Machine learning based modelling of tropospheric parameters with GNSS enhanced by meteorological data

Crocetti, L., Soja, B., Klopotek, G., Awadaljeed, M., Rothacher, M., See, L. ORCID: https://orcid.org/0000-0002-2665-7065, Weinacker, R., & Sturn, T. (2022). Machine learning based modelling of tropospheric parameters with GNSS enhanced by meteorological data. In: ESA Living Planet Symposium, 23-27 May 2022, Bonn, Germany.

[thumbnail of 20220527_LPS_Crocetti_A0.pdf]
Preview
Text
20220527_LPS_Crocetti_A0.pdf - Published Version
Available under License Creative Commons Attribution Non-commercial.

Download (1MB) | Preview
Item Type: Conference or Workshop Item (Poster)
Research Programs: Advancing Systems Analysis (ASA)
Advancing Systems Analysis (ASA) > Novel Data Ecosystems for Sustainability (NODES)
Depositing User: Luke Kirwan
Date Deposited: 30 May 2022 08:55
Last Modified: 30 May 2022 08:55
URI: https://pure.iiasa.ac.at/18035

Actions (login required)

View Item View Item