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Abstract
Near-term climate forcers (NTCFs), including aerosols and chemically reactive gases such as
tropospheric ozone and methane, offer a potential way to mitigate climate change and improve air
quality—so called ‘win-win’ mitigation policies. Prior studies support improved air quality under
NTCF mitigation, but with conflicting climate impacts that range from a significant reduction in
the rate of global warming to only a modest impact. Here, we use state-of-the-art chemistry-climate
model simulations conducted as part of the Aerosol and Chemistry Model Intercomparison Project
(AerChemMIP) to quantify the 21st-century impact of NTCF reductions, using a realistic future
emission scenario with a consistent air quality policy. Non-methane NTCF (NMNTCF; aerosols
and ozone precursors) mitigation improves air quality, but leads to significant increases in global
mean precipitation of 1.3% by mid-century and 1.4% by end-of-the-century, and corresponding
surface warming of 0.23 and 0.21 K. NTCF (all-NTCF; including methane) mitigation further
improves air quality, with larger reductions of up to 45% for ozone pollution, while offsetting half
of the wetting by mid-century (0.7% increase) and all the wetting by end-of-the-century
(non-significant 0.1% increase) and leading to surface cooling of−0.15 K by mid-century and
−0.50 K by end-of-the-century. This suggests that methane mitigation offsets warming induced
from reductions in NMNTCFs, while also leading to net improvements in air quality.

1. Introduction

Near-term climate forcers (NTCFs), also known as
short-lived climate forcers (SLCFs), include aero-
sols such as sulfate, nitrate, organic carbon (OC)
and black carbon (BC) and chemically reactive gases

including ozone (O3), sulfur dioxide and methane
(CH4). Although often co-emitted with long-lived
greenhouse gases (GHGs) including carbon dioxide
(CO2), the impact of NTCFs largely occurs within the
first decade after their emission (Myhre et al 2013).
NTCFmitigation has received considerable attention,
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as aerosols and ozone are sources of air pollution
(Fiore et al 2012), which is associated with adverse
human health and ecosystem impacts (WHO 2016,
Butt et al 2017, Cohen et al 2017). NTCFs also affect
the radiative balance of the Earth, leading to a cli-
mate forcing nearly equal in magnitude to that of
CO2 (Myhre et al 2013, Shindell et al 2013). This
forcing drives climate perturbations, including sur-
face warming (CH4, BC, some OC components, O3)
or cooling (sulfate, nitrate, OC), as well as altered
precipitation patterns (Allen 2015, Allen et al 2015,
Rotstayn et al 2015b, Liu et al 2018). In the context of
methane forcing, recent studies show the importance
of shortwave absorption, which increases the radi-
ative forcing by ∼20%–25% and also acts to mute
precipitation increases due to fast adjustment pro-
cesses associated with enhanced atmospheric stabil-
ity (Collins et al 2006, Etminan et al 2016, Modak
et al 2018). NTCF mitigation is therefore of partic-
ular importance to both the United Nation’s Sustain-
able Development Goals (Haines et al 2017, Lelieveld
2017, Shindell et al 2017), as well as the Paris Agree-
ment, which strives to keep global mean surface tem-
perature to well below 2 ◦C above preindustrial val-
ues (IPCC 2018). Policies that combine both climate
and air pollution mitigation (‘win-win’ policies) have
clear societal and economic benefits compared to sep-
arate mitigation (Clarke et al 2014). It is thus of
interest to evaluate NTCF mitigation.

Many studies have addressed the impact of NTCF
mitigation on air quality and climate. Although air
quality is improved in response to rapid removal
of anthropogenic aerosols, large near-term increases
in surface temperature and precipitation also occur
(Andreae et al 2005, Brasseur and Roeckner 2005,
Ramanathan and Feng 2008, Arneth et al 2009, Raes
and Seinfeld 2009, Kloster et al 2010, Matthews and
Zickfeld 2012, Rotstayn et al 2013, Wu et al 2013,
Westervelt et al 2015, Salzmann 2016, Hienola et al
2018, Richardson et al 2018, Samset et al 2018). The
importance of reducing methane emissions to sim-
ultaneously mitigate climate change and improve air
quality was first highlighted by Shindell et al (2012).
Since then, a few studies have explored air qual-
ity and climate change benefits from concomitant
decline in methane, aerosols and ozone precursors
(UNEP 2011, Smith and Mizrahi 2013, Stohl et al
2015, Jones et al 2018, Lelieveld et al 2019, Shindell
and Smith 2019, Turnock et al 2019) employing either
idealized scenarios or simple reduced-complexity cli-
mate models. Although these studies show improved
air quality under NTCF mitigation, they yield con-
flicting climate impacts that range from a signific-
ant reduction in the rate of global warming to only
a modest impact. For example, Smith and Mizrahi
(2013) show that with maximally feasible BC and
CH4 reductions phased in from 2015 to 2035, global
mean temperatures in 2050 would be reduced by only
0.16 K (uncertainty range of 0.04–0.35 K) relative to

a reference scenario with no explicit GHG policies,
with more realistic emission reductions likely provid-
ing an even smaller climate benefit. In contrast, Stohl
et al (2015) show that reducing CH4 and BC emis-
sion by 50% and 80%, respectively, relative to cur-
rent legislation will reduce warming by 0.22 ± 0.07
by 2041–2050, with the largest warming reduction of
0.44 (0.39–0.49) K over the Arctic. Similarly, UNEP
(2011) shows that CH4, BC and O3 mitigation will
reduce global warming by 0.4 (0.1–0.6) K by 2050,
effectively halving the rate of projected warming.

In terms of hydrological impacts, most NTCF
mitigation studies have focused on the impacts of aer-
osols alone. Samset et al (2018) show that complete
removal of present-day anthropogenic aerosol emis-
sions induces a global mean precipitation increase of
2%–4.6%. Future aerosol reductions may also shift
the tropical rainbelt northward, and strengthen pre-
cipitation in severalmonsoon regions, includingWest
Africa, South Asia, and East Asia (Levy et al 2013,
Allen 2015, Rotstayn et al 2015a, Allen and Ajoku
2016, Westervelt et al 2017, Westervelt et al 2018,
Zhao et al 2018, Scannell et al 2019, Zanis et al 2020).
Lelieveld et al (2019) find precipitation increases
of 10%–70% over India, 10%–30% over northern
China, and 10%–40% over Central America, West
Africa, and the Sahel in response to removal of
anthropogenic emissions, largely due to aerosol emis-
sions reductions. Stohl et al (2015) find that CH4 and
BC mitigation increases precipitation (∼4%) from
spring to autumn in theMediterranean region, which
would help alleviate the expected future water short-
ages in this region.

