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A B S T R A C T   

Detecting spatial carbon inequality is critical to achieving regional emission reduction targets from the per-
spectives of ensuring equality and efficiency. While previous studies have measured spatial carbon inequality and 
identified its drivers, few studies have explored these drivers at a sectorial level. Taking China’s Yangtze River 
Economic Belt (YREB) as a case study example, this study explores the drivers of spatial carbon inequality at the 
sectoral level and reveals the following key points. (1) The regional heterogeneity in CO₂ emissions driven by 
economic factors have increased from 2002 to 2012. (2) The wide spatial differences in CO₂ emissions are driven 
by per capita final demand, production structure, and final demand structure. (3) Driven by emission intensity, 
the production structure, and the final demand structure effects, the Electricity and heat production and supply, 
Smelting and pressing of metals, and Nonmetal mineral products have become the most critical sectors aggravating 
the spatial carbon inequality. (4) Driven by the production structure and final demand structure, most of the 
middle and lower reaches of the YREB emit more CO₂ in the aforementioned sectors. Our findings support the 
implementation of coordinated emission reduction plans in the YREB region.   

1. Introduction 

As the world’s top CO₂ emitter (IEA, 2012), China has attached great 
importance to tackling its CO₂ emissions. In this light, at the 2015 Paris 
Climate Conference, the country proposed to reduce its 2005 level CO₂ 
emissions per unit GDP (carbon intensity) by 40–45% and 60–65% by 
respectively, 2020 and 2030 (UNFCCC, 2015). Due to China’s regional 
administration, these national targets are often decomposed into sub- 
national targets. However, as there are large discrepancies across 
China’s regions in their natural resources, economic development pat-
terns, and environmental policies, it is challenging to achieve sub- 
national targets while simultaneously ensuring equality and efficiency 
(Cao et al., 2019; Wang et al., 2016, 2019, 2020). Constrained by 
regional target reductions, highly-developed regions tend to quickly 
reduce CO₂ emissions by importing high-carbon products from less- 
developed regions or by transferring their high-pollution industries to 
less-developed regions (Fang et al., 2020). Consequently, to satisfy the 
needs of their economic development, less-developed regions continue 

to produce high-carbon products, which lead to more pressure on their 
emission reduction targets (Miao et al., 2019). Such instances serve as 
reminders to policymakers that achieving sub-national emission reduc-
tion targets should not only produce a sufficient emission reduction 
performance but also be based on the principle of equal and coordinated 
development among regions (Bai et al., 2016; Jiang et al., 2019; Li et al., 
2020). Toward this end, understanding the spatial inequality of CO₂ 
emissions among different regions and its underlying social-economic 
driving forces is a key step to address the above issues (Wang et al., 
2020). 

Previous studies on carbon emissions inequality have mainly exam-
ined the carbon inequalities related to income and household con-
sumption levels. Some common indicators of inequality are applied to 
measure the degree of inequality, for example, the variation coefficient 
(Duro, 2012); Gini Index (Heil and Wodon, 1997; Teixidó-Figueras et al., 
2016); and the Theil Index (Padilla and Duro, 2013). Using these in-
dicators, researchers have investigated carbon inequality levels among 
different countries and regions, e.g., the Belt and Road countries (Han 
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et al., 2020), developing countries, the E.U., and the USA (Hubacek 
et al., 2017), and among different sub-regions within a country, e.g., 
provinces of China (Clarke-Sather et al., 2011; Mi et al., 2020) and 21 
cities in the Pearl River Delta (Chen et al., 2019c). These researches have 
predominantly highlighted the stark disparity of carbon emissions be-
tween high- and low-income groups and regional inequalities. 

To further reveal the determinants of carbon inequality, researchers 
have explored the socioeconomic drivers of carbon emissions inequality 
among global countries (Wang and Zhou, 2018), China’s regions (Li 
et al., 2017; Luo et al., 2020), and Chinese cities (Chen et al., 2019c). 
Specifically, most of these studies have examined multiple drivers of 
carbon inequality by using spatial index decomposition analysis (IDA) 
(Chen et al., 2019a) and spatial structural decomposition analysis (SDA) 
(Wu et al., 2020; Zhao et al., 2020). Compared with IDA, SDA is based on 
input-output analysis (IOA) which can provide richer information on the 
internal structure of economic systems (Román-Collado and Colinet, 
2018; Zhou et al., 2020), e.g., production structure and demand struc-
ture, and evaluate how the spatial carbon inequalities are driven directly 
and indirectly by socio-economic drivers (Hoekstra and van den Bergh, 
2003; Su and Ang, 2012; Yan and Su, 2020). For example, by using the 
spatial SDA method, the socio-economic drivers (e.g., production 
structure) of the carbon emissions of 30 provinces in China have been 
explored (Wu et al., 2020). These studies have focused on the overall 
economy; however, they lack a specific sectorial-level analysis of the 
socio-economic drivers. As the Chinese government continues to pro-
pose strategies for regional development, a thorough grasp of the drivers 
of spatial carbon inequality at the sectorial level can lead to more 
regionally relevant policies (e.g., technological advancement at the 
sectoral level) for carbon emission reductions and sustainable economic 
development. To the best of our knowledge, no study has so far exam-
ined the drivers of spatial carbon inequality at the sectorial and sub- 
national levels. 

