
more distinct models are more accurate – for example in cases where more similar models have common 135 
inaccuracies. 136 
 137 
Here, we implement 10 alternative ensemble methods, restricting ourselves to methods feasible for a wide 138 
range of users, to evaluate whether weighting provides higher accuracy and if so which type of method 139 
produces the most accurate predictions against validation data. We focus on two services, water supply and 140 
carbon storage, in the United Kingdom. To support decision-making, we map the results for potential further 141 
use, which will be madeare available via https://doi.org/10.5285/a9ae773d-b742-4d42-ae42-2b594bae5d38. 142 
through eidc.ac.uk/.  We use post-processing – specifically normalisation and per area correction – 143 
developed in earlier work (Willcock et al. 2019; Willcock et al. 2020) to make outputs among models 144 
comparable. 145 
 146 

2. Methods 147 
We developed and validated unweighted average and weighted average ensembles of models for a 148 
provisioning service (water supply; subsequently referred to as ‘water’) and a regulating service 149 
(aboveground carbon storage; subsequently referred to as ‘carbon’), for which there is both a variety of 150 
models available (Bagstad et al. 2013; Ochoa & Urbina-Cardona 2017; Willcock et al. 2019) and the 151 
presence of accessible validation data. We applied the models and ensemble methods in the United Kingdom 152 
(UK), for which there is a large quantity of reliable validation data; allowing us to assess ensemble 153 
accuracies. We compared accuracy (i.e. fit to validation data) of these individual models with those of the 154 
ensembles generated from them via multiple approaches, assessed if weighted ensembles were an 155 
improvement on the unweighted mean-averaged ensemble, and identified the methods of weighting 156 
ensembles that gave the highest accuracy.   157 
 158 

We modelled each ES at a 1 ha (100 × 100 m) resolution, and subsequently assessed performance of the 159 
different ensemble approaches using weighting approaches we organised into three categories (Table 1): 160 
deterministic consensus (i.e. always providing the same result), iterated consensus (i.e. using structured 161 
trial-and-error approaches) and attribute-based (e.g. spatial resolutiongrain or distinctiveness). Finally, we 162 
assessed the transferability of our UK results using independent data and models from a very different study 163 
area – Sub-Saharan Africa (Willcock et al. 2019). We depict our overall process in Figure 1 in 7-steps. Our 164 
calculations were performed using Matlab v7.14.0.739 and ArcMap 10.7.1, employing AracrpPy coding for 165 
loops. Relevant codes can be found at github.com/EnsemblesTypes, with flow among codes explained in 166 
SI-1-3. 167 
 168 
Table 1. Approaches used to calculate accuracy (A) and ensembles (B). Ensemble approaches were 169 
applied to the outputs of ten models for carbon storage and nine for water supply (see Table 2). For weighted 170 
averaging, the procedure is described, and where applicable the Matlab tools used are mentioned; similar 171 
regression tools are available in most statistical packages (further explanation is provided in SI-1). Trained 172 
weighting (En-9 & En-10) uses validation data, whereas untrained weighting (En-3 to En-8) does not. En-1 173 
and En-2 are unweighted average ensemble approaches, and En-3 to En-10 are weighted average 174 
approaches; the latter comprising deterministic (En-3 & En-4), iterated (En-5, En-6 & En-10) and attribute 175 
weighted (En-7 to En-9) techniques. With ωi: weight for model i; E(x): the value of the ensemble; V(x): the 176 
normalised validation value; Yi(x) and Yj(x): the normalised value of model i or comparator j respectively, all 177 
for selected spatial point x; (y ≠ x) denoting a split dataset; C(i,j): the correlation coefficient between model 178 
i and j; with n the # models, m the # spatial data points; ng: the # models in distinctiveness group g (see SI-179 
1 for distinctiveness grouping). 180 
 181 

Approach Description Details & Matlab Tool  

A. Accuracy approaches 

https://doi.org/10.5285/a9ae773d-b742-4d42-ae42-2b594bae5d38
https://github.com/EnsemblesTypes
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and T. 
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method 

 Inverse Deviance (D↓) 
𝐷↓ = 1 − (

1

𝑚
× ∑ |𝑋(𝑥) − 𝑇(𝑥)|𝑚

𝑥 )   
T(x) is either Yi(x) or E(x) 

B. Ensemble approaches  

Unweighted Averaging:   

En-1. Mean  𝐸(𝑥) = (𝑌𝑖̅)(𝑥)  

En-2. Median 𝐸(𝑥) = (𝑌𝑖̃)(𝑥)
 

Hypothesised to perform 

better than mean for 

skewed distributions. 

Untrained Weighted Ensembles: 𝑬(𝒙) = ∑ (
𝝎𝒊

∑ 𝝎𝒊
𝒏
𝒊

× 𝒀𝒊)
𝒏
𝒊

(𝒙)
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𝑛
× ∑
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√𝐶(𝑖,𝑖)×𝐶(𝑗,𝑗)

𝑛
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𝑥         

 

Iterated 

consensus 

En-5. Regression to the 

median 
𝑌(𝑥)
̃ ~(∑ 𝜔𝑖𝑌𝑖

𝑛
𝑖 )(𝑥)   nlmefit-tool, maximising 

Log Likelihood 

En-6. Exhaustive leave-

one-out cross-

validation2 

𝑌𝑗(𝑥)~ ∑ 𝜔𝑖𝑗𝑌𝑖(𝑥)
𝑛
𝑖≠𝑗 , for all 𝑗 ∈ 𝑖  

subsequently:  𝜔𝑖 =
1

𝑛
× ∑ ((

1

𝑛−1
) × ∑ 𝜔𝑖𝑗

𝑛
𝑖≠𝑗 )𝑛

𝑖  
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Attribute-

based 

En-7. Upweighted small 

finer spatial 

resolutiongrains 

𝜔𝑖 =
1

𝑙𝑜𝑔10(𝑠𝑝𝑎𝑡𝑖𝑎𝑙 𝑟𝑒𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛𝑔𝑟𝑎𝑖𝑛)
  Finer spatial 
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smaller grid size in 1-

dimensional meters (e.g. 