Allen et al (2020) recently analyzed simulations
from the the Aerosol and Chemistry Model Inter-
comparison Project (AerChemMIP) (Collins et al
2017), part of the Coupled Model Intercomparison
Project (CMIP6) (Eyring et al 2016), with models
that include an interactive representation of tropo-
spheric aerosols and atmospheric chemistry, allowing
for the quantification of chemistry-climate interac-
tions. They found that relative to the Shared Socio-
economic Pathway 3-7.0 (SSP3-7.0; with strong
increases in GHGs and NTCFs), NMNTCF (aerosols
and ozone precursors) mitigation in the SSP3-7.0-
lowNTCF scenario leads to mid-21st century (2015–
2055) surface temperature and precipitation increases
of 0.25 ± 0.12 K and 0.03 ± 0.012mmd−1, respect-
ively, as well as increases in extreme weather indices,
including the hottest and wettest day. Larger warm-
ing and wetting occurred over some regions, partic-
ularly Asia, as well as in the Arctic. Moreover, these
responses were largely due to the decrease in aero-
sols, as opposed to ozone precursors. This study, how-
ever, extended only to mid-21st century and did not
address the impacts ofmethane reductions. It remains
unclear if methane mitigation can prevent the warm-
ing that results from reductions in NMNTCFs, as well
as the impact of methane mitigation on air quality.
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Here, we extend the results of Allen et al
(2020) using NMNTCF simulations that now extend
through the 21st-century and new AerChemMIP 21st
century NTCF simulations that include methane (as
well as aerosol and ozone precursors) reductions,
focused on the surface temperature, precipitation
and air quality impacts due to NTCF mitigation.
Consistent with prior work, we show that NMNTCF
reductions improve air quality, but also lead to addi-
tional surface warming and wetting throughout the
21st century. NTCF reductions that include methane
(all-NTCF), however, compensate for this warm-
ing in the short term (mid-century) and more than
offset this warming in the long term (end of cen-
tury). Much of the NMNTCF precipitation increase
is also offset by the end of the century under all-
NTCF mitigation. All-NTCF mitigation also leads
to additional improvements in air quality, particu-
larly in terms of ozone. This paper is organized as
follows: Methods are presented in section 2 and res-
ults are discussed in section 3. Conclusions appear in
section 4.

2. Methods

2.1. Future Emission Scenarios
As part of ScenarioMIP, a set of SSPs (O’Neill et al
2014, van Vuuren et al 2014, Eyring et al 2016,
Gidden et al 2019) have been developed for CMIP6.
To detect the impact of air quality pollutants, Aer-
ChemMIP uses SSP3-7.0 (∼7.0 W m−2 at 2100) as
the reference scenario, which lacks climate policy,
has ‘weak’ levels of air quality control measures and
thus the highest levels of NTCFs (O’Neill et al 2014,
Fujimori et al 2017, Rao et al 2017). To isolate the
effects of air quality controls, the SSP3-7.0-lowNTCF
scenario (Gidden et al 2019) was developed, using the
same socio-economic scenario and the same emis-
sions drivers (e.g. population, GDP, energy and land-
use), but with ‘strong’ levels of air quality control
measures. In the case of air pollutant species (e.g. sul-
fur, BC, OC, NOx), the emissions factors assumed in
SSP1—a sustainability pathway—are adopted. Here,
the decrease in air pollutant species emissions is
due to swift ramping up of end-of-pipe measures
for air pollution control (rather than a transition to
non-fossil-based fuels). This assumption implicitly
assumes that SSP1’s air pollutant legislation and tech-
nological progress can be achieved in the SSP3 world.
Thus, the decrease in air pollutant species emissions
is due to the aggressive air pollution policy alone.
In the case of CH4, the CH4 emissions’ reduction
rates in SSP1-2.6 relative to the SSP1 baseline are
adopted to SSP3-7.0. This implicitly assumes that
SSP3-7.0-lowNTCF can reduce CH4 as if SSP1’s strin-
gent climate mitigation policy is implemented in the
SSP3world.We acknowledge that the lowNTCFpath-
way is unlikely to occur in reality, and that our res-
ults (e.g. the magnitude of the surface temperature

increase) likely represent an upper bound as the
baseline scenario (SSP3-7.0) contains the highest
levels of NTCFs.

In addition to the SSP3-7.0 reference experi-
ment, which is part of the Scenario Model Inter-
comparison Project (ScenarioMIP) (O’Neill et al
2016), two sets of experiments were run based on
the SSP3-7.0-lowNTCF scenario. The first low NTCF
experiment, SSP3-7.0-lowNTCF (Collins et al 2017,
Allen et al 2020), excludes the methane changes. An
additional experiment—SSP3-7.0-lowNTCFCH4—
was therefore run that includes both methane and
NMNTCFs. Thus, the SSP3-7.0-lowNTCF exper-
iment, which we henceforth refer to as strong
non-methane air quality control, allows quantific-
ation of the climate and air quality impacts due
to NMNTCFs (supplementary table 1 (available
online at stacks.iop.org/ERL/16/034010/mmedia)).
The SSP3-7.0-lowNTCFCH4 experiment, which
we henceforth refer to as strong air quality con-
trol, allows the impacts of all NTCFs (including
methane) to be quantified. Furthermore, we define
NMNTCF mitigation as the difference between
the strong non-methane air quality control exper-
iment and the weak air quality control experi-
ment (SSP3-7.0-lowNTCF−SSP3-7.0; supplement-
ary table 1). Similarly, all-NTCF mitigation is
defined as the difference between the strong and
weak air quality control experiment (SSP3-7.0-
lowNTCFCH4−SSP3-7.0). Finally, methane mit-
igation alone is defined as the difference between
the two strong air quality control experiments
(with and without methane reductions, SSP3-7.0-
lowNTCFCH4−SSP3-7.0-lowNTCF).

