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Abstract
Policy makers have long been interested in detecting ‘high-emitters’, a supposedly smallfraction of
vehicles that make disproportionally large contributions to total fleet emissions. However, existing
identification schemes often exclusively rely on snapshot measurements (i.e. emissions within less
than a second), and thus simply identify vehicles with high instantaneous emissions, instead of
vehicles with high average emissions over a driving period as regulated by emission standards. We
design a comprehensive scheme to address this challenge by combining fleetwide remote sensing
measurements with detailed second-by-second emission measurements from individual vehicles.
We first determine the trip-average NOx emission rates of individual vehicles in a Euro-5 diesel
fleet measured across European locations; this allows, second, to calculate the fraction and
emission contributions of high-emitters based on trip-average emission. We demonstrate that the
identification of high-emitters is quite uncertain as long as it is based on single snapshots only; but
80% of the high-emitters can be identified with over 75% precision with five or more repeated
measurements of the same vehicle. Compared to the conventional detection schemes, our scheme
can increase the identified high-emitters and associated emission reductions by over 140%. Our
method is validated and shown to be superior to the conventional interpretation of snapshot
measurements.

1. Introduction

Motor vehicles are a key contributor to air pollut-
ant emissions, most notably nitrogen oxides (NOx),
which poses substantial threat to air quality, pub-
lic health, and climate change worldwide [1–6]. It
has been previously suggested that a small fraction of
vehicles (i.e. ‘high-emitters’) dis-proportionally con-
tribute to a large fraction of total fleet emissions, due
to lack of maintenance, tampering, and/or usage of
defeat devices [7–11]. Therefore, identification and
then repairing or removing these high-emitters is
often viewed as a cost-effective strategy to reduce on-
road vehicle emissions [12–14]. However, the exist-
ing inspection programs in many countries often fail
to detect high-emitters in the real world [15–21].
Increasing effort has been invested in measuring on-
road emissions from in-use vehicles (e.g. the in-use
surveillance tests by US Environmental Protection

Agency [22]). However, these tests only cover a lim-
ited number of vehicles, as testing every in-use vehicle
constitutes a significant logistical and financial bur-
den to both vehicle owners and authorities.

Remote sensing (RS) offers great potential for
identification of high-emitters, as RS devices can
remotely measure the emission rates of a large
number of vehicles during pass-by without inter-
rupting traffic [23–25]. However, only a few
countries/regions have used or proposed to use on-
road RS measurements to assist the identification of
high-emitters (e.g. mainland China [26], Hong Kong
[27], Scotland [28], and certain states in the US [25]).
One key issue is that RS devices only take snapshot
measurements as vehicles pass by the sensor (equival-
ent to emissions within less than a second), and there-
fore cannot characterize the average emission level
of individual vehicles over a representative driving
period [29–31]. Existing identification programs have
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used excessively high identification thresholds (e.g.
1500 ppm for NO emission for heavy-duty trucks in
China,∼9× the China 5 standard [32, 33]); then high
instantaneous emission rates do indeed suggest the
identified vehicles have high average emissions, but
such high identification thresholds may result in a
large number of undetected potential high-emitters.

Most previous studies define high-emitters and
estimate their contributions to total fleet emissions
purely based on snapshot measurements derived
from RS. These studies find highly-skewed distribu-
tions of the instantaneous emissions and calculate
that the dirtiest 10% vehicles contributed to over 50%
of the total pollutant emissions, mainly focusing on
gasoline fleets [8, 11, 30, 34–37]. However, the dis-
tributions of instantaneous emissions measured by
RS, have shown to be very different from the distri-
butions of average emission factors calculated with
high-frequency emission measurements from chassis
dynamometer or portable emissions measurement
system (PEMS) [31]. Contrary to RS measurements,
measurements from chassis dynamometer or PEMS
consist of continuous records of vehicle emissions
with resolutions of one measurement per second for
an extended period of time (e.g. half an hour), but are
only available for a very limited number of vehicles
due to the measurement cost [38].