25 m) 
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weighting: 
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𝑛𝑔

𝑛
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𝜔𝑖 = (
𝑛

𝑛𝑔) when downweighted with 𝑛𝑔 = 𝑖 ∈ 𝑔 

 

Trained Weighted Ensembles: ω-transfer via jack-knife training  

Attribute-

based 

En-9. Accuracy-

weighted  
ωi = Ai, with 𝐴𝑖(𝑉(𝑦≠𝑥), 𝑌(𝑦≠𝑥)) With A, either Spearman ρ 

or D↓ accuracy 

Iterated 

consensus 

En-10. Log-likelihood 

regressions 
𝑉(𝑦≠𝑥)~(∑ 𝜔𝑖𝑌𝑖

𝑛
𝑖 )(𝑦≠𝑥)  Using nlmefit-tool, 

maximising Log 
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Figure 1.  Schematic representation of our ensemble analysis with arrows 184 
showing information flows. Numbers represent the steps with the method chapters 185 
indicated in italics, with respective detailing SIs; result figures are indicated. 186 
Parallelograms highlight the 10 ensembles approaches (Table 1), using models 187 
described in Table 2.   188 
 189 

2.1. Run and collate different models (step 1) 190 
We used outputs from 10 models for above ground carbon stocks based on per grid cell estimates, and 191 
outputs from nine models for annual water supply which provided accumulated flow estimates through 192 
specific pour points, either directly or through summation of run-off estimates per grid cell. We list these 193 
models in Table 2, including their output grid sizes (spatial resolutiongrain); we refer to SI-1-1 for full 194 
details, scales and supporting data. Acknowledging that model outputs have different units and sometimes 195 
model different constructs, we refer further to them in the general terms of carbon and water supply. 196 
Adhering to the aim of this paper, we do not compare individual model outputs, but focus on ensemble 197 
methods. All model outputs were set to the British National Grid transverse Mercator projection (EPSG 198 
27700) with a 0.9996 scale factor and units in metres. Not all models covered the whole of the UK, e.g. 199 
some excluded Northern Ireland or Scotland (see SI-1-1). Where applicable we corrected for this by using 200 

a standard error of means as (
𝜎(𝑥)

√𝑛(𝑥)
), instead of standard deviation (σ), with n the number of models per grid 201 

cell x. We collated models for this study according to their availability and to reflect different approaches 202 
to modelling ES.203 



Table. 2. Models and existing outputs used. Full details, input data, post processing descriptions, and coverage are provided in SI-1-1. Model names are 204 
shown as acronyms and in full.    205 

206 

†Output generated for this work; ‡online tool; §existing dataset; 1Kareiva et al. (2011); 2Smith et al. (2014); 3Ahlström et al. (2015); 4Thomas et al. (2020); 5de Groot et al. 207 
(2012); 6Costanza et al. (2014); 7Gassert et al. (2015) 8Martínez-López et al. (2019); 9land.copernicus.eu/tree-cover-density/ status-maps/2015; 10Coxon et al. (2019a; 2019b); 208 

Model Description 
Grid size ( spatial 

resolutiongrain) 
Model Type16 

InVest v3.7.01† 

(Integrated Valuation of Ecosystem Services 

and Trade-offs) 

Carbon module: above ground stocks 
25 × 25 meters 

Look-up table 

Water yield module: run-off per cell Process  

LPJ-GUESS2,3† 

(Lund-Potsdam-Jena General Ecosystem 

Simulator) 

Vegetation biomass stocks per cell, mean for years 

2009-2018 0.5° (≈ 46 × 46 km) Process  

Water run-off per cell, mean for years 2009-2018 

LUCI4† 

(Land Utilisation Capability Indicator) 

Above ground carbon stocks 10 × 10 meters Look-up table 

Accumulated water run-off 5   ×  5  meters Process  

$-benefit transfer using The Economics of 

Ecosystems and Biodiversity database5,6† 

Above ground carbon stock as monetary value 
25 × 25 meters Look-up table 

Water run-off as monetary value per cell 

Aqueduct v2.1 Total Blue Water7§ Accumulated water run-off 138 flow areas Deterministic  

ARIES k-Explorer8‡ 

(Artificial Intelligence for Environment & 

Sustainability) 

Joined above and below ground carbon stocks 1-hectare Look-up table 

Barredo et al. (2012)§ A European map of above ground biomass stocks 1 km2 Look-up table 

Copernicus, Tree Cover Density9§ 
Proxy for carbon: tree Cover Density 2015 from MODIS 

satellite imagery. 
20 × 20 meters Deterministic  

DECIPHeR10§ 

(Dynamic fluxEs and ConnectIvity for 

Predictions of HydRology) 

Accumulated water run-off through NRFA delineated 

catchment outlets, mean for years 1995-2015 

387 catchments in 

common with validation 
Process  

Grid-to-Grid11§ Accumulated water run-off, mean for years 1995-2015 1 km2 Process  

Henrys et al. (2016)§ Above ground carbon stocks 1 km2 Look-up table  

Kindermann et al. (2008)§ A global map of above ground forest biomass stocks 1 hectare Deterministic  

National Forest Inventory (2018)12† 
Woodland Land Cover Map15 with above ground carbon 

stocks based on added Look-up table (Table. SI-1-4) 
20 × 20 meters Look-up table 

Scholes Growth Days13,14† 
Proxy for water run off per cell: # Days precipitation 

exceeds evapotranspiration 
1 km2 Deterministic  

WaterWorld v215‡ Accumulated water run-off 0.0083° (≈ 1 km2) Process  

Field Code Changed

https://land.copernicus.eu/pan-european/high-resolution-layers/forests/tree-cover-density/status-maps/2015