Under weak air quality control (supplementary
figure 1), global mean atmospheric CO2 and CH4

concentrations (models are concentration-driven for
these species) increase by∼35%bymid-century, with
continued increases of 116% and 83%, respectively,
by 2100 (relative to 2015). Global emissions of all aer-
osols and gaseous precursors (models are emission-
driven for these species) also increase by 7%–13% by
mid-century (except SO2), but then decrease after-
wards due to end-of-pipe measures for air pollu-
tion control. By 2100, most of these species have
decreased relative to 2015, ranging from ∼0 (for
volatile organic compounds, VOCs) to −22% (for
SO2). In contrast, strong air quality control yields
emission reductions in all aerosol and gaseous pre-
cursors, particularly during the first half of the cen-
tury, ranging from−26% for VOCs to−54% for SO2.
This decrease under strong air quality control con-
tinues (although more weakly) through 2100, with
aerosol and gaseous precursor emissions decreas-
ing by −52% to −68%. Similarly, CH4 concentra-
tions decrease by −26% and −34% by mid-century
and end-of-the-century, respectively (CO2 concen-
trations are identical to those under weak air quality
control).
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Table 1. Climate and air pollution changes under NMNTCF, all-NTCF and methane mitigation. Global annual mean changes in surface
temperature (Ts), precipitation (Precip), surface ozone (O3), surface particulate matter (PM2.5) and the effective radiative forcing (ERF)
for (top) NMNTCF, (middle) all-NTCF and (bottom) methane mitigation. First (second) set of numbers is the 2050–2059 (2090–2099)
change relative to 2005–2014. Changes not significant at the 95% confidence level based on a t-test are denoted by bold font. Units are K
for Ts; mmd−1 for Precip; ppb for O3;µgm−3 for PM2.5; and Wm−2 for ERF. MMM (last rows) is the multi-model mean.

NMNTCF mitigation

Ts Precip O3 PM2.5 ERF

GFDL-ESM4 0.15/0.06 0.033/0.038 −4.46/−4.76 −0.80/−0.78 0.020/0.17
UKESM1-0-LL 0.24/0.26 0.041/0.044 −3.15/−3.59 −0.90/−0.87 0.36/0.35
MRI-ESM2-0 0.19/0.29 0.040/0.049 −4.38/−4.92 −1.04/−0.98 0.45/0.66
EC-Earth3-
AerChem

0.45/0.46 0.066/0.067 −5.43/−5.66 −0.89/−0.94 0.64/0.68

GISS-E2-1-G 0.15/−0.02 0.019/0.010 −6.10/−6.01 −0.58/−0.52 0.37/0.35
MMM 0.23/0.21 0.040/0.041 −4.70/−4.99 −0.84/−0.82 0.37/0.44

All-NTCF mitigation

Ts Precip O3 PM2.5 ERF

GFDL-ESM4 −0.10/−0.41 0.035/0.027 −7.47/−8.85 −0.91/−1.07 −0.61/−1.05
UKESM1-0-LL −0.34/−0.88 0.006/−0.030 −6.21/−7.54 −0.91/−0.89 −0.62/−1.14
MRI-ESM2-0 −0.12/−0.34 0.024/0.014 −7.30/−9.26 −1.01/−1.02 −0.31/−0.61
EC-Earth3-
AerChem

−0.01/−0.50 0.034/0.006 −9.06/−11.18 −0.99/−1.04 −0.20/−0.70

GISS-E2-1-G −0.19/−0.40 0.009/0.004 −7.73/−8.36 −0.61/−0.61 −0.39/−0.64
MMM −0.15/−0.50 0.022/0.004 −7.56/−9.04 −0.88/−0.93 −0.42/−0.83

Methane mitigation

Ts Precip O3 PM2.5 ERF

GFDL-ESM4 −0.26/−0.47 0.001/−0.010 −3.01/−4.10 −0.11/−0.29 −0.63/−1.22
UKESM1-0-LL −0.57/−1.14 −0.036/−0.074 −3.07/−3.95 −0.01/−0.02 −0.98/−1.49
MRI-ESM2-0 −0.31/−0.63 −0.016/−0.035 −2.92/−4.34 0.03/−0.04 −0.76/−1.27
EC-Earth3-
AerChem

−0.46/−0.96 −0.031/−0.062 −3.63/−5.52 −0.09/−0.11 −0.84/−1.38

GISS-E2-1-G −0.34/−0.38 −0.010/−0.006 −1.63/−2.34 −0.03/−0.09 −0.75/−1.00
MMM −0.39/−0.71 −0.018/−0.037 −2.85/−4.05 −0.04/−0.11 −0.79/−1.27

2.2. AerChemMIPmodels
Five coupled ocean-atmosphere-chemistry climate
models performed the necessary simulations, includ-
ing GFDL-ESM4 (Horowitz et al 2018, John et al
2018, Dunne et al 2020, Horowitz et al 2020),
UKESM1-0-LL (Sellar et al 2019, Archibald et al 2020,
Mulcahy et al 2020), MRI-ESM2-0 (Yukimoto et al
2019, Oshima et al 2020), EC-Earth3-AerChem (van
Noije et al 2014, van Noije et al 2020) and GISS-
E2-1-G (Bauer et al 2020). All models performed
at least one 2015–2100 realization for each of the
three experiments described above, with UKESM1-
0-LL, MRI-ESM2-0 and GISS-E2-1-G performing
three realizations of each. Each model also per-
formed similar experiments with fixed sea surface
temperatures (SSTs) to estimate the effective radi-
ative forcing (ERF). The three coupled experiments
are repeated with prescribed SSTs and sea ice, taken
from the monthly mean evolving values from the
base SSP3-7.0 coupled simulation (Collins et al 2017).
All analyses are based on archived monthly mean
data, which is subsequently averaged to obtain annual
means, and all data is spatially interpolated to a
2.5◦ × 2.5◦ grid using bilinear interpolation. The

multi-model mean (MMM) is obtained by averaging
each model’s mean response (i.e. each model has
the same weight). We reiterate that these models are
driven by GHG (e.g. CO2, CH4) concentrations, as
opposed to emissions.