Only a few studies define high-emitters based
on average vehicle emissions and combine high-
frequency measurements and snapshot measure-
ments to identify them. Huang et al define high-
emitters as vehicles whose average emission factors
are above two times the emission limits, and then
use the 99th percentile of the instantaneous emissions
from chassis dynamometer tests of the vehicles that
passed tests as threshold for high-emitter identifica-
tion [39]. Researchers have also used statistical mod-
els such as neural network methods to predict high-
emitters using snapshotmeasurements, speed, vehicle
age, and meteorology information [40, 41]. How-
ever, these approaches do not establish a relation-
ship between snapshot emission and average emis-
sion, and often just focus on the binary label (whether
a vehicle is a high-emitter or not). They also fail to
explore the advantage of using repeated instantan-
eous measurements, and lack rigorous evaluation of
the uncertainty and effectiveness of the identifica-
tions. To date, very little is known about the fraction
of high-emitters (defined based on their average emis-
sion factors) in real-world fleets, their contributions
to total emissions, and the associated precision and
effectiveness of identifying these high-emitters with
snapshot measurements.

Here, we develop a comprehensive scheme which
combines second-by-second PEMS and chassis
dynamometer data with a large RS dataset, to identify
vehicle with high average emission factors. We focus
on NOx emissions from diesel passenger cars certi-
fied to the Euro 5 emission standards (EU-5D), due

to the importance of NOx from diesel vehicles for
air quality and relatively low measurement error of
the RS devices [42]. Applying our method to over
130 000 RS measurements of EU-5D passenger cars
from nine European cities, we estimate the distri-
bution of average emission factors and calculate the
fraction of high-emitting and clean vehicles for each
fleet. We then quantify the accuracy and uncertainty
of identifying individual high-emitting vehicles with
a few snapshot RS measurements, as a function of the
number of repeated RS measurements and the classi-
fication rules. Finally, we present a versatile method
to validate our algorithm for estimating the average
emission factors, demonstrating that our algorithm
is significantly superior to the conventional inter-
pretations of snapshot measurements. We conclude
by discussing the implications to policy makers and
practitioners on using RS snapshot measurements to
identify high-emitters.

2. Method

Throughout our analysis, a high-emitting vehicle is
defined as having an average emission factor higher
than an absolute threshold value (here, usually two
times or more the emission limit value for EU-5D).
To identify them with RS measurements, we first
design an iterative algorithm that can estimate the
distribution of vehicle-level average emission factors
in the measured fleet. To do this, we use an extens-
ive set of second-by-second PEMS/chassis measure-
ments to establish the relationship between instant-
aneous emissions and the average emission of the
test cycle, i.e. the variability of instantaneous emis-
sions around the mean. With these variability rela-
tionships, our algorithm then iteratively estimates
the distribution of the average emission factors that
can reproduce the set of observed instantaneous RS
measurements. We then use the derived distribu-
tion of average emission factors to simulate a set of
instantaneous emissions with known average vehicle
emissions. Using this simulation dataset, we validate
our algorithm and quantify the precision and effect-
iveness of identifying individual high-emitting and
clean vehicles, under different numbers of repeated
RS measurements and classification rules. We further
perform several sensitivity analyses to explore how
varying algorithm assumptions and modifications of
the second-by-second measurements influence our
results (see supplementary methods available online
at stacks.iop.org/ERL/17/044045/mmedia).

2.1. On-road remote sensing (RS) measurements
We use a collection of 131 284 RS records of the
EU-5D passenger cars measured in 9 cities (Antwerp,
Basel, Bruges, Ghent, Gothenburg, London, undis-
closed cities in Spain, Stockholm, and Zurich) dur-
ing 2011–2019 [24]. Due to the strong association
between ambient temperature and vehicle emissions
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[43], we differentiate RS records into three categories
based on ambient temperature: Below 10◦C, 10◦C–
20◦C, and above 20◦C. To ensure the comparability
between RS measurements and emission limit values
established in laboratory test environments, we only
focus on vehicles whose instantaneous vehicle spe-
cific power (VSP, calculated following [44]) are in the
range of 3–22 kW per metric ton. We calculate fuel-
basedNOx emission factors (unit: gNOx kg−1 fuel) as
the product of NOx/CO2 ratio (unit: ppm/ppm), the
molecular weights of CO2 and NOX , and CO2 intens-
ity of diesel (3.13 kg CO2 kg−1 diesel following [45]).
Weomit the highest and lowest records (0.1% each) to
remove outliers of instantaneous measurements. Our
final sample consists of 79 576RS records. A summary
of the testing conditions and characteristics of meas-
ured fleets can be found in table S1.