11Bell et al. (2018a; 2018b); 12Forestry Commission (2018); 13Scholes (1998); 14Willcock et al. (2019); 15Mulligan (2013); 16following Ding & Bullock (2018), Willcock et al. 209 
(2019).  210 

211 



2.2. Validation datasets (step 2) 212 
Our carbon stock validation dataset was provided by Forest Research and comprises species inventories in 213 
all forest estates in England and Scotland in 2019 (data-forestry.opendata.arcgis.com/; density shown in 214 
Figure 3; locations in Figure SI-1-2). In 201,143 forest compartments of varying size (mean: 4.4 hectares. 215 
median 1.6 hectares, ± 22.1), tree species, stand age and thinning regime were recorded for three vegetation 216 
layers. For each compartment and layer therein, the unique combination of stand age, thinning regime and 217 
tree species of the inventory data was searched in the UK Carbon Code tables (woodlandcarboncod.org.uk) 218 
and life-time accumulated biomass was converted to total standing carbon per hectare estimates per 219 
compartment, with the layers summed per compartment (SI-1-2). Subsequently, compartments were 220 
spatially joined into 2078 polygons of ‘forest’ that were separated if more than 25 meters distance from each 221 
other. 222 
 223 
Our water supply validation dataset comprised 519 hydrometric gauging stations from the National River 224 
Flow Archive of the UK (NRFA; nrfa.ceh.ac.uk), with associated catchments representing a variety of sizes 225 
distributed across the whole of the UK (Figure 3). From the 1598 potential catchments in NRFA, we selected 226 
those that were >100 km2 to get a robust mean run-off from the catchments. In cases where multiple gauging 227 
stations were found along the same river, based on name, only the largest was chosen to avoid 228 
pseudoreplication. An additional set of 41 Welsh catchments was included which did not meet this size 229 
criterion. Wales contains mainly small catchments due its geography – mountain ranges close to the sea – 230 
and so we selected catchments >25 km2 to avoid this part of the UK being underrepresented. The data were 231 
polygons encompassing these catchments. Details are provided in SI-1-2. 232 
 233 

2.3. Model predictions, normalisation (step 3) and validation of model accuracy (step 4) 234 
For each individual model, predictions were obtained for each polygon in the validation dataset using the 235 
ArcGIS spatial analyst Zonal tool with a forced 2.5 m grid size environmental setting to minimise edge 236 

effects; i.e. all predicted values were obtained by resampling into 2.5 × 2.5 m grid cells. In most cases the 237 

modelled value per polygon was obtained by taking the sum of all constituent grid cell values, corrected for 238 
both actual grid size and the resampling to 2.5 m. In the case of accumulated flow models, we corrected for 239 
potential small scale differences in flow routing among these models by taking the maximum flow value 240 
within both a 2 km range of the NRFA reported location of the gauging station and the polygon associated 241 
with that gauging station.  242 
 243 
To ensure comparability among model outputs, we standardised by normalising among the outputs for each 244 
individual model and for the validation data-sets. Prior to this step all outputs were area corrected as either 245 
mean carbon stock – or proxy thereof – per hectare or water supply per hectare of catchment (with 246 
accumulated run-off estimates post-processed to give net run-off per cell; SI-1-1). This normalisation 247 
followed Willcock et al. (2019), and allowed us to address differences in units among models (such as 248 
monetary benefit transfer vs. satellite-based tree cover densities or run-off, and equalised carbon and 249 
biomass). To avoid impacts of extreme values without eliminating such data-points, we employed a double-250 
sided Winsorising protocol for normalisation (Willcock et al. 2019; Verhagen et al. 2017), using the values 251 
associated to the 2.5% and 97.5% percentiles of number of datapoints to define the 0 and 1 values (values 252 
below or above these percentiles became 0 or 1 respectively). This winsorising normalisation protocol 253 
assumes outlier data are valid, but skewed values, in our case mainly by per area averaging, and corrects for 254 
this by compressing the variance tails rather than trimming them (Keselman et al. 2008; Erceg & Mirosevich 255 
2008). Hence, we trade-off an even data distribution over the full 0-1 normalised range against the chance 256 
of having a true far outlier maximum (see SI-5 for a full investigation into the impact of the Winsorising 257 
protocol over standard normalisation for the validation data distribution). For each model, normalisation 258 
was done prior to creating ensembles. 259 
 260 
For validation, we employed two accuracy measures (Willock et al. 2019; Willock et al. 2020), which are 261 

related to different aims in modelling ES (Table 1): 262 

http://data-forestry.opendata.arcgis.com/
https://www.woodlandcarboncod.org.uk/
https://nrfa.ceh.ac.uk/


1) Comparing the rank order of predicted and validation data using Spearman ρ. This is relevant where 263 
modelling is used to discover, for example, the most important locations for delivering an ES, or 264 
conversely, those areas whose development may have least impact on ES delivery.  265 

2) Ascertaining the absolute difference of each modelled value from its validation value using the inverse 266 
of the deviance (D↓). This is relevant where modelled values are important, e.g. when testing where ES 267 
levels exceed a minimum threshold. We used the inverse of the deviance so that, like ρ, a higher value 268 
indicated greater accuracy. 269 

 270 
2.4. Generate ensembles (step 5) and compare accuracy among ensemble types (step 6) 271 

We tested whether model ensembles were more accurate than the individual constituent models and which 272 
approaches for creating ensembles were the most accurate in terms of fit to validation data. We created 273 
ensembles using a range of methods, from the simplest calculation of an average value of the models at each 274 
location (‘unweighted averaged ensembles’, e.g. Marmion et al. 2009, Grenouillet et al. 2011) to ensembles 275 
with the contributions from different models weighted unequally (‘weighted ensembles’), following 276 
Dormann et al. (2018) (Table 1; further explanation and a model flow are provided in SI-1-3). We used 277 
relatively straightforward approaches that would be feasible for a wide community of scientists and 278 
decision-makers, and avoided more complex mathematical and/or statistical techniques such as Bayesian 279 
networks (Bryant et al. 2018), which would require detailed specialist knowledge. Weights over all models 280 
were normalised to sum to 1. Together with normalisation of the ensemble outputs (see above), this assured 281 
equal scaling among all models and ensembles. 282 
 283 
For unweighted average ensembles, we calculated both the mean and the median of modelled values at each 284 
location as alternative measures of the central tendency which are differently affected by skew in the data 285 
(Table 1, En-1 & En-2).  286 
 287 
For weighted ensembles we calculated:  288 