To fill these knowledge gaps, this paper aims to scrutinize the socio- 
economic drivers underlying spatial carbon inequality at the sectorial 
and sub-national level by conducting a case study of the Yangtze River 
Economic Belt (YREB) region in China. We choose the YREB region for 
the following reasons. First, the Chinese government issued the “Outline 
for the Development of the Yangtze River Economic Belt” in October 
2016, in which it revealed that the YREB region has the highest potential 
for development in China (Sun et al., 2018). Second, the YREB region 
has been, for a very long time, facing problems of an unbalanced 
regional economic development and high resource consumption and 
pollution discharge. Third, China places great importance on the future 
development of this region. For example, the State Council has pointed 
out that the development of the YREB region has an indispensable 
practical and far-reaching strategic significance for realizing the na-
tion’s sustainable development (State Council, 2014). 

In this paper, we have addressed the following questions. First, what 
are the spatial–temporal dynamics of carbon emissions and carbon 
inequality in the YREB region? Second, what are the impacts of socio- 
economic drivers on the regional and sub-regional carbon inequality 
and how do these impacts change over time? Third, how do the drivers 
of spatial carbon inequality perform at the sectoral level? The above 
question led us to combine the analysis of the drivers of spatial carbon 
inequality with a regional classification analysis based on per capita 
GDP and per capita carbon emissions. Based on this combined analaysis, 
we address as our fourth and final question: what measures can we reach 
to promote the coordinated carbon emissions reduction of the YREB 
region? To address these questions, we assessed the spatial carbon 
inequality in the YREB region using the Gini index. We then investigated 
the drivers of spatial carbon inequality and detected the sectoral 
contribution of the drivers to spatial carbon inequality by applying the 
spatial SDA method. 

This study contributes to the literature in the following ways. Firstly, 
the study measures the carbon inequality of the YREB region and 
identifies its underlying socio-economic drivers of spatial carbon 

inequality. Secondly, a precise sectoral level analysis of the drivers of 
spatial carbon inequality is conducted which provides a thorough 
knowledge of drivers of spatial carbon inequality. The rest of the paper is 
organized as follows. Section 2 introduces the inequality measurement, 
spatial decomposition analysis, attribution analysis, the case descrip-
tion, and the data sources of this research. Section 3 presents the results 
of spatial Structural Decomposition Analysis. Policy recommendations 
are discussed in Section 4 and the conclusion follows in Section 5. 

2. Methodology and data 

2.1. Inequality measurement 

The measurement of carbon inequality has been widely conducted by 
recent studies. Most studies detected carbon inequality in terms of 
household income by using an inequality indicator. For example, carbon 
footprint Gini coefficients were calculated to measure carbon inequality 
for households across China’s provinces (Mi et al., 2020). The rela-
tionship between U.S. state-level CO2 emissions and two measures of 
income inequality: the income share of the top 10% and the Gini coef-
ficient, has also been investigated (Jorgenson et al., 2017). The above 
studies have concentrated on investigating carbon inequality caused by 
different income levels in a specific region, while other studies investi-
gated the carbon inequality among regions and proposed some specific 
indicators and indices. For example, the carbon inequality per capita 
between different countries and regions has been identified by the Theil 
index (Han et al., 2020). These previous studies provide references for 
the measurement of spatial carbon inequality in this study. 

This study measures spatial carbon inequality by using the Lorenz 
curve, which is a distribution curve showing the population percentage 
from the “poorest to richest” corresponding to the income of each 
population percentage. The horizontal axis represents the cumulative 
population percentage (grouped by income from low to high), and the 
vertical axis represents the cumulative income percentage; the arc is the 
Lorentz curve (Lorenz, 1905; Teixidó-Figueras et al., 2016). The cur-
vature degree of the Lorenz curve is of great significance. Generally, it 
reflects inequality in income distribution. The greater the curvature 
degree, the more unequal is the income distribution, and vice versa. To 
detect the spatial inequality of carbon emissions in a certain region, this 
study constructs the Lorenz curve and calculates the Gini index using the 
carbon emissions and population data. The horizontal and vertical axes 
represent the cumulative percentages of the population and the corre-
sponding carbon emissions, respectively. We use the following symbols 
for the inequality measurement of carbon emissions across sub-regions 
in the YREB region, where the sub-region index is given by the 
subscript i: 

Ci = Carbon dioxide emission in sub-region i; 
Pi = Population size in sub-region i; 
gi ≡

Ci∑
i
Ci 
= Regional carbon dioxide emission share 

pi ≡
Pi∑

i
Pi 
= Regional population share 

To start with, we sort sub-regions according to their CO2 emissions 
(Ci). Let F(gi) and F(pi) be the cumulative proportion of regional CO2 
emissions and the cumulative proportion of the region population based 
on this ranking. The Lorenz curves in Fig. 3b now depicts F(gi), the cu-
mulative regional share in CO2 emissions, on the vertical axis, plotted 
against F(pi), the cumulative regional population share, on the hori-
zontal axis, for three years, 2002, 2007, and 2012. We choose 
Smoothing Spline in MATLAB to fit the curve. The diagonal, also called 
the perfect equality line, with a slope equal to unity, represents the 
hypothetical situation of equal CO2 emission per capita across sub- 
regions. Finally, we calculate the Gini coefficient, which is defined as 
the ratio of the area lying between the Lorenz curve and the perfect 
equality line to the total triangle area below the perfect equality line. 
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2.2. Spatial SDA 

In the SDA method, we assume that the aggregate measure refers to a 
region, the sub-categories are industry sectors, and the aggregate is 
presented as the summation of sub-category values. Assuming that every 
sub-region is divided into n sectors and has k types of final demand, such 
as urban household consumption and fixed investment, the CO₂ emis-
sions of a sub-region can be expressed as the product of several inde-
pendent variables representing the decomposition factors: 

C = e × L × Ys × Yc × g × p (1) 

where the m× 1 vector C represents the amount of CO₂ emissions; the 
m × n matrix e indicates the CO₂ emissions intensity; the n × n matrix L 
(L = (I− A)− 1) is the Leontief Inverse matrix (Miller and Blair, 2009), 
where I is the n × n identity matrix and A is the n × n direct input co-
efficient matrix; the n × k matrix Ys represents the share of each n sector 
in each of the k categories of final demand; the k×1 vector Yc stands for 
the allocation of total final demand of k categories of the final demand; 
and scalars g and p are respectively the per capita final demand and 
population. 