2.2. Second-by-second laboratory test data
,We use a collection of 163 second-by-second test
cycles performed on 48 EU-5D passenger cars from
the European Research for Mobile Emission Sources
(ERMES) database [46]. This collection includes
18 ERMES cycle tests, 39 New European Driving
Cycle (NEDC) tests, 60 Common Artemis Driving
Cycle (CADC) tests, 18Worldwide harmonized Light
vehicles Test Cycles (WLTC) tests, and 28 Portable
Emissions Measurement System (PEMS) tests. Their
test lengths vary from 900 s in CADC cycles to over
6000 s in PEMS trips. To be comparable with the
driving conditions measured at the RS sites, we only
use the test cycles performed under urban and rural
conditions (dropping cycles under motorway condi-
tions), and only use data with VSP of 3–22 kW ton−1.

For each test cycle, we calculate the fuel-based
NOx emission factors in a way similar to the RS data.
Average NOx emission factors of test vehicles (over
the test cycle) range from 2.2 gNOx kg−1 fuel to
25.2 gNOx kg−1 fuel, covering both clean and high-
emitting vehicles. Following recommendations from
researchers directly working with these data, we cal-
culate the three second moving averages of NOx and
CO2 emissions to address the potential issue of mis-
aligned NOx and CO2 measurements. The highest
and lowest (0.5% each) emission factors are omitted
for PEMS/chassis measurements to remove the out-
liers of the measurements.

2.3. Decomposition of RS emission records
For a vehicle i, an observed RS record of instantan-
eous emission can be decomposed into the sum of its
(unknown) average emission factor and the variabil-
ity around its average emission:

RSi = AEi + fi

where RSi denotes the instantaneous emission of
vehicle i measured by RS. AEi denotes the unknown
average emission factor of vehicle i over some average

driving conditions (characterized by the test cycles in
our database). f i is the underlying instantaneous vari-
ability of thismeasurement. f i can be viewed as a draw
from an underlying distribution of the instantaneous
variability of vehicle i (Fi, fi ∼ Fi), conditioned on the
VSP value. The mean value of Fi is always zero, but
the shape of Fi describes the variability of instantan-
eous emissions around the average emission factor of
vehicle i. Fi is difficult to derive from RS data, as most
vehicles were onlymeasured a few times and the small
number of repeated measurements (usually below 5)
is insufficient to constrain the variability distribu-
tion. Therefore, we use PEMS/chassis measurements
to derive information of the variability distributions.

2.4. Iterative algorithm to estimate the distribution
of average emission factors
We design an iterative algorithm to estimate the dis-
tribution of average emission factors using a set of
RS measurements in which every vehicle is meas-
ured only once. Given a set of variability distribu-
tions derived from PEMS/chassis measurements, our
algorithm estimates the distribution of average emis-
sion factors which produces a set of instantaneous
emission records whose distribution is indistinguish-
able from the original distribution of the RS records.
In this section, we only provide a high-level summary
of the algorithm, with more details reported in the SI.

The main idea of the algorithm is to match each
RS record (and therefore each vehicle in the RS data)
with a second-by-second measurement profile (i.e.
a test cycle). The matched second-by-second pro-
file characterizes the potential relationship between
instantaneous emissions and the average emission
of the matched vehicle measured in RS data. The
average emission factor of the associated second-by-
second profile is used to estimate the average emis-
sion factor of the matched vehicle in the RS data.
The algorithm performs the matching process in an
iterative manner. The algorithm starts with an ini-
tial estimate of the average vehicle emission factor
for each vehicle in the RS data. At each iteration,
the algorithm matches a vehicle in the RS data with
one second-by-second measurement of similar aver-
age emission factor. After the matching step at each
iteration, the algorithm simulates a set of instant-
aneous emission measurements by sampling one
instantaneous emissions record from the matched
second-by-second data. Only the instantaneous emis-
sion record with a similar VSP value as the original
RS record is sampled from the second-by-second
measurement profile. The algorithm compares the
distribution of the simulated instantaneous emis-
sion with the distribution of the RS data, and then
updates the estimated average emission factor of each
vehicle in the RS data, to reduce the distance between
the distribution of simulated instantaneous records
and the distribution of RS records. The algorithm
terminates if no further improvement could be
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made to reduce the distance between these two
distributions.