𝐸(𝑥) = ∑ (
𝜔𝑖

∑ 𝜔𝑖
𝑛
𝑖

× 𝑌𝑖)𝑛
𝑖

(𝑥)
with positive weights ωi for model i of validation polygon x, weights ωi are 289 

normalised to sum to 1, Y the modelled values for i per polygon (step 3), and n the total number 290 
of models per service.  291 

 292 
To determine ωi, the weighting value for each model i, we employed a range of methods that can be broadly 293 
categorised as two main types of ensemble approach (untrained and trained), with further subdivision as: 294 
deterministic consensus, iterated consensus, and attribute-based. The ensembles are listed as equations in 295 
Table 1 (see SI-1-3 for further details). 296 
1) Untrained ensembles (En-3 to En-8) represent a situation in which there is no validation data. To generate 297 

uncertainty estimates allowing statistical comparison with the models and among ensembles we jack-298 
knifed (Araújo & New 2007; Refsgaard et al. 2014) with 50% of the spatial data polygons for 250 runs, 299 
i.e. every run contained a new selection of half the dataset. We tested three approaches to produce the 300 
ensembles: 301 
- Deterministic consensus among models can be calculated using several approaches, including the fit 302 

to a common consensus axis such as from a Principal Components Analysis (Marmion et al. 2009; 303 
Grenouillet et al. 2011) or weighting by correlation coefficients (En-3 & En-4; ensemble numbering 304 
follows Table 1). 305 

- Iterative approaches might more accurately quantify consensus among models through using 306 
structured trial-and-error (Dormann et al. 2018; Tebaldi & Knutti 2007). We use two regression 307 
techniques: between the individual models and the median (En-5) and leave-one-out cross-validation 308 
(En-6) following the suggestion in Dormann et al. (2018).  309 

- One might a priori place value on a particular model attribute and use this to create weights (Englund 310 
et al. 2017; Willcock et al. 2019; Brun et al. 2020; En-7, En-8 & En-9). For example, one could up- 311 
or down-weight more distinct model types through a binary matrix of differences (En-8 & En-9; S1-312 



1-4) in land cover map used, grid-size, measured or modelled climate, model extent, presence of 313 
time-series, time step-size and model type (i.e. look-up table, deterministic or process based). 314 
Alternatively models that run at coarser spatial resolutions are penalised (En-7): smaller grid sizes 315 
are deemed more useful for decision-making (Willcock et al. 2016). 316 

2) Trained ensembles (En-9 & En-10), as often used for species distribution models (e.g. Refsgaard et al. 317 
2014; Elith et al. 2011), represent a situation in which validation data are available from a similar region 318 
or part of the study area and so cannot be used to directly validate or substitute for the models in the 319 
study area, but can be used to weight these models. Here, ωi was trained with the validation data on a 320 
jack-knifed 50% of the dataset to achieve maximum accuracy (En-10) and subsequently ωi was 321 
transferred to the other half of the dataset. We used 250 such jack-knife runs (see above), with the same 322 
selections as above. Moreover, we included weighting by individual model accuracy (Marmion et al. 323 
2009; Liu et al. 2020)  using the same jack-knife approach (En-9) .  324 

 325 
After creating the ensembles, their accuracy was assessed following step 4 using the two measures (see 2.3): 326 
Spearman ρ and the inverse of the deviance (D↓). We assessed any improvement over the unweighted mean-327 
averaged ensemble as the reference with pairwise t-tests against the null hypothesis of equal accuracy 328 
(Matlab ttest-tool). A similar analysis against the median-averaged ensemble as reference can be found in 329 
SI-2. To avoid spurious findings of significance through having a large number of replicates, we assessed 330 
improvement using bootstrapped tranches of 50 runs each with 250 replicates, and averaging the P-values. 331 
Since we used the same statistical test 12-times per service per accuracy estimate, we employed a full 332 
conservative Bonferroni correction; (α = 0.05/12) on the resulting average P-values. To compare the 333 
ensembles with the individual models we calculated per replicate the mean difference in accuracy among 334 

all models (Ai) against accuracy of an ensemble (AE) following: ((∑ (
𝐴𝐸

𝐴𝑖
− 1)𝑛

𝑖 ) ×
1

𝑛
), with n the number 335 

models and i an individual model. 336 
 337 
Steps 5 and 6 were repeated using independent data and models from a different study area (sub-Saharan 338 
Africa; Willcock et al. 2019) to investigate the transferability of the results presented here (Figure SI-2-2). 339 
 340 

2.5. Spatial representation of ensembles and uncertainty (step 7) 341 
To better support decision-making, we mapped our ES ensembles for the UK. For all the water ensembles, 342 
the mean normalised value across jack-knifed ensemble predictions per ensemble method were mapped as 343 
catchment polygons (step 5, N = 519). For all carbon ensembles we mapped as 1 km2 grid cells. Here, for 344 
each ensemble approach, the estimated weights as calculated for the validation polygons – mean averaged 345 
among jack-knife runs– were transferred to the full area, with the result aggregated to a 1 km2 resolution 346 
based on the mean value among 1 hectare grid cells. In total, this carbon dataset has 253,802 cells that 347 
(partially) contain non-sea land cover. We transferred the weights calculated for the forests since running 348 
cross-validation approaches on over 250K data points would extremely time consuming to compute. 349 
However, since our validation data are only from forests/woodlands, we are aware of introducing a potential 350 
bias that could skew non-forested areas to lower values. Furthermore, we generated UK-scale maps of 351 
spatial variation in the differences among the untrained ensemble approaches, by calculating the standard 352 
error of the mean (SEM) among these spatial outputs. These maps will be madeare freely available online 353 
(https://doi.org/10.5285/a9ae773d-b742-4d42-ae42-2b594bae5d38through eidc.ac.uk/,), and spatial 354 
patterns of uncertainty are discussed in SI-4.  355 