In the sum notation, Eq. (1) can be written as 

C =
∑n

j=1

∑k

h=1
ei × Lij × Ysjh × Ych × g × p (2) 

As seen as in Fig. 1, spatial SDA can identify the contribution of socio- 
economic drivers underlying the spatial heterogeneity in carbon emis-
sions in the sub-regions in a given year (Su and Ang, 2016). This study 
employs a multi-regional spatial SDA model to compare the discrepancy 
in CO₂ emissions in the YREB region and explain why these differences 
occur. In the group of a region, R = (R1, R2,⋯,Ru), Ru is the given sub- 
region and Ra is a hypothetical benchmark region constructed. 
Following most literatures (Yan and Su, 2020), this study uses the 
arithmetic average carbon emissions of the YREB regions to construct 
the benchmark Ra. Moreover, there are two different models that can be 
formulated for spatial SDA: additive spatial SDA and multiplication 
spatial SDA. The additive spatial SDA is applied to decompose the dif-
ference in absolute regional performance such as total CO₂ emissions, 
while the multiplication spatial SDA is used to decompose the difference 
in relative regional performance such as the aggregate CO₂ emissions 
intensity. In this study, we use the additive spatial SDA method, and the 
difference in CO₂ emissions between Ru and Ra for a given year t can be 
expressed as 

ΔCRu − Ra
TOT = ΔeCRu− Ra +ΔLCRu− Ra +ΔYsCRu− Ra +ΔYcCRu− Ra +ΔgCRu− Ra +ΔpCRu− Ra

(3) 

where ΔCTOT stands for the total discrepancy in carbon emissions 
between Ru and Ra in a given year. The variables ΔeC, ΔLC, ΔYsC, ΔYcC, 

ΔgC, and ΔpC represent the emission intensity effect (dEPI), production 
structure effect (dL), final demand structure effect (dys), final demand 
composition effect (dyc), per capita final demand effect (dpg), and 
population effect (dpop) between a targeted sub-region and the bench-
mark sub-region. 

To identify the critical sectors underlying the aforementioned drivers 
of carbon emission difference, this study adopts the logarithmic mean 
Divisia index (LMDI) method for the attribution analysis, which refers to 
a two-stage decomposition at the sectoral level. Due to its simplicity in 
application and computation at the sub-aggregate decomposition with 
no residual, the LMDI method has been widely used in IDA and SDA 
studies (Ang, 2015). Using the method of LMDI, in Eqs. (4)–(6), ΔeCi, 
ΔLCi, and ΔYsCi denote the contribution of respectively, ΔeC, ΔLC, and 
ΔYsC, to the i-th economic sector in a specific year t. The variables ΔeCi, 
ΔLCi, and ΔYsCi are calculated by the following formulas: 

ΔeCRu− Ra
i =

∑n

i=1

∑k

h=1
wijh × ln

eRu

eRa
(4)  

ΔLCRu− Ra
i =

∑n

i=1

∑k

h=1
wijh × ln

LRu

LRa
(5)  

ΔYsCRu− Ra
i =

∑n

i=1

∑k

h=1
wijh × ln

YsRu

YsRa
(6)  

wijh =
zijh(Ru) − zijh(Ra)

ln(zijh(Ru) − zijh(Ra))
(7)  

zijh = ei × Lij × Ysjh × Ych × g × p (8) 

where wijh is a weighting coefficient, (Ru) and∙(Ra) are respectively 
the value of a variable for the given sub-region and the benchmark, and 
zijh(Ru) and zijh(Ra) are respectively the value of zijh for the given sub- 
region Ru and the benchmark Ra. By summing up ΔeCi, ΔLCi, and 
ΔYsCi for all the economic sectors, we obtain the discrepancy of carbon 
emissions between a given sub-region and the benchmark. 

2.3. Data sources 

Three types of data are needed for this study: input–output tables 
(IOTs), CO2 emissions by sector, the population, and the GDP of the 
YREB region. IOTs are in a 42-sector format and covering years 2002, 
2007, and 2012. The sectorial classifications of IOTs are listed in 
Table S1 in the Supplementary Information (SI) of this paper. IOTs for 
years 2002, 2007, and 2012 are collected from the China Multi-regional 
Input-Output tables (Liu et al., 2012). The population and GDP data are 
taken from the YREB sub-region Statistical Yearbooks. The CO2 emis-
sions data are obtained from the China Emission Accounts and Datasets 
(CEADs) (Shan et al., 2017). To remove the influence of the deflation, we 
convert all current prices to 2012 constant prices using the double 
deflation method (UNDESASD, 1999). In line with most of the studies 
(Yu et al., 2019), we consider the CO2 emissions from all the industrial 
sectors in YREB, and not from the household sector. From our calcula-
tions, household CO2 emissions account for only about 10% of the total 
YREB CO2 emissions. Thus, excluding the household sector from the 
system will not have a significant impact on our results. 