2.5. Validation of the algorithm
We design the following experiment to validate our
algorithm. We create a set of instantaneous emission
records by sampling from the PEMS/chassis meas-
urement data, as proxies for RS measurements. By
doing this, the average emission factors associated
with these instantaneous emissions are known to us.
We then apply the iterative algorithm to the simulated
test set to estimate the distribution of average emis-
sion factors and compare the results with distribu-
tions of true average emission factors of the test set.
We randomly select half of the PEMS/chassis meas-
urements (that cover both clean and high-emitting
vehicles) to generate the test dataset and use the other
half as inputs of our algorithm.

2.6. Identification of individual high-emitting and
clean vehicle
To identify individual high-emitting and clean
vehicles, we first simulate a hypothetical fleet using
the estimated distribution of average emission factors
and the PEMS/chassis measurements. We illustrate
the idea with the fleet measured in Zurich with ambi-
ent temperature above 20◦C due to the largest num-
ber of records available. The average emission factor
of each vehicle in the hypothetical fleet is randomly
drawn from the distribution of the estimated average
emission factors for Zurich (derived from our iter-
ative algorithm). Each vehicle is then matched with
a PEMS/chassis cycle with a similar average emis-
sion factor. For each vehicle, we then simulate ten
independent instantaneous emission records with
ten independent random draws from the matched
PEMS/chassis cycle. In practice, the repeated instant-
aneous emissionmeasurements for one vehicle can be
obtained if a vehicle either drives through one device
multiple times (which occasionally occurred in real-
world measurement campaigns), or is measured by
multiple deployed RS devices (in a future campaign).

We focus on the identification of ‘super high-
emitters’, defined here as vehicles with average emis-
sion factors more than five times the type approval
limit (5 × 3.5 = 17.5 gNOx kg−1 fuel), since more
than 90% of EU-5D passenger cars already have aver-
age on-road NOx emissions above the type approval
limit. We convert the distance-based emission limit
value over the test cycle (here the NEDC for the
Euro 5 cars) to a fuel-based emission limit using the
cycle average fuel economy, which has beenmeasured
well for classes of vehicles. For each potential cut-off
threshold of RS measurement, we calculate the res-
ulting identification precision (i.e. correctly identi-
fied high-emitters/identified high-emitters) and the
identified fraction (i.e. correctly identified high-
emitters/actual high-emitters, or ‘recall’). We also
apply the similar idea to the identification of ‘clean

vehicles’ with average on-road emissions below the
type approval limit (3.5 gNOx kg−1 fuel).

With repeated instantaneous measurements of
one vehicle, we evaluate two simple classification
rules. The first rule classifies a vehicle as a high-
emitter/clean vehicle if the average of repeated
instantaneous emissions are above/below a threshold
(‘average rule’). The second rule counts all measure-
ments and classifies a vehicle as a high-emitter/clean
vehicle only if all repeated measurements are above/
below some threshold (‘count all rule’). The two
rules are selected based on their simplicity to oper-
ate. The ‘count all rule’ can be overly stringent under
a large number of repeated measurements (e.g. very
few vehicles may have all five repeated measurements
above certain threshold), but the high precision levels
might be appealing to policy makers as it puts a light
burden on drivers of normal vehicles.

3. Results

3.1. Determining the distribution of average
emission factors
Figure 1 shows the second-by-second measurements
and the derived distributions of instantaneous vari-
ability for two vehicles with different average emis-
sion factors, as illustrative examples. Over an extens-
ive driving period, we find that the instantaneous
emissions are highly skewed towards lower values. On
average for the 163 test cycles, 65% of the instantan-
eous records are below the average emission rate of
the respective trip. Therefore, it is more likely than
not that a random snapshot RS measurement has
an emission rate less than the average value of the
same vehicle. At the same time, the few extremely
high instantaneous emission records are also not rep-
resentative for the average behavior of the vehicle;
the 99th percentile of the instantaneous emissions is
1.6–9.8 times the average emission factor. We also
find large differences in the shape of variability dis-
tributions between clean and high-emitting vehicles.
The variability distributions of high-emitting vehicles
are flatter with a more negative mode and a longer
tail, despite all distributions having zero mean. This
highlights the importance of having an extensive
set of second-by-second measurement data which
can differentially characterize the variability of high-
emitting and clean vehicles.