 356 

3. Results 357 

 358 
3.1. Ensembles are more accurate than individual models 359 

The average accuracy of individual models, represented by the mean of accuracy values taken across all 360 
models, was lower than that for any of the ensembles we created. The accuracy of the unweighted averaged 361 
ensembles (of modelled values at each location, e.g. ‘mean ensemble’) was appreciably higher than the 362 
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mean value for accuracy of the individual models for both carbon and water: 19% ±1.1% [sd] for ρ and 363 
12.1% ±0.5% for D↓ improvement in fit to the validation data for carbon and 5.7% ±0.4% for ρ and 9.5% 364 
±1.7% for D↓ for water (Figure 2). Untrained weighted ensembles showed large improvements – for most, 365 
larger than the unweighted ensembles – over the mean accuracy of the individual models of 17% to 27% 366 
(ρ) and 7.6% to 15% (D↓) for carbon (Figure 2A and B), and 5.3% to 6.5% (ρ) and 7.7% to 18% (D↓) for 367 
water (Figure 2C and D). In all cases, pairwise t-tests indicated highly significant differences between each 368 
ensemble and the mean value of accuracy of individual models (all P<1E-10). Thus, creating an ensemble 369 
improves prediction accuracy against a randomly chosen individual model irrespective of the ensemble 370 
approach chosen.371 



372 

Formatted: Centered



 373 



Figure 2. Accuracy of above ground carbon stock ensembles (10 models; A and B), and of water supply ensembles (9 models; C and D) against validation 374 
data. The mean of accuracy values across the containing models – i.e. a randomly chosen model– is provided for comparison. For detail on the different ensemble 375 
types see Table 1 and SI-1-3. We show the average accuracy of 250 bootstrap runs with 50% of the dataset. The vertical dashed line indicates the reference 376 
unweighted mean-averaged ensemble (black dot, ‘mean ensemble’). Error bars indicate the standard deviation among runs in terms of proportional difference 377 
to the mean ensemble, calculated per bootstrap run as the difference in accuracy to the mean ensemble divided by the accuracy of the mean ensemble. The 378 
coefficient of variation among bootstraps for the mean carbon ensemble was 4% and 1%, for ρ and D↓ respectively, and 1 % and 2% for water (not shown). Blue 379 
coloured ensemble accuracies are significantly higher than the unweighted mean ensemble (Bonferroni corrected α = (0.05/12)); Red coloured bars are 380 
significantly lower; Black dashed bars are not significantly different to the mean ensemble. 381 



3.2. Weighted ensembles are more accurate than unweighted ensembles  382 
All weighted ensembles, whether trained or untrained, significantly outperformed the reference unweighted 383 
mean ensemble (Figure 2), with the exception of D↓ for carbon. In all cases, pairwise t-tests indicated these 384 
differences were highly significant (P<1E-10; see Figure SI-2-1 for similar analyses against the median-385 
averaged ensemble).  386 
 387 
For untrained weighted ensembles, prediction accuracy was elevated by up to 4.8% ±0.6% for carbon ρ 388 
(best: regression to median; Figure 2), with no improvement for carbon D↓, and 0.8% ±0.3% and 7.5% 389 
±1.1% for water supply ρ and D↓ respectively (regression to median; Figure 2). Conclusions as to the best 390 
model attributes to use for untrained weighting were dependent on the accuracy metric used (ρ or D↓). By 391 
comparison to the unweighted mean ensembles, upweighting smaller grained model outputs with finer 392 
spatial resolution improved ρ by up to 6.6% ±0.5% and 0.2% ±0.1% for carbon and water respectively but 393 
contrastingly decreased D↓. Upweighting more distinctive models was positive for D↓ with 2.5% ±0.4% and 394 
1.3% ±0.3% greater accuracy compared to the unweighted mean ensemble for carbon and water supply 395 
respectively, but was negative for ρ. In summary, creating untrained weighted ensembles through iterative 396 
approaches was overall the most robust – particularly regression to the median (Table 1: En-5), showing 397 
greater accuracy than the unweighted mean-averaged ensembles in 3 out of 4 of our tests, and lower accuracy 398 
in 1 (Figure 2).  399 
  400 
For trained weighting ensembles, using an iterative log-likelihood regression approach (Table 1: En-10) to 401 
establish weights elevated prediction accuracy compared to the unweighted mean ensemble by up to 14.5% 402 
±2.6% for carbon ρ (no improvement for carbon D↓) and 0.8% ±0.7% and 11.1% ±3.4% for water supply ρ 403 
and D↓ respectively (Figure 2). Compared to such regressions, upweighting models with higher accuracy in 404 
the training set (accuracy-weighted ensembles; En-9; Figure 2) gave less improvement over the unweighted 405 
mean ensemble. Iteratively creating trained weighted ensembles using a log-likelihood regression approach 406 
(Table 1: En-10) was most robust – showing greater accuracy than the unweighted mean-averaged 407 
ensembles in 3 out of 4 of our tests, and is no worse in 1 (Figure 2). 408 
 409 
The reference unweighted mean ensembles for carbon and water are mapped for the UK in Figure 3. Maps 410 
for all other ensembles can be found in SI-3 and uncertainty among models and ensembles in SI-4. In 411 
accordance with a priori predictions, the uncertainty associated with selecting a single model was several 412 
times greater than that associated with selecting any single ensemble method for both ES. For carbon, the 413 
standard error of the means (SEM) among individual models per 1 km2 grid cell (SEM = 9.0% ±2.8%, SI-414 
4) was ca. 3.5-times larger than among ensembles (SEM = 2.5% ±1.1%). Similarly, the SEM among 415 
individual water models per watershed (SEM = 7.8% ±3.4%, SI-4) was substantially greater than among 416 
ensembles (SEM = 1.3% ±0.7%). In SI-4 we investigate spatial drivers for this uncertainty, discussing these 417 
patterns at length.  418 
 419 
We validated the robustness of our results using independent data and models from a different area (Sub-420 
Saharan Africa; Willcock et al. 2019), which gave similar results of weighted ensembles outperforming the 421 
reference mean ensemble (Figure SI-2-2). 422 
 423 