2.3. Methodology
Changes in surface temperature, precipitation, ERF
and air quality—including both surface ozone (O3)
and particulate matter less than 2.5µm in diameter
(PM2.5)—are estimated by taking a difference of
means, focused on two time periods: mid-century
(2050–2059 relative to 2005–2014), as well as end-of-
the-century (2090–2099 relative to 2005–2014). Data
for 2005–2014 comes from the model’s correspond-
ing historical simulations. Due to lack of a histor-
ical SST experiment, ERF changes for EC-Earth3-
AerChem are relative to 2015. Furthermore, we only
evaluate ERF changes under mitigation (difference of
experiments); it is not possible to get an ERF response
in the default simulations since SSTs change between
2005–2014 and 2050–2059/2090–2099. Significance
is based on a standard t-test for the difference of
means, where t= x1−x2

SE , where x1 and x2 are means
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during two periods (e.g. 2050–2059 and 2005–2014)
and SE is the standard error, which is estimated as√

s21
n1
+

s22
n2
. Here, n1 and n2 are the number of years

in time period 1 and 2, and s1 and s2 are the corres-
ponding standard deviations. The degrees of freedom

are estimated as: (s21/n1+s22/n2)
2

(s21/n1)
2/(n1−1)+(s22/n2)

2/(n2−1) .

The ERF is calculated from the top-of-the-
atmosphere (TOA) radiative flux differences between
atmosphere-only simulations with identical SSTs but
differing composition (Forster et al 2016, Pincus et al
2016). Although this is not strictly an ERF, because
the climate (specifically, land temperature) is chan-
ging, looking at the ERF differences between experi-
ments is a feasible approach because the SSTs match.
For ozone and PM2.5, monthly mean fields are
obtained from the model level closest to the sur-
face. Since models include different aerosol species
(e.g. nitrate and ammoniumaerosol are only included
in GFDL-ESM4, EC-Earth3-AerChem and GISS-E2-
1-G) and not all models directly archive PM2.5, and
those that do use different methodologies (Allen et al
2020), we approximate PM2.5 using: PM2.5 = BC
+ OA + SO4 + 0.1xDU + 0.25xSS, where BC is
black carbon, OA is organic aerosol, SO4 is sulfate
aerosol, DU is dust and SS is sea salt (Fiore et al
2012, Silva et al 2017, Allen et al 2020). The ‘true’
DU and SS factors will be dependent on the model
and its size distribution, but here we use 0.1 and
0.25, respectively. Although this PM2.5 approxima-
tion method introduces some uncertainty, it allows
for not only an estimate of PM2.5 in all models, but
a uniform estimate as well. CMIP6 model evalu-
ation of air quality metrics, including surface O3 and
PM2.5 is quantified in a companion paper (Turnock
et al 2020). To summarize, CMIP6 models gener-
ally underestimate PM2.5 overmost regions relative to
observations (possibly due to lack of nitrate aerosol in
many models), whereas models consistently overes-
timate surface ozone across most regions during both
summer and winter (potentially due to their coarse
resolution).

3. Results

3.1. Surface temperature
Figure 1 shows each model’s global annual mean
surface temperature anomaly times series for each
of the three experiments (figures 1(a)–(e)), as well
as the decadal changes in 2050–2059 and 2090–
2099, relative to 2005–2014 (figure 1(f)). Weak air
quality control yields significant increases in surface
temperature for all models (but with relatively large
inter-model spread), ranging from 1.12 to 2.40 K
by mid-century and 2.69 to 5.04 K by end-of-the-
century (figure 1(f)). GFDL-ESM4 yields the weak-
est increase, and UKESM1-0-LL yields the strongest
increase—especially by 2100. The corresponding

MMMwarming (figure 1(f) and see also supplement-
ary figures 2–3) is 1.57 ± 0.11 by mid-century and
3.47 ± 0.11 K by end-of-the-century (uncertainty
here and elsewhere is estimated as twice the standard
error). Similar toAllen et al (2020), under strong non-
methane air quality control, models show enhanced
warming, again due to the decrease in aerosols and
non-methane precursor gases that form aerosols and
ozone (and similar GHG increases). Warming ranges
from 1.28 to 2.63 K bymid-century and 2.75 to 5.30 K
by end-of-the-century, withGFDL-ESM4 (UKESM1-
0-LL) again yielding the smallest (largest) warming
(figure 1(f)). The corresponding MMM warming is
1.81± 0.10 and 3.68± 0.12K, respectively.

Consistent with the larger warming under strong
non-methane air quality control, relative to weak air
quality control, NMNTCF mitigation (figure 2(b)
and table 1) yields net warming in nearly all mod-
els, ranging from 0.15 to 0.45 K by mid-century and
−0.02 to 0.46 K by end-of-the-century, with MMM
warming of 0.23 ± 0.05 and 0.21 ± 0.03 K, respect-
ively. GFDL-ESM4 and GISS-E2-1-G yield the weak-
est warming (with GISS-E2-1-G yielding weak, non-
significant cooling by end-of-the-century), implying
the change in aerosol and ozone forcing is well-
balanced in these models. In contrast, EC-Earth3-
AerChem yields the largest warming underNMNTCF
mitigation (figure 2(a) and table 1), implying lar-
ger aerosol—as opposed to ozone—forcing in this
model. Significant warming under NMNTCF mit-
igation is in agreement with prior studies (Andreae
et al 2005, Brasseur and Roeckner 2005, Ramanathan
and Feng 2008, Arneth et al 2009, Raes and Seinfeld
2009, Kloster et al 2010, Matthews and Zickfeld 2012,
Rotstayn et al 2013, Wu et al 2013, Westervelt et al
2015, Salzmann 2016, Hienola et al 2018, Richardson
et al 2018, Samset et al 2018) and implies that
reducing aerosols and non-methane precursor gases
will accelerate global warming, particularly by mid-
century when the bulk of the emissions reductions
occur.