Differences between instantaneous and average
emission shown in the second-by-second measure-
ments are reflected in the analysis performed on
EU-5D fleets measured across Europe. Figure 2
shows the distributions of instantaneous RS meas-
urements and the derived average emission factors
for each city in our RS dataset. Consistent with
previous literature on EU-5D vehicles, we observe
excessively high instantaneous NOx emissions with
mean RS emission rates of 9.2–20.1 gNOx kg−1 fuel
(2.6–5.7 times the type approval limit for EU-5D)
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Figure 1. NOx emissions from two second-by-second measurements (left) and the derived distributions of the instantaneous
variability around the mean (right). The two second-by-second test cycles are selected for illustrative purposes (blue: a clean
vehicle; orange: a high-emitting vehicle). Black dashed line in the left panels indicates the average emission factor for the test cycle.
Values of the average emission factors are shown on the left panels and the standard deviations of the derived instantaneous
variability are shown on the right panels.

across different cities and temperature conditions.
These high instantaneous emissions are associated
with vehicles with excessively high average emission
factors. However, distributions of the estimated aver-
age emission factors (solid lines in figure 2) differ sub-
stantially from distributions of the RS emission rates
(dashed lines in figure 2). The distribution of aver-
age emission factors peaks at larger values (approx-
imately 10 gNOx kg−1 fuel) compared to the distribu-
tion of RS records (approximately 5 gNOx kg−1 fuel);
in addition, there are significantly less extreme val-
ues (both low and high). This suggests that in fact
there are substantially less vehicles with extremely
low or high average on-road emissions than previ-
ous estimates purely based on single instantaneous RS
records. For example, we estimate that only 2.2% of
themeasured fleet in Zurich have an average emission
factor below the type approval limit, while 11% of
the instantaneous RS records are below the same limit
value (an overestimation of 413%). Across nine cit-
ies, only 0.1%–8.7% measured vehicles have an aver-
age emission factor below the type approval limit,
while 8%–20% of the RS records are below the same
limit value. We observe similar differences between
the estimated average emission factors and instant-
aneous measurements across all temperature condi-
tions and ages of themeasured vehicles (see figure S1).
These results are largely independent of the algorithm
assumptions and treatment of PEMS/chassis meas-
urements (see supplementary methods).

There is substantial variability of the estimated
average emission factors of individual vehicles within
each city and between cities. The average emission
factors decrease as the ambient temperature increases

(see figure S1); this reflects the ‘thermal window’
mechanism reported earlier that the emission con-
trol devices are optimized for the temperature condi-
tions of the type approval testing procedures (around
24◦C) [43]. There is no evident relationship between
average emission factors and ages of the vehicles,
extending earlier analysis [47]: Newer EU-5D vehicles
do not have lower emission rates than older vehicles
(see figure S1). We also find distinctly different emis-
sion rates of different vehicle brands (figure S2).
For example in Zurich, the cleanest brand (BMW,
n= 2373) has a median average emission factor of
11 gNOx kg−1 fuel, while the dirtiest brand (Renault,
n= 952) has a median average emission factor of
31 gNOx kg−1 fuel (or 2.9 times the cleanest brand).
However, there is large variability of vehicles’ average
emission factors within each brand as well, with most
vehicles emitting excessively high NOx over a repres-
entative test cycle.

3.2. Identification of individual high-emitting and
clean vehicles
Next, we evaluate the uncertainty and effectiveness
of using RS snapshot measurements to identify indi-
vidual high-emitting vehicles with inferred average
emission factors. As an illustration, we focus on
the Zurich fleet measured with ambient temperat-
ure >20◦C. Our algorithm estimates that 28% of the
measured vehicles in Zurich are super high-emitters
with average emission factors more than 5 times
the type approval limit, which accounts for 76% of
the total emissions of the fleet (calculated with their
average emission factors). The identification of high-
emitting vehicles is highly uncertain if based on one
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Figure 2. Distribution of the average emission factors (solid black line), derived from the instantaneous RS emission
measurements (dashed black line) for EU-5D passenger cars across European locations. Each fleet is classified into four
categories: Average vehicle emissions below, between 1 and 2 times, between 2 and 3 times, and more than 3 times the type
approval limit value. For each fleet, the solid black line represents an average sample of 40 random simulations and is used to
calculate the percentage of each category. The result of each random simulation is shown in grey lines.

RS record alone. For instance, if the cut-off threshold
is set at 17.5 gNOx kg−1 fuel (i.e. the car will be
naively classified as a super high-emitter based on this
one record), there is only a chance of 63% that this car
is actually a super high-emitter (figure 3(A)). Increas-
ing the cut-off threshold will increase precision to
detect actual super high-emitters. But surprisingly,
the identification precision of a super high-emitter
levels off at about 77%, even if the cut-off threshold
is increased further. This is because vehicles with rel-
atively low average emissions can also have quite high
instantaneous emissions, making it impossible to dis-
tinguish between super high-emitters and vehicles
with less high levels of average emissions based on
only one instantaneous measurement.

