Crocetti, L., Soja, B., Klopotek, G., Awadaljeed, M., Rothacher, M., See, L.  ORCID: https://orcid.org/0000-0002-2665-7065, Weinacker, R., Sturn, T., McCallum, I.
ORCID: https://orcid.org/0000-0002-2665-7065, Weinacker, R., Sturn, T., McCallum, I.  ORCID: https://orcid.org/0000-0002-5812-9988, & Navarro, V.
  
(2022).
    Machine learning and meteorological data for spatio-temporal prediction of tropospheric parameters.
  
    In: EGU General Assembly 2022, 23-27 May 2022, Vienna.
ORCID: https://orcid.org/0000-0002-5812-9988, & Navarro, V.
  
(2022).
    Machine learning and meteorological data for spatio-temporal prediction of tropospheric parameters.
  
    In: EGU General Assembly 2022, 23-27 May 2022, Vienna.
  
  
  
| ![20220527_EGU22_Crocetti_MR.pptx [thumbnail of 20220527_EGU22_Crocetti_MR.pptx]](https://pure.iiasa.ac.at/style/images/fileicons/slideshow.png) | Slideshow 20220527_EGU22_Crocetti_MR.pptx - Published Version Available under License Creative Commons Attribution. Download (16MB) | 
      Official URL: https://www.egu22.eu/
    
  
  
  | Item Type: | Conference or Workshop Item (Paper) | 
|---|---|
| Research Programs: | Advancing Systems Analysis (ASA) Advancing Systems Analysis (ASA) > Novel Data Ecosystems for Sustainability (NODES) | 
| Depositing User: | Luke Kirwan | 
| Date Deposited: | 30 May 2022 10:59 | 
| Last Modified: | 30 May 2022 10:59 | 
| URI: | https://pure.iiasa.ac.at/18036 | 
Actions (login required)
|  | View Item | 
 Tools
 Tools Tools
 Tools