2.4. Case description 

The Yangtze River is the golden waterway carrying the largest freight 
volume in the world, thus making the channel the most essential east-
–west axis in China’s territory space, playing a strategically indispens-
able role in the country’s regional economic development. The YREB 
region covers nine provinces, Jiangsu, Zhejiang, Anhui, Jiangxi, Hubei, 
Hunan, Sichuan, Yunnan, and Guizhou, and two cities, Shanghai and 
Chongqing (as shown in Fig. 2). The region covers an area of about 2.05 Fig. 1. Multi-region spatial decomposition analysis model.  
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million square kilometers, accounting for 21% of the country’s total 
area. The total GDP of the YREB region in 2017 was valued approxi-
mately at CNY 37.01 trillion, accounting for more than 44% of the na-
tional GDP (Tian and Sun, 2018). The decision of the Chinese Party 
Central Committee to develop the YREB region has become a major 
strategy related to the overall development of the country (Qiushi, 
2019). Meanwhile, the development of the YREB region has been facing 
several challenges and problems that need to be solved urgently; for 
example, the severe ecological environment, the bottleneck restriction 
of the Yangtze River waterways, and the serious problem of unbalanced 
regional development (NDRC, 2016). The sustainable development of 
the region faces enormous challenges associated with the reduction of 
CO₂ emissions (Li and Wei, 2019) 

3. Results 

3.1. Spatial carbon inequality 

Fig. 3 shows the carbon emissions in the YREB region and the Lorenz 
curves for carbon emissions in 2002, 2007, and 2012. From the figure, 
the carbon emissions in the YREB region show observable trends 
differing by sub-region, with some sub-regions showing rapidly 
increasing trends and others showing relatively slowly growing trends 
during the 2002–2012 period. Carbon emissions show a rapid growth 
from 2002 to 2007 (mainly due to the rapid regional economic devel-
opment during this period), with the Hunan, Yunnan, and Guizhou sub- 
regions showing the highest rates, accounting for respectively, 146%, 

135%, and 124%. Another notable result is that most of the sub-regions 
could effectively curb the carbon emission growth trends from 2007 to 
2012, indicating the actual control of carbon emissions. Nevertheless, 
the sub-regions show a remarkable difference in carbon emissions. For 
example, in the YREB region, Jiangsu is ranked at the top in carbon 
emissions, accounting for 641.3 Mt, which is around three times more 
than the emissions of Chongqing. Thus, it is worthwhile to measure the 
spatial inequality of carbon emissions and scrutinize the drivers leading 
to this inequality. 

Furthermore, we draw the Lorenz curve using the carbon emissions 
and population data and calculate the Gini index based on the Lorenz 
curve, which was 0.15, 0.11, and 0.10 respectively, in the years 2002, 
2007, and 2012. The decreasing Gini coefficient indicates more equally 
distributed carbon emissions in the YREB sub-regions during this period. 
This observation is in line with (Chen et al., 2019b), which implies that 
the inequality in CO2 emissions at the provincial level was relatively 
small during 2011–2015. In the following section, the observed patterns 
of spatial carbon inequality are decomposed in line with the proposed 
drivers. This could reflect the origin of the spatial carbon inequality and 
the drivers that are more decisive in determining the variable spatial 
carbon emissions distribution pattern. 

3.2. Drivers of spatial carbon inequality 

The total contributions of drivers to the spatial carbon inequality 
from 2002 to 2012 are illustrated in Fig. 4. In general, the spatial carbon 
inequality due to efficiency and economic factors has increased during 
the 2002–2012 period. The per capita final demand (dpg) contributes 
most to the increases in spatial carbon inequality, followed by popula-
tion (dpop), production structure (dL), intensity (dEPI), final demand 
structure (dys), and final demand composition (dyc). 

More specifically, the total contribution of the per capita final de-
mand in 2012 was approximately 2119.5 Mt; this is larger than the 2002 
contribution by 1466.3 Mt, reflecting the widening inequality in carbon 
emissions driven by the affluence of the YREB region. The increase in the 
contribution of per capita final demand implies that the carbon 
inequality is fundamentally driven by the discrepancy in economic 
boom and urbanization in the YREB region. Population plays a less 
important role in spatial carbon inequality, contributing to a carbon 
inequality of 932.6 Mt in 2012. Another driver is the production struc-
ture, representing the total upstream inputs required to produce one unit 
of the final product, with the total contribution to spatial carbon emis-
sions reaching approximately 889.8 Mt in 2012, or 170.1 Mt larger than 
the 2002 emissions. Note that the contribution of production structure 
during 2007–2012 increased significantly, indicating that imbalance in 
the production structure of the YREB region plays an increasingly 
important role in carbon inequality. Moreover, emission intensity and 

Fig. 2. Location of the YREB region in China.  

Fig. 3. Carbon emissions in the YREB region and the Lorenz curves of carbon emissions (SH: Shanghai; JS: Jiangsu; ZJ: Zhejiang; AH: Anhui; JX: Jiangxi; HB: Hubei; 
HN: Hunan; CQ: Chongqing; SC: Sichuan; GZ: Guizhou; YN: Yunnan). 
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final demand structure have obvious effects on spatial carbon inequality. 
However, the final demand composition does not have a significant ef-
fect on the spatial carbon inequality. 

After presenting the total contributions of the drivers, we examine in 
detail the sub-regional results of the drivers, as shown in Fig. 5. Owing to 
limitations of space in this paper, we discuss the results for the year 2012 
only, presenting the results for the other years in Figs. S1 and S2 in SI. 
Overall, six out of 11 areas, namely, Chongqing, Jiangxi, Shanghai, 
Yunnan, Guizhou, and Hunan, tend to have lower CO₂ emissions 
compared to the regional average, mainly due to the per capital final 
demand, production structure, and population effects. 