The precision increases substantially, however,
if the same vehicle is measured several times; this
is shown by simulations of multiple independent
instantaneous emissions based on RS and PEMS/
chassis data, not from the rather limited repeated
measurements in the RS data. Here, we evaluate
two classification rules—one based on the average of
repeated instantaneous emissions (‘average rule’, solid
lines in figure 3) and the other that counts all meas-
urements (‘count all rule’, dashed lines in figure 3).

Already with two repeated RS records that are both
five times above the type approval limit value, the
precision of identifying super high-emitters increases
to 83%; with five RS records the identification is
99% accurate (‘count all rule’). An increasing num-
ber of repeat RS records also allows lowering the RS
threshold while maintaining the precision level. For
instance, if 75% precision is required for detection of
super high-emitters, the cut-off threshold for a single
RS recordwould need to be 30 gNOx kg−1 fuel (or 8.6
times the type approval limit value). The threshold
could substantially decrease to 14 gNOx kg−1 fuel
or 8.7 gNOx kg−1 fuel respectively with two or five
repeated records (using the ‘count all rule’). Under
the same RS thresholds and same number of repeated
measurements, the ‘average rule’ is less stringent than
the ‘count all rule’, and hence results in a lower pre-
cision level for the same threshold (the difference
between solid and dashed lines in figure 3(A)).

Similar relations hold for the identification of
clean vehicles (figure 3(C)): Only 11% of vehicles
with an instantaneous RS record below the emission
limit are actually clean vehicles with average emis-
sions below the type approval limit. To ensure a 75%
precisionwith a single record, the RS threshold would
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Figure 3. Identification precision of super high-emitters (panel (A)) and clean vehicles (panel (C)) with the associated RS cut-off
thresholds under different numbers of repeated measurements (coloured). Panels (B) and (D) show the identification precision
value (y axis) and the fraction of total super high-emitter and clean vehicles identified (x axis) with the varying cut-off thresholds.
The solid line indicates a classification rule based on the average value of the repeated measurements (‘average rule’). The dashed
line indicates a classification rule based on all repeated measurements (‘count all rule’). Super high-emitters are defined as vehicles
whose average emission factors are above 5 times the type approval limit (17.5 gNOx kg−1 fuel). Clean vehicles are defined as
vehicles whose average emission factors are below 3.5 gNOx kg−1 fuel. Results are derived from a hypothetical fleet with two
million simulated cars. The large sample size ensures enough data points to evaluate the count all rule under repeated
measurements.

need to be set as low as 0.2 gNOx kg−1 fuel; this low
value is however not operational as it is at the detec-
tion limit of commonRSdevices. Using higher cut-off
thresholds (e.g. 1 gNOx kg−1 fuel) yet reduces preci-
sion to 34%. However, the precision value increases
to 85% or 99%, if two or five RS measurements for
the same vehicle are both below 1 gNOx kg−1 fuel
respectively.

Figures 3(B) and (D) show the trade-offs between
the identification precision and identified fraction
with varying cut-off thresholds, for different num-
bers of repeated measurements. With one measure-
ment, one can only identify 29% of the total super
high-emitters and 36% of the total clean vehicles
at a 75% precision level. With repeated measure-
ments, less stringent RS thresholds can be adopted
for the same precision level and more super high-
emitters or clean vehicles could be identified. At
75% precision level (using ‘average rule’), one can
identify 40% of the total clean vehicles with two
repeated measurements and 49% of the total clean
vehicles with five repeated measurements. Improve-
ments for super high-emitter identification are even
more substantial—one can identify 58% of all super
high-emitters with two repeated measurements and
80% of super high-emitters with five repeated meas-
urements. A higher fraction of identified super high-
emitters leads to substantial increases in NOx emis-
sion reductions. If all identified super high-emitters
at the 75% precision level were replaced with vehicles

with average emissions at the type approval limit, an
identification program based on single measurement
can reduce total NOx emissions (of the Zurich fleet)
by 15%,while a programbased on five repeatedmeas-
urements could reduce total NOx emissions by 36%
(with the ‘average rule’) or 31% (with the ‘count all
rule’). We observe very similar performances offered
by either classification rule in clean vehicles iden-
tification, but meaningful differences between the
two classification rules in high-emitter identifica-
tions. Using ‘count all rule’ can achieve almost per-
fect identification precision at the cost of a smal-
ler fraction of super high-emitters identified, while
using ‘average rule’ can identify almost all super high-
emitters if a lower precision level is allowed (see
figure 3(B)).