Compared to strong non-methane air quality
control, strong air quality control (i.e. including
methane) yields less warming during both time peri-
ods (figure 1(f)), ranging from 1.02 to 2.06 K bymid-
century and 2.29 to 4.16 K by end-of-the-century,
with corresponding MMM warming of 1.42 ± 0.08
and 2.96 ± 0.11 K. In fact, all-NCTF mitigation
(figure 2(b) and table 1) yields significant global
cooling in all cases except EC-Earth3-AerChem by
mid-century, with MMM changes of −0.15 ± 0.05
by mid-century and −0.50 ± 0.02K by end-of-the-
century. This implies that methane emission reduc-
tions more than offset the aerosol and non-methane
precursor gas-induced surface warming for both time
periods.Methanemitigation yields strongMMMsur-
face cooling at −0.39 ± 0.05 by mid-century and
−0.71± 0.02 K by end-of-the-century.
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Figure 1. Surface temperature response. Global annual mean surface temperature anomaly time series for (a) GFDL-ESM4; (b)
MRI-ESM2-0; (c) UKESM1-0-LL; (d) EC-Earth3-AerChem; and (e) GISS-E2-1-G for each of the three experiments, including
weak air quality control (red), strong non-methane air quality control (blue), and strong air quality control (gold). Thick solid
lines show the model mean time series (thin lines show each realization). Anomalies are relative to 2005–2014. Also included in
(f) is the corresponding decadal changes for each model and the multi-model mean (MMM). First (second) set of three circles in
(f) show the 2050–2059 (2090–2099) change relative to 2005–2014. When applicable, small offset x’s shows each realization. Error
bars represent the 95% confidence interval, estimated as twice the standard error. Units are K.

The five models used here span a relatively large
range of effective equilibrium climate sensitivity, ran-
ging from 2.6 K in GFDL-ESM4 to 5.3 K in UKESM1-
0-LL; the corresponding transient climate response
ranges from 1.6 K in both GFDL-ESM4 and GISS-
E2-1-G to 2.8 K in UKESM1-0-LL (Meehl et al 2020).
Furthermore, these models exhibit considerable ERF
spread under NMNTCF, all-NTCF and methane mit-
igation (figure 2(a), table 1, supplementary figure
4 and supplement). However, an analysis compar-
ing the surface temperature response sensitivity to
ERF, and separately to a transient climate response
(TCR)-like quantity (i.e. ∆Ts/ERF estimated from
each of the mitigation signals) does not clearly indic-
ate if ERF or TCR is more important in explain-
ing the model spread in the surface temperature
response under mitigation (supplementary table 2,
supplementary figure 5 and supplement). We also
note that three models account for shortwave absorp-
tion by methane, including UKESM1-0-LL, GFDL-
ESM4 and EC-Earth3-AerChem. Two of these mod-
els, UKESM1-0-LL and EC-Earth3-AerChem have

the largest (negative) ERF due to methane mitigation
(and the largest surface cooling). GFDL-ESM4, how-
ever, has the weakest ERF and surface cooling due
to methane mitigation by mid-century, and the
second weakest ERF and surface cooling due to
methane mitigation by end-of-the-century. So there
are other factors besides shortwave absorption by
methane that account for the model spread in ERF
(and surface temperature response) under methane
mitigation.

3.2. Precipitation
In terms of global annualmean precipitation (figure 3
and supplementary figure 6), weak air quality control
yields significant precipitation increases in allmodels,
ranging from 0.016 to 0.145mm d−1 by mid-century
and 0.059 to 0.305mmd−1 by end-of-the-century.
The increase in precipitation is consistent with the
increase in global mean temperature which acceler-
ates the hydrological cycle (Held and Soden 2006).
As with the surface temperature response, GFDL-
ESM4 yields the weakest precipitation increase, and
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Figure 2. Decadal mitigation responses. Global annual mean decadal changes in (a) effective radiative forcing; (b) surface
temperature; (c) precipitation; (d) surface ozone; and (e) surface particulate matter for each model and the multi-model mean
(MMM). Decadal changes based on the difference of experiments, including NMNTCF (cyan), all-NTCF (green) and methane
(gray) mitigation are included. First (second) set of three circles show the 2050–2059 (2090–2099) change relative to 2005–2014.
Due to lack of a historical SST experiment, ERF changes for EC-Earth3-AerChem are relative to 2015. When applicable, small
offset x’s shows each realization. Error bars represent the 95% confidence interval, estimated as twice the standard error. Units are
W m−2, K,mmd−1, ppb andµgm−3 for effective radiative forcing, surface temperature, precipitation, ozone and particulate
matter, respectively.

UKESM1-0-LL yields the strongest precipitation
increase. More generally, the correlation between
the precipitation and surface temperature response
across models is 0.93 for 2050–2059 and 0.94
for 2090–2099, both significant at the 99% con-
fidence level (similar correlations apply for the
other experiments, as well as with the mitiga-
tion signals). The corresponding MMM precipit-
ation increase (figure 3(f)) is 0.065 ± 0.006 by
mid-century and 0.158 ± 0.006mmd−1 by end-
of-the-century, or percent increases of 2.2% and
5.3%. Under strong non-methane air quality con-
trol, models show larger precipitation increases, con-
sistent with the larger surface warming induced by
decreases in aerosols and non-methane precursor
gases. The precipitation increase ranges from 0.049
to 0.186mm d−1 by mid-century and 0.087 to
0.349mmd−1 by end-of-the-century, with GFDL-
ESM4 and GISS-E2-1-G (UKESM1-0-LL) yielding
the smallest (largest) increase (figure 3(f)). The cor-
responding MMM precipitation is 0.105 ± 0.007

and 0.200 ± 0.007mmd−1, respectively, or percent
increases of 3.5% and 6.7%.