Specifically, three sub-regions, Shanghai (207.4 Mt), Jiangsu (78.9 
Mt), and Zhejiang (23.4 Mt), show more CO₂ emissions than the average 
level driven by per capital final demand effects, an indicator of afflu-
ence. On the contrary, other sub-regions, especially Guizhou, Yunnan, 
and Sichuan, have more CO₂ emissions due to this effect. These results 
are largely due to a wide gap in the economic development level and the 
average consumption level, i.e., the former sub-regions show a more 
prosperous economy and higher consumption levels. According to (Zhou 
et al., 2020), the consumption activities of developed provinces are the 
major sources of China’s emissions, suggesting that demand-side solu-
tions targeting rich regions could motivate towards more reduction of 
national emissions. Jiangsu (209 Mt), Sichuan (146.8 Mt), and Hunan 
(104.4 Mt) show more CO₂ emissions driven by population effects than 
the average level. This indicates that due to their growing populations, 
these sub-regions face more emission pressure than others. Population 
growth will create immense demand in housing and infrastructure 
which in turn is accompanied by significant carbon emissions. Thus, 

carbon reduction measures in these sub-regions may include a transition 
to a low-carbon economy lead by optimizing the region’s energy con-
sumption structure and vigorously developing high-tech industries. 

The spatial carbon inequality induced by the carbon intensity effect 
differed significantly between highly-developed and less-developed re-
gions. Five sub-regions, namely, Zhejiang (− 125.2 Mt), Jiangxi (− 120.3 
Mt), Shanghai (− 55.2 Mt), Sichuan (− 43.8 Mt), and Hunan (− 21.4 Mt) 
show better performance in intensity effect than the regional average 
level. This suggests that sub-regions adopt more advanced emission 
reduction technologies or corresponding policies. On the contrary, 
Guizhou (86.1 Mt), Yunnan (51.7 Mt), and Hubei (34.2 Mt) show a 
lower performance in the intensity effect. This indicates that these sub- 
regions do not simultaneously achieve economic development and car-
bon emission reduction and this can be caused by the region’s high 
economic dependence on heavy manufacturing industries. Sub-regions 
performing well in emissions intensity do not perform well in produc-
tion structure. Only Shanghai shows better efficiency in production 
(− 74.5 Mt) and final demand (− 17.9 Mt) structure than the average 
regional level. As regards the drivers of production structure, Jiangxi 
(138 Mt), Sichuan (128.5 Mt), and Zhejiang (117.5 Mt) are the three 
worst-performing sub-regions. This indicates that the sub-regions with 
more heavy industries have more serious carbon emissions and can 
mitigate carbon emissions by adjusting the industrial structures and 
promoting the development of their tertiary industries. 

The final demand structure describes the share of each sectoral 
production in various final demands, including household consump-
tions, fixed capital formation, inventory changes, and exports. The final 
demand structure effect indicates the emission reduction performance 
influenced by the sectoral production which is driven by the final de-
mand. Lower carbon emissions driven by final demand structure indi-
cate that the final demand structure is becoming much “greener”, in 
other words, the sectoral production driven by final demand leads to 
fewer carbon emissions. As is demonstrated in Fig. 5, the carbon 
inequality driven by the final demand structure differed between highly- 
developed regions and less-developed regions. Highly-developed re-
gions, such as Shanghai (− 17.9 Mt), Jiangsu (3.2Mt), and Zhejiang 
(4.1Mt), have much “greener” final demand structures. In contrast, 
Guizhou (84.2 Mt), Anhui (80 Mt), and Yunnan (67.3 Mt) are the three 
sub-regions with the worst performance of final demand structure, 
implying that these sub-regions use products consuming relatively 
higher energy in their final usage. This observation differs from previous 
studies, such as by Cao et al. (2019), which concluded that that four 
provinces maintaining the highest final demand efficiency where 
Shanghai, Sichuan, Hunan, and Guizhou. This is mainly due to the 
different benchmarking and also because the object of their study was 
focused on carbon intensity. The observations in this study are however 
confirmed by Wu et al. (2020), which examine the spatio-temporal 
variation of CO2 emissions at the provincial level from 1997 to 2012. 
In this study, the final demand composition has a negligible effect on 
spatial carbon inequality, which demonstrates the impact of the 

Fig. 4. Total contributions of drivers of spatial carbon inequality (dEPI: emis-
sions intensity; dL: production structure; dys: final demand structure; dyc: final 
demand composition; dpg: per capital final demand; dpop: population). 

Fig. 5. Sub-regional spatial carbon inequality drivers in 2012 (SH: Shanghai; JS: Jiangsu; ZJ: Zhejiang; AH: Anhui; JX: Jiangxi; HB: Hubei; HN: Hunan; CQ: 
Chongqing; SC: Sichuan; GZ: Guizhou; YN: Yunnan) (dEPI: emissions intensity; dL: production structure; dys: final demand structure; dyc: final demand composition; 
dpg: per capital final demand; dpop: population). 
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proportion of various final demand categories on spatial carbon 
inequality. Zhejiang (5.8 Mt), Anhui (4.2 Mt), and Jiangsu (4.2 Mt) are 
the top three sub-regions with higher CO₂ emissions driven by final 
demand composition, implying that the allocation patterns of various 
final demands in these regions contribute to more CO₂ emissions. 