3.3. Algorithm validation
Our algorithm estimates the fraction of clean and
high-emitting vehicles of measured fleets based on
instantaneous RS emissions. The ideal way to valid-
ate a high-emitter identification scheme would be to
do confirmatory testing of these vehicles with PEMS/
chassis tests, and calculate their average emission
factors and share of high-emitters in the fleet, prefer-
ably on the spot. In practice, this is so expensive and
time-consuming that it is completely impractical on
a large number of vehicles. Here, we propose a simu-
lation method validating any such algorithm without
a life experiment.
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Figure 4. Validation of the algorithm with constructed test dataset. This figure shows the fraction of clean (panel (A)) and
high-emitting vehicles (panel (B)) estimated with our iterative algorithm (black dots) and the naïve approach which interprets
instantaneous emissions as average emissions (orange triangles). The estimated fraction is shown on the y axis and the true
fraction in the test data is shown on the x axis. The black dashed line indicates the 1:1 line. The error bar of the iterative algorithm
estimates shows the 95% confidence interval estimated with the 20 random implementations of the algorithm. Clean vehicles are
defined as vehicles whose average emission factors are below 3.5 gNOx kg−1 fuel. High-emitters are defined as vehicles whose
average emission factors are above two times the emission limit (7.0 gNOx kg−1 fuel).

Using the PEMS/chassis measurements, we simu-
late a test dataset of instantaneous emissions as proxy
for RS measurements; the average emissions of the
simulated vehicles are exactly known to us. Figure 4
compares the fraction of high-emitting and clean
vehicles estimated by our algorithm with the true
fraction in the test dataset. As shown in figure 4, our
algorithm performs well in estimating the fraction
of high-emitting and clean vehicles in the test data-
sets, and significantly outperforms the naive estimates
that treat instantaneous emissions as the average
emission factors. Across fleets with different frac-
tions of high-emitting and clean vehicles, the naive
approach estimates a higher fraction of clean vehicles
and a lower fraction of high-emitting vehicles by
10%–30%, while the biases of our algorithm estim-
ates are only 5%–10%. Our algorithm offers the
biggest improvement when applied to the dirtiest
fleet (which is closest to the real-world conditions of
EU-5D). The improvement offered by our algorithm
slightly decreases but remains significant as the test
simulated fleet becomes cleaner. Figure S3 shows
the estimated and true distribution of average emis-
sion factors. Across all simulated fleets, we observe
that the distributions of estimated average emission
factors are substantially more similar to the distri-
butions of true average emission factors, compared
with the distribution of the instantaneous measure-
ments; the Kolmogorov–Smirnov distances between
the two distributions (a standard metric that meas-
ures the distance between two distributions) reduce
by 40%–80%.

4. Discussion

Here we develop a scheme to combine instantaneous
RS records with second-by-second measurements
from PEMS or chassis dynamometer tests to identify

vehicles with high average emission factors. With
only one snapshot measurement for each vehicle,
our algorithm can successfully determine the distri-
bution of average emission factors of fleets meas-
ured by RS and subsequently calculate the frac-
tion of vehicles as below/above a chosen ‘clean’ or
‘dirty’ threshold, respectively. Our algorithm aims to
identify vehicles with high average emission factors
of varying thresholds, whether the fraction of high-
emitters is over 50% as for EU-5D, or just a few per-
centages as for gasoline cars or EU-6D. In its applic-
ation to EU-5D passenger cars, we find the instant-
aneous measurements significantly overestimate the
fraction of vehicles in compliance. This is likely the
case for all other vehicle classes and pollutants as
well, since instantaneous emissions are highly skewed
towards zero. Furthermore, the contributions of the
dirtiest 10%–20% vehicles are overestimated if one
directly uses instantaneous measurements (see figure
S4). This suggests that targeting only the dirtiest few
percentages of EU-5D fleets is misleading but that
rather the top 50% should be targeted as their aver-
age emission factors are not much lower than the top
10%, at least in the case of NOx emissions from diesel
cars.