NMNTCF mitigation also yields a significant
increase in global mean precipitation in all models
(figure 2(c), table 1 and supplementary figure 7),
with a MMM increase of 0.040 ± 0.005mmd−1 by
mid-century and 0.041 ± 0.004mmd−1 by end-of-
the-century, or percent increases of 1.3% and 1.4%
respectively. This result is consistent with prior
studies (Ramanathan et al 2001, Wilcox et al 2013,
Samset et al 2016, Allen et al 2020) and with the
increase in global mean temperature spinning up
the hydrological cycle. Similarly, all-NTCF mitig-
ation also yields a significant increase in global
mean precipitation by mid-century (table 1), about
half as large as that under NMNTCF mitigation,
at 0.022 ± 0.003mmd−1 (percent increase of
0.7%). Interestingly, this increase in precipitation
occurs despite global cooling (recall, all-NTCF
mitigation offsets the warming due to NMNTCF
mitigation). This is likely related to the larger
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Figure 3. Precipitation response. Global annual mean precipitation anomaly time series for (a) GFDL-ESM4; (b) MRI-ESM2-0;
(c) UKESM1-0-LL; (d) EC-Earth3-AerChem; and (e) GISS-E2-1-G for each of the three experiments, including weak air quality
control (red), strong non-methane air quality control (blue), and strong air quality control (gold). Thick solid lines show the
model mean time series (thin lines show each realization). Anomalies are relative to 2005–2014. Also included in (f) is the
corresponding decadal changes for each model and the multi-model mean (MMM). First (second) set of three circles in (f) show
the 2050–2059 (2090–2099) change relative to 2005–2014. When applicable, small offset x’s shows each realization. Error bars
represent the 95% confidence interval, estimated as twice the standard error. Units aremmd−1.

apparent hydrological sensitivity (i.e. the change in
precipitation per unit change in global surface tem-
perature) of shortwave forcers like aerosols, relat-
ive to longwave forcers like methane (Liepert and
Previdi 2009, Andrews et al 2010, Samset et al 2016,
Liu et al 2018, Modak et al 2018), which implies
the aerosol effect dominates—at least in the short-
term. By end-of-the-century, with the weaker warm-
ing from aerosol and precursor gas emission reduc-
tions, but larger methane-induced cooling, all-NTCF
mitigation yields a negligible MMM precipitation
change of 0.004 ± 0.004mmd−1, or a percent
increase of 0.1%. As expected, methane mitigation
(figure 2(c) and table 1) yields a significant decrease
in global mean precipitation (except for GFDL-
ESM4 by mid-century), with MMM decreases of
−0.018 ± 0.004 and −0.037 ± 0.004mmd−1, or
percent decreases of −0.6 and −1.3%, respectively.
Finally, we note that a significant northward trop-
ical rain belt shift also occurs under NMNTCF
mitigation, most of which is cancelled out by

end-of-the-century under all-NTCF mitigation
(supplement).

3.3. Air quality
We next analyze the impact of NTCF reductions on
air quality, in terms of both surface O3 and PM2.5

(spatial maps are included in supplementary figures
8–11). Figure 4 shows the global mean O3 anom-
aly time series and decadal changes for each of the
three experiments. Weak air quality control results in
a significant increase in O3 in nearly all models, ran-
ging from 0.68 to 1.90 ppb bymid-century and−0.37
to 1.81 ppb by end-of-the-century (figure 4(f)).
Here, GFDL-ESM4 yield the largest increase, whereas
GISS-E2-1-G yields the weakest increase (includ-
ing the decrease by end-of-the-century). The cor-
responding MMM O3 changes are 1.26 ± 0.10 and
0.71± 0.13 ppb, respectively, which equate to percent
increases of 4.0% and 2.3%. The larger O3 increase
by mid-century is consistent with the increase in
ozone precursors, including VOC, NOx, CO and
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Figure 4. Surface ozone response. Global annual mean surface ozone (O3) anomaly time series for (a) GFDL-ESM4; (b)
MRI-ESM2-0; (c) UKESM1-0-LL; (d) EC-Earth3-AerChem; and (e) GISS-E2-1-G for each of the three experiments, including
weak air quality control (red), strong non-methane air quality control (blue), and strong air quality control (gold). Thick solid
lines show the model mean time series (thin lines show each realization). Anomalies are relative to 2005–2014. Also included in
(f) is the corresponding decadal changes for each model and the multi-model mean (MMM). First (second) set of three circles in
(f) show the 2050–2059 (2090–2099) change relative to 2005–2014. When applicable, small offset x’s shows each realization. Error
bars represent the 95% confidence interval, estimated as twice the standard error. Units are parts per billion (ppb).

CH4 (supplementary figure 1). Under strong non-
methane air quality control, significant O3 decreases
occur in all models, with a MMM decrease of
−3.44± 0.10 ppb (−11.0%) by mid-century and
−4.28 ± 0.14 ppb (−13.7%) by end-of-the-century
(figure 4(f)). This is again consistent with reduced
emissions of gaseous non-methane ozone precurs-
ors. In terms of NMNTCF mitigation, (figure 2(d)
and table 1), O3 decreases have MMM changes of
−4.70 ± 0.07 ppb (−15.1%) by mid-century and
−4.99 ± 0.06 ppb (−16.0%) by end-of-the-century.
Unfortunately, as discussed above, this improvement
in ozone-related air quality under NMNTCF mitiga-
tion comes at the price of additional increases in sur-
face temperature (table 1 and figure 2(b)).

Relative to strong non-methane air quality con-
trol, strong air quality control yields even larger
decreases in O3 (figure 4(f)), with MMM changes
of −6.30 ± 0.15 ppb (−20.2%) by mid-century and
−8.33 ± 0.14 ppb (−26.7%) by end-of-the-century.
This larger improvement in ozone-related air quality

is because methane, whose atmospheric concentra-
tion decreases by−34% under strong air quality con-
trol, is a precursor to tropospheric ozone (Prather et al
1994, Fiore et al 2012). In terms of all-NTCF mitig-
ation (figure 2(d) and table 1), O3 decreases occur
in all models, with MMM decreases of −7.56 ± 0.13
ppb (−24.2%) by mid-century and −9.04 ± 0.07
ppb (−29.0%) by end-of-the-century. Under meth-
ane mitigation, a robust decrease in O3 also occurs,
with MMM decreases of −2.85 ± 0.13 ppb (−9.2%)
by mid-century and −4.05 ± 0.05 ppb (−13.0%) by
end-of-the-century. These methane-induced ozone
decreases represent 38% and 45% of the all-NTCF
induced ozone decreases by mid- and end-of-the-
century. Thus, methane mitigation not only offsets
warming due to reductions in NMNTCFs, but con-
sistent with past studies (West et al 2007, Fiore et al
2008), causes additional improvements in ozone-
related air quality.