3.3. Sectoral contribution of the drivers to spatial carbon inequality. 

To explore the sectoral emission mitigation policies at the regional 
level, we use attribution analysis to reflect the sectoral contribution of 
the drivers underlying the spatial differences in CO₂ emissions (Fig. 6). 
Owing to limitations of space in this paper, we discuss the results for the 
year 2012 only, with the results for the other years presented in 

Tables S2–S10 in SI. Here, we show the main effects of the three drivers, 
carbon emission intensity, production structure, and final demand 
structure, by sector. For a better presentation of our results, we mainly 
give the decomposition results of each driver in the top eight sectors. 
The sub-regions are ranked according to the total emission reduction 
contribution of each driver. 

As Fig. 6a shows, the spatial carbon inequality induced by intensity 
effect is mainly embodied in S25 (Electricity and heat production and 
supply), S14 (Smelting and pressing of metals), S13 (Nonmetal mineral 
products), S12 (Chemical products), S2 (Coal mining and dressing), S29 
(Transportation), S11 (Petroleum processing and coking), and S31 
(Wholesale and retail trade). From the results of the previous section, six 
out of 11 sub-regions, including Shanghai, Zhejiang, Jiangxi, Hunan, 

Fig. 6. Contributions of drivers to spatial carbon inequality in 2012 by sector (S1: Agriculture; S2: Coal mining and dressing; S7: Textile Industry; S11: Petroleum 
processing and coking; S12: Chemical Industry; S13: Nonmetal minerals products; S14: Smelting and Pressing of Metals; S25: Electricity and heat production and supply; S29: 
Transportation; SO: Other sectors). 

S. Zhang et al.                                                                                                                                                                                                                                   



Ecological Indicators 121 (2021) 107129

7

and Sichuan, show higher intensity effect efficiency than the average. 
Conversely, the sub-regions in S25 and S14, such as Zhejiang, Jiangxi, 
and Sichuan, show higher intensity effect efficiency, the sub-regions in 
S13, and S25, such as Jiangsu, Hubei, Guizhou, and Yunnan, show lower 
intensity affect efficiency. Specifically, S25 shows lower intensity effect 
efficiency in Jiangsu (86.7Mt), Guizhou (57Mt), and Anhui (42.4Mt), 
and higher efficiency in Zhejiang (− 42.6Mt), Shanghai (− 41Mt), and 
Sichuan (− 32Mt). Conversely, S14 shows a higher intensity effect effi-
ciency level in most sub-regions compared to other sectors, such as 
Zhejiang (− 55.6Mt) and Jiangxi (− 49.3Mt), except for Shanghai 
(14.6Mt), S13 exhibits lower intensity effect efficiency in most of the 
sub-regions, such as Yunnan (43.1Mt) and Guizhou (42.8Mt), except for 
Shanghai (− 17Mt). Moreover, emission intensity induces more carbon 
emissions in Hubei in S12, Chongqing in S2, Yunnan in S29, Jiangsu and 
Guizhou in S11, and Guizhou in S31. 

The production structure represents the total upstream inputs 
required for the production of one unit of the final product and indicates 
the production efficiency of each sector. As illustrated in Fig. 6b, the 
spatial carbon inequality induced by the production structure effect is 
mainly found in S25, S14, S2, S13, S29, S11, S12, and S1 (Agriculture). 
Shanghai is the only sub-region with higher production structure effi-
ciency; this can be attributed to S14 and S25. Sectors S25 and S14 
indicate a lower efficiency in production structure in most sub-regions 
compared to other sectors. For example, this driver causes Jiangsu (97 
Mt), Jiangxi (72.5Mt), and Hubei (71.9Mt) to emit more carbon emis-
sions in S25. The S2 sector also exhibits lower efficiency in the pro-
duction structure in Guizhou (20.3Mt) and Sichuan (15.5Mt). Moreover, 
the production structure effect induces more carbon emissions in Jiangxi 
and Sichuan in S13, Sichuan in S11, and Hunan and Guizhou in S29. 

The spatial carbon inequality induced by the final demand structure 
effect differed significantly between highly-developed regions and less- 
developed regions. The final demand structure effect is mainly found in 
S25, S13, S29, S2, S14, S1, S12, and S7 (Textile industry). From Fig. 6c, 
Shanghai shows more efficiency in most sectors, especially S25 and S14, 
and less efficiency in S29. Sector S25 shows lower final demand struc-
tural efficiency in more sub-regions compared to other sectors, such as 
Anhui (64.2Mt), Guizhou (56.1Mt), and Yunnan (41.1Mt). Sector S13 
exhibits lower final demand structural efficiency in most sub-regions [e. 
g., Jiangxi (21.3Mt) and Hunan (18.5Mt)], while sector S29 indicates 
higher final demand structural efficiency in more sub-regions compared 
to other sectors. Another notable finding is that the final demand 
structural effect on carbon emissions increased in S2 in most sub- 
regions, such as, Guizhou, Yunnan, Sichuan, and Chongqing. 