 424 
Figure 3. Spatial distribution of validation points and the reference mean ecosystem service value. A 425 

the Distribution of 2078 carbon validation forests as coverage of 10 × 10 km cells – many individual forest 426 

fragments would be too small to be clear at this scale, see SI SI-1-2 –, white cells are empty. B the reference 427 
unweighted mean ensemble of carbon across 10 models, normalised on scale 0-1. C the 519 catchments 428 
used for water validation and ensemble calculations coloured by their size – smaller watersheds that overlap 429 
larger ones are displayed on top; lines show underlying largest catchment level. D the reference unweighted 430 
mean ensemble of water supply across 9 models, normalised on scale 0-1. All maps here, in SI-3 (all 431 
ensembles) and SI-4 (uncertainty) could support landscape decisions in the UK and will be madeare 432 
available through via https://doi.org/10.5285/a9ae773d-b742-4d42-ae42-2b594bae5d38eidc.ac.uk/. 433 

 434 

4. Discussion  435 
We have shown that predictions from ensembles of models have substantially higher accuracy than a 436 
randomly selected single ES model, and especially that weighting approaches increase ensemble accuracy. 437 
Finding increased performance through use of ensemble approaches is common in other fields. For example, 438 
the increased accuracy of ensemble species distribution models ranges from 1-2% (Crossman et al. 2012; 439 
Abrahms et al. 2019) to 12% (Grenouillet et al. 2011), although an increase is not universal (Hao et al. 440 
2020). Similarly, 2% accuracy increases were found for market forecasting ensembles (He et al. 2012), and 441 
neural network ensemble averaging resulted in up to 7% improvements in accuracy (Inoue & Narisha 2000).  442 
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 443 
Specific to ES, unweighted averaged ensembles have been shown to be 5.0–6.1% more accurate than 444 
individual models (Willcock et al. 2020). Our improvements with ES ensembles are at minimum 5%-17%, 445 
suggesting substantial differences among models in their adequacy (Dormann et al. 2018), but also that 446 
ensemble approaches that use more information offer greater increases in accuracy. We found that taking 447 
the median generally outperforms a mean ensemble, probably because the latter is more influenced by 448 
outliers. Our results provide evidence that weighted ES ensembles created using consensus techniques 449 
produce more accurate outputs than unweighted ensembles. This finding is supported by our additional 450 
analysis using independent models and data from Sub-Saharan Africa (in a biome with very different 451 
climatic and soil characteristics; SI-2), suggesting our findings may be generalisable, although investigating 452 
this specifically (e.g., for different ES, regions and validation datasets) is an important avenue for future 453 
research. 454 
 455 
Predictions from models, including those from ES models, are all potentially biased in direction and amount 456 
because of their underlying assumptions. These biases could differ among models due to their specific 457 
construction. Therefore, models are likely to differ in their accuracy when compared to reality (Dormann et 458 
al. 2018). The improvement in accuracy when using ensembles, as we have shown here, is referred to as a 459 
‘portfolio effect’ by which a (weighted) combination of replications of possible states of a system suppresses 460 
idiosyncratic differences and provides a more reliable average estimate (Thibaut & Connolly 2013; 461 
Dormann et al. 2018; Lewis et al. 2021). However, this effect is lessened if models share similar 462 
assumptions and, therefore, concomitant biases – highlighting the importance of including multiple model 463 
outputs (Ding & Bullock 2018) and, where data are available, model validation (Willcock et al. 2019). In 464 
particular, the use of models not usually packaged as ES models – such as LPJ-GUESS – might help with 465 
increasing the variety of inputs for ensembles. If some models systematically overestimate and other models 466 
underestimate, averaging delivers smaller prediction errors when models are weighted (Dormann et al. 467 
2018). Hence, the resulting weighted ensemble is more accurate than most individual models and 468 
unweighted approaches (Marmion et al. 2009, Grenouillet et al. 2011); see Dormann et al. (2018) for 469 
theoretical explorations.  470 
 471 
We have shown the general potential of weighting to re-balance the contribution of different ES models, 472 
but also find that some weighting approaches seem more suitable. Specifically, structured trial-and-error 473 
iterative approaches may more accurately maximise consensus among models than deterministic approaches 474 
(Dormann et al. 2018; Gobeyn et al. 2019). The PCA and correlation coefficient approaches (Table 1: En-475 
3 & En-4) deterministically assess consensus among individual models. By contrast, regression to the 476 
median, leave-one-out cross validation, and log-likelihood approaches (Table 1: En-5, En-6, En-10) are 477 
examples of iterative processes that optimise for the highest level of consensus in full parameter space 478 
(Dormann et al. 2018). Attribute-based approaches as used by Masson & Knutti (2011) and Willcock et al. 479 
(2019) (e.g. weighting by model distinctiveness or grid size; Table 1: En-7 and En-8) produce conflicting 480 
results. Model attributes such as these may not correctly describe why model outputs vary, or capture their 481 
complexity (Willcock et al. 2019; Brun et al. 2020) and so weighting by among-model agreement produces 482 
more accurate ensemble outputs. One might expect accuracy-weighted ensembles (Table 1: En-9) to 483 
perform best. However, model accuracy can be location specific and poorly transferable elsewhere – even 484 
with similar model accuracy, some grid cells may be well represented by some models and less by others 485 
(Graham et al. 2008; Marmion et al. 2009; Zulian et al. 2018). As a result accuracy-derived weights show 486 
high uncertainty in areas where training data were not available (i.e. non-forested areas; SI-4), likely because 487 
of over-fitting to areas with available data (i.e. forests/woodlands) producing correlative patterns that 488 
explain other areas less wellAs a result accuracy-derived weights show high uncertainty in areas where 489 
training data were not available (SI-4), likely because of over-fitting to woodland areas. In SI-4, we 490 
investigated environmental and spatial drivers of uncertainty among predictions. Broadly, these 491 
supplementary results show that carbon models and ES ensembles are less accurate in urban areas. We also 492 
find that ensembles for water are less accurate in areas of high rainfall, seasonality and rugosity (see SI-4 493 
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for full details). That said, as uncertainty among ES ensembles is almost 4-times lower than among 494 
individual models, this suggests less need to make the ‘right choice’ of method when selecting an ensemble 495 
approach. Thus, although there is some chance of picking a superior individual model (Willcock et al. 2018), 496 
the risk of a sub-optimal prediction is substantially lowered by applying any ensemble method and this risk 497 
is further reduced when a weighted ensemble is used.  498 
 499 
Our results should serve as a ‘call to arms’ for ES researchers and practitioners to increasingly use ensembles 500 
of models to support decision-making for sustainability. Using an individual ES model is fraught with 501 
concerns as a priori it is not known which is the most accurate and choosing only one model can, at worst, 502 
result in perverse decisions (Willcock et al. 2019). Deriving decisions from an ensemble of ES models 503 
provides an improvement over using one model for any location (which may be large or small, depending 504 
on the local context and the models used), but also more consistency over space, as model accuracy varies 505 
spatially (see results in SI-4). Therefore, using ensemble approaches, and especially weighted ensembles, 506 
would increase credibility and so help reduce the implementation gap between research and policy- and 507 
decision-making (Wong et al. 2014; Willcock et al. 2016). We acknowledge the lack of standardised metrics 508 
across models and limited computational and financial resources that could restrict the uptake of ensembles 509 
– indeed, many practitioners only run a single model. However, given the errors associated with single 510 
models (this paper; Willcock et al. 2020; Eigenbrod et al. 2010), we argue that a single model is inadequate, 511 
although more complex models are sometimes more accurate (Willcock et al. 2019). The most complex (a 512 
priori best) ES models require substantial inputs (i.e. data, computational power, subscription fees, and staff 513 
time), and so running multiple models – whilst requiring additional resources – results in a large gain per 514 
extra unit resource. For example, as even untrained weighted ensembles developed using iterative 515 
approaches (e.g. regression to the median, leave-one-out cross validation) enable a 3-fold reduction in 516 
variation, such an ensemble approach seems a reasonable minimum standard for ES modelling – striking 517 
the right balance between feasibility and robustness (Willcock et al. 2016). Whilst such ensembles will be 518 
outperformed by the best-performing individual models, these cannot be identified without running multiple 519 
models – a ‘Catch-22’ (Willcock et al. 2019). Thus, we recommend that multiple models be developed for 520 
ES where they are lacking (e.g. cultural services; Martínez-Harms and Balvanera, 2012; Wong et al. 2014), 521 
and that those with access to sufficient resources to run multiple models ensure the ensemble outputs are 522 
freely available, making the use of these ensembles more feasible and accessible for all (Willcock et al. 523 
2020). 524 