Figure 5 shows global mean anomaly times series
and decadal mean differences for surface particulate
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Figure 5. Surface particulate matter response. Global annual mean surface particulate matter (PM2.5) anomaly time series for (a)
GFDL-ESM4; (b) MRI-ESM2-0; (c) UKESM1-0-LL; (d) EC-Earth3-AerChem; and (e) GISS-E2-1-G for each of the three
experiments, including weak air quality control (red), strong non-methane air quality control (blue), and strong air quality
control (gold). Thick solid lines show the model mean time series (thin lines show each realization). Anomalies are relative to
2005–2014. Also included in (f) is the corresponding decadal changes for each model and the multi-model mean (MMM). First
(second) set of three circles in (f) show the 2050–2059 (2090–2099) change relative to 2005–2014. When applicable, small offset x’s
shows each realization. Error bars represent the 95% confidence interval, estimated as twice the standard error. Units areµgm−3.

matter, PM2.5. Weak air quality control generally
yields PM2.5 increases, particularly by mid-century
when most of the aerosol and gaseous precursors
are increasing, ranging from 0.01 to 0.52µgm−3

by mid-century and −0.06 to 0.91µgm−3 by end-
of-the-century. Similar to O3, GFDL-ESM4 yields
the largest increase, whereas GISS-E2-1-G yields
the weakest increase, including the 2100 decrease.
The corresponding MMM changes (figure 5(f)) are
0.23 ± 0.04 and 0.21 ± 0.06µgm−3, which equate
to ∼3.4% increases. Consistent with the aerosol
and gaseous precursor emission reductions, and
(Allen et al 2020), strong non-methane air qual-
ity control yields significant PM2.5 decreases by
mid-century, ranging from −0.28 to −0.78µgm−3,
with a MMM of −0.61 ± 0.05µgm−3 (−9.0%).
By end-of-the-century, models yield both significant
decreasing and increasing PM2.5, ranging from 0.12
(GFDL-ESM4) to −0.91 (UKESM1-0-LL)µgm−3.
The MMM, however, yields a significant decrease
similar to that by mid-century (−9.0%). The PM2.5

increase in GFDL-ESM4 by 2100—despite continued
reductions in aerosol and gaseous precursors—is sim-
ilar using archived PM2.5 (not shown). This unex-
pected PM2.5 increase results largely from increases
in temperature-dependent sources of sea salt and
biogenic secondary organic aerosols (Dunne et al
2020, Paulot et al 2020). Some of this also may
be related to natural variability, or to the impact
warming has on decreasing large scale precipita-
tion, which has been shown to drive an increase in
aerosol burden (Allen et al 2016, 2019, Park et al
2020).Nonetheless, NMNTCFmitigation (figure 2(e)
and table 1) yields improvements in PM2.5-related
air quality, including decreases ranging from −0.58
to −1.04µgm−3 by mid-century, and very similar
decreases by end-of-the-century. The corresponding
MMM PM2.5 decreases are also similar in both time
periods at −0.84 and −0.82µgm−3, respectively, or
percent changes of −12.5% and −12.2%. We note
that these PM2.5 changes are likely too low—by a
factor of ∼1/3—as our (approximated) PM2.5 does

10



Environ. Res. Lett. 16 (2021) 034010 R J Allen et al

not include nitrate (NO3) or ammonium (NH4) aer-
osol (supplement, supplementary figures 12 and 13).

Relative to strong non-methane air quality
control, strong air quality control yields sim-
ilar PM2.5 decreases (figure 5(f)), with MMM
changes of −0.65 ± 0.04µgm−3 (−9.7%) by mid-
century and −0.71 ± 0.05µgm−3 (−10.6%) by
end-of-the-century. Similarly, all-NTCF mitiga-
tion (figure 2(e) and table 1) yields similar PM2.5

decreases as NMNTCF mitigation, with MMM
changes of −0.88 ± 0.03 (−13.2%) by mid-century
and −0.93 ± 0.07 (−13.7%) by end-of-the-century.
Althoughmethane is a dominant sink of the hydroxyl
radical (OH), the primary tropospheric oxidizing
agent (Levy 1971), and changes in methane emis-
sions will affect the lifetime of CH4 and related gases
(Prather 1994), including the formation of aerosols
through oxidation of gaseous precursors (Shindell
et al 2009, Karset et al 2018), we do not find additional
decreases in PM2.5 under methane reductions. In
fact, under methane mitigation, the change in PM2.5

is generally not significant in most models (GFDL-
ESM4 being the exception for both time periods),
ranging from −0.11 to 0.03µgm−3 by mid-century
and −0.29 to −0.02µgm−3 by end-of-the-century
(table 1).

3.4. Regional responses
NTCF forcing, particularly the aerosol contribution,
is spatially inhomogeneous (Shindell et al 2013),
which can lead to regionally dependent responses.
Prior studies have found aerosol reductions have rel-
atively large warming and wetting impacts for much
of Asia (including China) (Zheng et al 2020), and also
impact climate extremes, with aerosols—as opposed
to GHGs—having larger effects on temperature and
precipitation extremes over China when normalized
by global mean surface temperature change (Wang
et al 2016). Consistent with this notion, we find
that NMNTCF mitigation leads to larger decreases in
ozone and in particular PM2.5—and generally larger
increases in surface temperature and precipitation—
in regions with larger decreases in aerosols and pre-
cursor gas emissions, including several regions in
Asia (supplement and supplementary figures 14–16).
The inclusion of methane reductions, however, still
offsets the enhanced warming due to NMNTCF
mitigation in these regions, particularly by end-
of-the-century. For example, the MMM change in
surface temperature under all-NTCF mitigation in
south Asia is −0.02 ± 0.11 K by mid-century and
−0.32 ± 0.08 K by end-of-the-century (supplement-
ary figure 14(b)). The corresponding changes in east
Asia are −0.06 ± 0.13 and −0.27 ± 0.12 K (sup-
plementary figure 15(b)); and −0.14 ± 0.11 K and
−0.43 ± 0.10 K for southeast Asia (supplementary
figure 16(b)). Inclusion of methane reductions also
leads to larger decreases inO3 in these regions (as with
the global mean, similar PM2.5 decreases occur with

and without methane reductions). For example, in
southeast Asia, O3 decreases by−33.1% and−40.3%
by mid- and end-of-the-century, as compared to
−25.4% and −29.2% under NMNTCF mitigation
(supplementary figure 16(f)).