4. Discussion 

To meet its national carbon emission control targets, China has made 
several profound decisions on reducing its carbon emissions in recent 
years. Given the spatial carbon inequality, the task of emission reduction 
should preferably be decentralized to the regional level. This study ex-
amines the carbon inequality in the YREB region, to find carbon emis-
sions more equally distributed among the sub-regions from the 
perspective of population distribution. To identify the socio-economic 
drivers underlying the spatial carbon inequality in the YREB region, 
we decompose the inequality by six drivers, emissions intensity, pro-
duction structure, final demand structure, final demand composition, 
per capita final demand, and the population at the sectoral level. The 
results indicate that emission intensity plays a significant role in spatial 
carbon emissions. Zhejiang, Jiangxi, and Shanghai are more efficient, 
while Guizhou, Yunnan, and Hubei are less efficient due to intensity 
effect. Production structure refers to the total upstream inputs required 
to produce one unit of final product, i.e., it indicates the production 
efficiency of each sector. The various production structures differ in the 
type and structure of their energy consumption, thus affecting regional 
carbon emissions. Our results indicate that production structure is 
another crucial driver for the large disparity in CO₂ emissions in the 

YREB regions. The final demand structure effect indicates how the final 
demand influences the regional carbon emissions heterogeneity and 
plays an important role in enlarging the CO₂ emissions gap in the YREB 
regions. From the perspective of the drivers, our findings show the need 
to narrow down the spatial carbon inequality and undertake experience 
sharing to reduce the regional emissions in the YREB region. 

4.1. Regional classification based on per capita GDP and CO₂ emissions 

From our results, per capita final demand is the major driver for 
spatial carbon inequality in the YREB region, implying that unbalanced 
economic development and inconsistent urbanization results in spatial 
carbon inequality. To show the relationship between regional affluence 
and carbon emissions clearly, we group the sub-regions by the rela-
tionship between their per capita CO₂ emissions and per capita GDP in 
2012 – the four quadrants obtained are illustrated in Fig. 7a. This 
regional classification can help in formulating policies for sub-regions 
sharing similar development trajectories to reduce their carbon emis-
sions and narrow regional carbon inequality from the perspective of the 
key drivers and sectors. 

Quadrant I includes the regions with low per capita GDP and high per 
capita carbon emissions, such as Guizhou and Hubei. Quadrant II in-
cludes Jiangsu, Shanghai, and Zhejiang, with characteristics of both 
high per capita GDP and carbon emissions. Quadrant III includes 
Chongqing, Anhui, Yunnan, Hunan, Sichuan, and Jiangxi, and is char-
acterized by low per capita GDP and carbon emissions. Quadrant IV 
includes none of the sub-regions. This classification reflects the eco-
nomic development levels and carbon emissions, both varying in the 
YREB regions. Regions in the same quadrant commonly possess a similar 
relationship between economic development and carbon emissions, 
which implies that these regions can benefit from one another’s expe-
rience in on the reduction of emissions. Thus, it is crucial to make 
comparisons among the driving forces of carbon emissions in the similar 
regions (as demonstrated in Fig. 7b) and forward policy implications on 
regional emission reductions. 

4.2. Policy implications for regional emissions reduction 

First, Guizhou and Hubei (in Quadrant I), with high per capita car-
bon emissions and low per capita GDP, both have high carbon emissions 
induced by carbon intensity, production structure, and final demand 
structure. Reducing carbon emissions induced by the production struc-
ture is of primary importance for these two sub-regions. Combined with 
the sectoral attribution analysis in Section 4, we conclude that opti-
mizing the production structure in the Electricity and heat production and 
supply and Smelting and pressing of metals sectors is needed for both 
Guizhou and Hubei. Moreover, Guizhou should adjust the production 
structure of the Coal mining and dressing sector, which can be achieved by 
drawing lessons from this sector in Hubei. This can be achieved, for 
example, by strengthening the efficient utilization of coal and enlarging 
the exploitation and application of clean coal technology. Reducing the 
sectoral carbon emissions intensity is also important for achieving a 
reduction in carbon inequality. The corresponding measures may 
include a reduction in the proportion of fossil energy in energy con-
sumption, boosting the utilization of renewable energy, the develop-
ment of more energy-efficient technologies, and the diffusion of low- 
carbon technologies. These measures should be implemented in the 
crucial sectors leading in CO₂ emissions, such as Electricity and heat 
production and supply, Nonmetal mineral products sectors for Guizhou, and 
Chemical products sector for Hubei. 

The final demand structure contributes to differences in sectoral 
carbon emissions inequality. From this perspective, it is suggested that 
emission mitigating measures reducing the use of high energy- 
consumption products as intermediate input should be adopted in the 
Coal mining and dressing sector in Guizhou and the Electricity and heat 
production and supply and Nonmetal mineral products in Hubei, as these 
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sectors produce more CO₂ emissions due to influence of the final demand 
structure. Specifically, the Coal mining and dressing sector in Guizhou can 
reduce emissions by promoting the structural reform of this sector from 
the supply side and improving its capacity utilization. The Electricity and 
heat production and supply and Nonmetal mineral products sectors in Hubei 
should cooperate with upstream enterprises with low carbon emission 
and low energy consumption and decrease the final usage of high 
energy-consumption products. 

Second, Shanghai, Jiangsu, and Zhejiang are characterized by high 
per capita GDP and high per capita carbon emissions. Zhejiang and 
Shanghai have restrained their CO₂ emissions by improving their tech-
nology by leaps and bounds. However, the production structure effect 
contributes to more CO₂ emissions in Jiangsu. Thus, Jiangsu should pay 
more attention to improving its technological efficiency, updating its 
equipment, developing more energy-efficient technologies for the 
Smelting and pressing of metals sector, and may also look adopt more 
advanced green technologies as found in Shanghai and Zhejiang. The 
production structure effect leads to more CO₂ emissions in Zhejiang than 
in Jiangsu and Shanghai, mainly due to emissions of the Electricity and 
heat production and supply sector. Thus, Zhejiang should immediately 
reduce the use of high energy products, promote the energy-saving 
transformation of local coal-fired thermal power industries, and vigor-
ously develop distributed generation technologies based on renewable 
clean energy. Moreover, for these sub-regions which have high per 
capita GDP, we also need to highlight some demand-side emission 
mitigation efforts to restrain the sharp increases in carbon inequality 
from household consumption. This could be achieved by optimizing 
green consumption awareness and encouraging consumers to use fewer 
CO2 intensive products. 