 525 

5. Conclusion 526 
We show that in situations with no a priori validation evidence guiding model selection, predictions from 527 
ensembles of models have a higher accuracy than selecting an individual model by chance. Weighted 528 
averaging further improves accuracy, supressing idiosyncratic differences through producing consensus 529 
(Araújo & New 2007; Dormann et al. 2018). Doing so not only elevates accuracy but substantially decreases 530 
uncertainty among ensemble approaches compared to uncertainty among models, a further indication of 531 
increased fit to reality (Chaplin-Kramer et al. 2019; Willcock et al. 2020). In summary, even if a less 532 
accurate ensemble weighting approach is used, one would on average have lower uncertainty than selecting 533 
an individual model by chance. Thus, particularly when validation data are not available, we recommend 534 
the use of weighted ensembles in ES research to substantially reduce uncertainty and to support robust 535 
decision-making for sustainable development.  536 

 537 
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Response to Comments from the Editors and Reviewers 
  
Comments Editor-in-Chief: 
You may consider adjusting the title to make it more easily understandable to non-modellers. 
for example: "Reducing Uncertainty in Ecosystem Service Modelling through Weighted Ensembles" 
RESPONSE: We have made this change 
  
Comments Associate editor: 
I am pleased to accept this highly relevant manuscript for publication pending some very minor changes. 
First, please avoid using abbreviations in your highlights. Second, please go over the suggestions made by 
Reviewer 1 and correct the language where needed.  
RESPONSE: The highlights have been amended as requested. We have address all of R1’s comments 
(below). We thank both the editors and reviewers for their helpful suggestions during the review process. 
  
Comments Reviewer #1:  
The authors have addressed all my comments and questions in a thoughtful and courteous way, and I think 
this paper is in good shape for publication. I still think it makes a significant contribution to the literature 
in terms of providing evidence for the accuracy of ecosystem service models using validation data, and 
advances methods for ensemble ES modeling. 
RESPONSE: Thank you 
  
I have a few very minor edits to recommend: 
  
Lines 89-90 
Should be framed as a question with quotation marks: 
Thus, here we explore the outstanding question, "what are the best ways… sustainability science?" 
RESPONSE: This has been done 
  
Lines 104-106 
This sentence is awkwardly worded, I recommend rewording e.g. moving the parenthetical to the end of 
the sentence 
RESPONSE: This sentence has been changed from: 
“As well as varying considerably in their underlying method, ES models often differ in the forms of their 
outputs (e.g. summed monetary value of the ES (de Groot et al. 2012) vs. specific biophysical predictions), 
even when modelling the same ES” 
To: 
“As well as varying considerably in their underlying method, ES models often differ in the forms of their 
outputs, even when modelling the same ES (e.g. summed monetary value of the ES (de Groot et al. 2012) 
vs. specific biophysical predictions).” 
  