As with the global mean precipitation results,
all-NTCF mitigation continues to yield MMM pre-
cipitation increases in these regions, particularly
by mid-century. That is, adding methane does not
offset the wetting due to aerosol and precursor
gas emission reductions—although by end-of-the-
century, the MMM increase is relatively small and
non-significant. For example, the MMM NMNTCF
precipitation response for east Asia is 0.147 ± 0.04
and 0.146 ± 0.06mmd−1 by mid- and end-of-the-
century (supplementary figure 15(d)). Under all-
NTCF mitigation, a significant precipitation increase
remains by mid-century (0.107 ± 0.05mmd−1),
whereas a weaker and non-significant increase exists
by end-of-the-century (0.076 ± 0.080mmd−1).
Similar results occur for south Asia, where the sig-
nificant mid-century precipitation increase under
NMNTCF mitigation of 0.190 ± 0.07mmd−1

decreases only slightly under all-NTCF mitigation at
0.146 ± 0.10mmd−1 (supplementary figure 14(d)).
However, by end-of-the-century, the south Asia
precipitation increase under NMNTCF mitigation
(0.150 ± 0.04mmd−1) is negated under all-NTCF
mitigation (−0.001 ± 0.07mmd−1). We also note
that for both south Asia and east Asia, the largest
precipitation increase under NMNTCF mitigation
occurs during summertime (June-July-August; JJA),
coincident with their wet (monsoon) season, and
consistent with prior studies that show aerosol reduc-
tions drive wetting in several monsoon regions (Levy
et al 2013, Westervelt et al 2017, 2018, Zhao et al
2018, Allen et al 2020). For both regions, the JJA pre-
cipitation increase is about two times larger than that
based on the annual mean (not shown). Regardless,
as with the annual mean, all-NTCFmitigation offsets
this summertime precipitation increase by end-of-
the century for both south and east Asia. Thus, Asian
regions in particular stand to benefit from NTCF
mitigation, with relatively large improvements in air
quality and negligible increases (if not decreases)
in surface temperature and (by end-of-the-century)
precipitation.

In the Arctic, warming in response to NMNTCF
mitigation occurs in all models by mid-century, with
relatively large MMM warming of 0.63 ± 0.10 K
(supplementary figure 17). Weaker MMM warm-
ing exists by end-of-the-century at 0.42 ± 0.11 K,
with two models (GFDL-ESM4 and GISS-E2-1-G)
yielding non-significant warming. As with the
global mean and Asian regions, however, includ-
ing methane offsets most of the Arctic warm-
ing due to NMNTCF reductions, particularly
by end-of-the-century. All-NTCF mitigation
yields a negligible MMM temperature change of
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−0.06± 0.14 K by mid-century, and significant
cooling of −0.88 ± 0.10 K by end-of-the century.
NTCF mitigation (0.3% and −2.4% by mid- and
end-of-the-century) also offsets Arctic wetting due
to NMNTCF mitigation (2.7% and 3.1% by mid-
and end-of-the-century) for both time periods. Sig-
nificant improvements in Arctic air quality also
occur under NTCF mitigation, with PM2.5 decreas-
ing by −19.7% and −22.1% by mid- and end-
of-the-century; similarly, O3 decreases by −24.8%
and −31.0%, respectively. Interestingly, although
not significant in all models, methane mitigation
also yields a significant MMM decrease in Arctic
PM2.5 of −0.04 ± 0.01µgm−3 by mid-century and
−0.11± 0.01µgm−3 by end-of-the-century (percent
decreases of−2.7% and−6.7%).

4. Conclusions

As expected, NMNTCF mitigation yields signi-
ficant improvements in air quality, in terms of
both surface ozone and particulate matter, with
some regions experiencing very large improve-
ments (e.g. parts of Asia). However, reductions in
aerosol and non-methane precursor gas emissions
unmasks CO2 warming, resulting in surface warming
of 0.23± 0.05 K bymid-century and 0.21± 0.03 K by
end-of-the-century, and corresponding precipitation
increases of 0.040± 0.005 and 0.041± 0.004mmd−1

(percent increases of 1.3% and 1.4%). These res-
ults are consistent with prior studies, including Allen
et al (2020). Including methane reductions, how-
ever, more than offsets this enhanced warming due
to NMNTCF mitigation during both the short-
and long-term, with all-NTCF mitigation yielding
global cooling of −0.15 ± 0.05 by mid-century and
−0.50± 0.02 K by end-of-the-century. Although
methane reductions also offset NMNTCF wetting
by end-of-the-century, only about half of the wetting
is offset by mid-century. The large Arctic warming
(and wetting) under NMNTCF mitigation is also
countered under all-NTCF mitigation—particularly
by end-of-the-century. Furthermore, regions that
experience the largest improvements in air qual-
ity under NMNTCF mitigation also tend to exper-
ience relatively large warming and wetting (e.g. Asian
regions). All-NTCF mitigation again offsets much of
this enhanced warming (but not the mid-century
wetting), with significant cooling by end-of-the-
century for several Asian regions under all-NTCF
mitigation. Moreover, all-NTCF mitigation yields
additional improvements in air quality as compared
to NMNTCF mitigation, particularly enhanced sur-
face ozone reductions (e.g. methane is responsible
for 38% and 45% of the total global mean ozone
decrease by mid-century and end-of-the-century,
respectively). Our results therefore suggest that NTCF
mitigation can improve air quality while simultan-
eously addressing climate change, and that methane

reductions can counter enhanced warming from
aerosol and non-methane precursor gas emission
reductions.
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