Our analysis is highly relevant to the policy dis-
cussions on the RS-based identification programs
globally. The trade-off between precision and iden-
tified fraction of such programs is quantified for the
first time. It provides a rigorous way to design these
programs by choosing the RS thresholds, number
of repeated measurements, and classification rules
depending on desired precision, identified fractions,
and program budgets. Local decision makers can
choose any point on the trade-off curves based on
local priorities. Our analysis suggests the popular
high-emitter detection based on single measurement
is highly uncertain and ineffective for the current

8



Environ. Res. Lett. 17 (2022) 044045 M Qiu and J Borken-Kleefeld

EU-5D fleets, while identification programs with
repeated measurements of the same vehicle can yield
substantially higher precision and would detect more
high-emitters (or clean vehicles).

Joining RS data and high-frequency measure-
ment data from PEMS or chassis dynamometers has
great potential. Linking the RS data to detailed high-
frequency measurements can help researchers ana-
lyze RS data down to individual vehicles, which can
provide a much more comprehensive understanding
of the vehicle emitting behaviors of themeasured fleet
beyond instantaneous emissions. In fact, one can also
try to understand, for example, extreme emissions
or emissions under certain driving conditions with a
similar framework. Vice versa, RS data and the estim-
ated distribution of average emission factors provide
context for the detailed measurements of individual
vehicles with PEMS or chassis dynamometers, for
example, to understandwhether themeasured vehicle
is representative of the local fleet.

Our analysis has several limitations. The iterat-
ive algorithm introduced here estimates a distribu-
tion of the average vehicle emission factors, which can
recover the distribution of the measured RS records
when combined with the variability distributions
derived from second-by-second PEMS/chassis meas-
urements. However, multiple solutions may exist and
our algorithm is only able to find one of them. The
impacts seem limited in our case, as our results are
robust to many variants of the approach, including
different ways of processing the PEMS/chassis meas-
urement data, number of candidate profiles, and dif-
ferent ways of algorithm initialization (see supple-
mentary method). More research is needed to better
understand how different assumptions can influence
the algorithm performances under different contexts.
Like most previous studies analyzing the RS data, we
only calculate the fuel-based emission factor and do
not consider the potential heterogeneity in fuel eco-
nomy. This issue is likely small in our case for EU-5D,
as the biggest deterministic factor of average vehicle
emission is not fuel economy but whether a vehicle
has installed a defeat device or not. For future ana-
lysis, our algorithm could be extended to incorpor-
ate the fuel economy heterogeneity among vehicles by
adopting identification threshold values as a function
of vehicle sub-class or fuel economy.

Our framework can be further applied to gas-
oline cars and Euro-6 diesel (EU-6D) cars. With a
reduction in overall NOx emissions and a lower frac-
tion of super high-emitters, identification of high-
emitters among gasoline andEU-6Dcarsmay become
more rewarding despite greater challenges. One thing
that needs to be checked is whether the current
RS and PEMS/chassis measurements are accurate
enough at lower emission values to detect high-
emitters with low absolute emission levels. We may
expect that in such situations a few more repeated
measurements may be needed to achieve the same

precision compared with the EU-5D fleet studied
here. While second-by-second test data have been
limited in the past, this is no obstacle any more
as manufacturers are required to provide such data
publicly as part of the Euro 6 legislation in Europe.
This framework can also be easily adopted to study
different pollutants with available RS and second-
by-second measurement data, e.g. hydrocarbons.
Extending the algorithm to heavy-duty vehicles and
emissions of particulatematter would be highly desir-
able for air quality management in the transportation
sector.

5. Conclusion

Our research establishes a framework of using RS
and high-frequency measurement data for develop-
ing the link between instantaneous and average emis-
sions and identifying high-emitters, at the example of
NOx emissions of EU-5Dpassenger cars. Ourmethod
shows that interpreting instantaneous emissions as
the average emitting behavior can be highly mis-
leading, while a combination of RS and second-by-
second test data can help address this gap. Com-
pared to the currently-used conventional method of
high-emitter detection based on a single measure-
ment, we demonstrate that programs based on 2–
5 repeated measurements capture 98%–174% more
high-emitting vehicles with the same precision, and
lead to 88%–140% increase in NOx emission reduc-
tions. Combining RS and high-frequency measure-
ment data, we present a simulation approach that can
allow testing and verification of algorithms without
(costly or complicated) life experiments.
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