Third, as for the sub-regions with low per capita GDP and per capita 
carbon emissions, that is, Jiangxi, Sichuan, Hunan, Anhui, Chongqing, 
and Yunnan, the amount of CO₂ emissions associated with the effects of 
intensity and production structure vary significantly among these sub- 
regions. Furthermore, the critical sectors with higher CO₂ emissions 
differ in their distinct industrial structures and economic development 
levels. Since Yunnan and Chongqing are less efficient due to intensity 
effect, critical measures for the reduction in emissions intensity should 
be adopted for Yunnan in Nonmetal mineral products and Transportation 
sectors, and for Chongqing in Nonmetal mineral products, Coal mining and 
dressing, and Petroleum processing and coking sectors. The production 
structure effect causes more CO₂ emissions in Jiangxi and Sichuan than 
in other sub-regions. Specifically, Jiangxi should improve its production 
structure efficiency in Nonmetal mineral products and Smelting and 
pressing of metals sectors. Sichuan should focus on improving its pro-
duction structure efficiency in Coal mining and dressing, Petroleum pro-
cessing and coking, and Nonmetal mineral products sectors by referring to 
the production structure mode of Chongqing, where the production 
structure effect greatly promotes carbon emissions mitigation. 

The final demand structure effects show insignificant differences in 
the spatial carbon inequality of the sub-regions. However, driven by the 
final demand structure, the sectoral contributions show unequal carbon 
emissions. Specifically, reduction measures by adjusting the final de-
mand structure should be implied in Electricity and heat production and 
supply for Anhui, Nonmetal mineral products for Jiangxi, Agriculture, and 
Nonmetal mineral products for Hunan, and Coal mining and dressing and 
Smelting and pressing of metals for Yunnan. To Promote economic pros-
peritiy, not only should these critical sectors reduce the use of high 
energy consumption in the final demand of products and spur the for-
mation of a low-carbon consumption structure, but the sub-regions 
should also manage the trade-off between economic prosperity and 
carbon emissions and avoid a sharp increase in carbon emissions. These 
viewpoints are consistent with those of (Zhou et al., 2020), which rec-
ommended that structural adjustments should be directed to the 
northeast, central, and western provinces of China. 

The analysis of the driving forces of spatial carbon inequality at the 
sectoral level provide novel and specific information on the sources of 
regional differences. This in turn informs the formulation of regional 
emissions reduction policies. Initial achievements in the reduction of 
regional carbon emissions have been made by exploring the historical 
changes of carbon emissions and analyzing the production- and demand- 
side reduction measures. However, given the wide regional disparities in 
economic structures, sectoral-technological levels, and emissions 
reduction targets, detecting the driving forces of spatial carbon 
inequality, from the socio-economic perspective, should be emphasized 
more. In the coming decades, the YREB region should formulate specific 
sub-regional emission reduction measures at the sectoral level and 
narrow the carbon inequality by reducing the carbon intensity and 
adjust the production structure and final demand structure to achieve a 
more harmonious development of the YREB region. 

5. Conclusions 

This study explores the drivers underlying the spatial carbon 
inequality of the YREB region at the sectoral level. Our results reveal 
large spatial carbon inequalities driven by several vital socio-economic 
drivers, namely, per capita final demand, production structure, and 
final demand structure. Various drivers have different impacts on 
regional carbon emissions. For example, Zhejiang, Jiangxi, and 
Shanghai are more efficient due to intensity effect, while Guizhou, 
Yunnan, and Hubei are less efficient. Further attribution analysis iden-
tifies critical sectors widening the gap among different areas of the YREB 
region, such as the Electricity and heat production and supply, Smelting and 
pressing of metals, and Nonmetal mineral products sectors. To promote a 
more regionally coordinated development, the formulation of regional 
emission mitigating measures should attach more importance to the 
divergence of regional economic development and carbon emissions at 

Fig. 7. a: Regional classification based on the per capita GDP and per capita carbon emissions in the YREB region. b: Contributions of emissions intensity (dEPI), 
production structure (dL), and final demand structure (dys) to the spatial carbon emissions. 
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the sectoral level. Moreover, the method used in this study can also be 
used to explore the sectoral level socio-economic drivers of the spatial 
differences between various environmental indicators. For example, the 
socio-economic drivers of CO2 emissions, energy consumption, and 
water consumption levels for other megaregions, for example, the Jing- 
Jin-Ji (Beijing city, Tianjin city, and Hebei province) region and the 
Guangdong-Hong Kong-Macao Greater Bay Area. 

This study is not without limitations: Limitations in the availability 
of relevant data in the I-O table databases restricted the period of the 
present study to only three years. The study of regional disparities in 
more recent years may provide more useful information for practical 
application. This calls for more frequent and timely work on updating 
the regional I-O tables in the statistical department of the Chinese local 
government. Moreover, some uncertainty analysis should also be con-
ducted in future research, for example, uncertainties caused by the 
quality of I-O data (Fournier Gabela, 2020), deviations of carbon emis-
sions inventories, which is mainly caused by emission factors (Mi et al., 
2017, 2019), and by sectoral aggregation (Zhang et al., 2019). 
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