Lines 107-112 
There are two run-on sentences here (starting "An important knowledge gap… and "Since models for a 
particular ES…") - I recommend splitting them up 
RESPONSE: These sentences have been split up. This section now reads: 
“An important knowledge gap is therefore how to combine distinct ES model outputs as complementary 
inputs to provide a reliable ensemble. Outputs from different ES models can have different units and it is 
challenging to decide the relative weighting to place on each model. Models for a particular ES often have 
different structures, may include different processes, or may represent the same processes in different ways 
(Ochoa & Urbina-Cardona 2017). As a result, the different ES models will most likely not have equal 
accuracy, and so prediction errors (i.e. bias) may not be normally distributed among models (Dormann et 
al. 2018).”  
  

Response to Reviewers



159 
"ArcPy" should be capitalized, I believe 
RESPONSE: This has been done throughout 
   
184 (and multiple places) 
I have never come across "gridcell" used as a single word, unless this is common I recommend two words 
(throughout the paper) 
RESPONSE: This has been changed to two words throughout 
  
Table 2 
"Grid size (grain)" 
I have more commonly seen this referred to as "resolution" or "spatial resolution", I would use that term 
here or somewhere in the text, I have not heard the term "grain" used this way before. 
RESPONSE: We have replaced ‘grain’ with ‘spatial resolution’ throughout. 
  
342 
"However, we are aware of introducing a potential bias that could skew non-forested areas to lower 
values." 
Please explain, as currently this sentence seems rather out of place. 
RESPONSE: We have added further explanation to this sentence: 
“However, since our validation data are only from forests/woodlands, we are aware of introducing a 
potential bias that could skew non-forested areas to lower values.” 
  
425 
"models have substantial higher" should read "substantially higher" 
RESPONSE: Change made 
  
452 
""However, this effect is lessened if models share similar assumptions and, therefore, concomitant biases 
- highlighting the importance of including multiple model outputs" 
-            I would think that similar biases/assumptions between models highlights the importance of using 
validation data, not the importance of using multiple model outputs?  
RESPONSE: We have added this to the sentence: 
“However, this effect is lessened if models share similar assumptions and, therefore, concomitant biases - 
highlighting the importance of including multiple model outputs and, where data are available, model 
validation.” 
  
475 
"likely because of over-fitting to woodland areas" 
-            Can you provide just a little more explanation of this, why is the over-fitting to woodland areas and 
not other habitat types? Is this the reason why there's a potential bias that could skew non-forested areas 
to lower values (line 342, above)? 
RESPONSE: We have added further explanation as follows: 
“As a result accuracy-derived weights show high uncertainty in areas where training data were not 
available (i.e. non-forested areas; SI-4), likely because of over-fitting to areas with available data (i.e. 
forests/woodlands) producing correlative patterns that explain other areas less well.” 
  
485-86 
"Our results should serve as a 'call to arms' for ES researchers and practitioners to increasingly use 
ensembles of models to support decision-making for sustainability." 
I would like to see a similar statement made in the abstract, as a key take-away of the paper. 



RESPONSE: Word limits prevent us adding more to the abstract. But we have strengthened the last 
sentence in order to convey a similar message: 
“To support robust decision-making for sustainable development and reducing uncertainty around these 
decisions, our analysis suggests various ensemble methods should be applied depending on data quality, 
for example if validation data are available.” 
  
502 
How many models, at a minimum, would the authors count as an "ensemble"? Two? More than two? 
RESPONSE: Anything >1 could be considered an ensemble. But the optimum number of models to include 
in the ensemble will be context specific, and we would not be comfortable speculating on that here since 
such would require a marginal gain analysis, which is beyond the scope of this manuscript . 
  
498 
"The most complex (a priori best) ES models require substantial inputs (i.e. data, computational power, 
subscription fees, and staff time), and so running multiple models - whilst requiring additional resources - 
results in a large gain per extra unit resource." 
-            I understand the argument (that complex ES models already require substantial time, so why not 
run additional models?) - but I still don't completely buy it. I laud the authors for making their data freely 
available, as this itself will be the biggest contribution for those who don't have the time, data, or capacity 
to run ES ensembles themselves. And I am convinced by their premise that ensemble models out-perform 
individual models, on average. There just aren't multiple models (nor validation data) available for most 
ES beyond carbon and water (as the authors now acknowledge). And the requirements of running multiple 
models are substantial, and virtually never feasible outside of academic research. I am not requesting 
further changes, just pushing back on the practicality of this suggestion for most applications outside of 
academia. I agree with the author's last statement in this paragraph (multiple models be developed for ES 
where they are lacking, those who can should share their data freely, etc.) 
RESPONSE: We are all in agreement here. As the reviewer suggests, many outside academia will struggle 
to run ES ensembles (even though they convincingly out-perform individual models). The solutions to this 
are provided in our last statement, as the reviewer acknowledges: 
“Thus, we recommend that multiple models be developed for ES where they are lacking (e.g. cultural 
services; Martínez-Harms and Balvanera, 2012; Wong et al. 2014), and that those with access to sufficient 
resources to run multiple models ensure the ensemble outputs are freely available, making the use of these 
ensembles more feasible and accessible for all (Willcock et al. 2020).” 
We are already working on addressing this issue, using the established techniques in this manuscript to 
create ES ensembles at a global-scale for carbon, water, sediment retention, recreation, grazing and 
fuelwood. Once complete, we will make these layers publicly available, and so support the use of 
ensembles outside academia. This is work in progress, but out of the scope of this manuscript. 
  
Reviewer #2:  
I appreciate the authors' efforts in addressing my comments. Thank you!  
I recommend the paper to be published. 
RESPONSE: Thank you. 
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