Estimating the timing of geophysical commitment to 1.5 and 2.0° C of global warming

M.T. Dvorak^{1*} (mtdvorak@uw.edu), K.C. Armour^{1,2} (karmour@uw.edu), D.M.W. Frierson² (dargan@uw.edu), C. Proistosescu^{3,4}(cristi@illinois.edu), M.B. Baker⁵(mbbaker@uw.edu) & C.J. Smith^{6,7}(C.J.Smith1@leeds.ac.uk)

¹School of Oceanography, University of Washington, Seattle, WA

²Department of Atmospheric Sciences, University of Washington, Seattle, WA

³Department of Atmospheric Sciences, University of Illinois Urbana-Champaign

⁴Department of Geology, University of Illinois Urbana-Champaign

⁵Department of Earth and Space Sciences, University of Washington, Seattle, WA

 $^6\mathrm{Priestley}$ International Centre for Climate, University of Leeds, UK

⁷International Institute for Applied Systems Analysis (IIASA), Laxenburg, Austria

Abstract

Following abrupt cessation of anthropogenic emissions, decreases in short-lived aerosols would lead to a warming peak within a decade, followed by slow cooling as greenhouse-gas (GHG) concentrations decline. This implies a geophysical commitment to temporarily crossing warming levels prior to reaching them. Here we use an emissions-based climate model (FaIR) to estimate temperature change following cessation of emissions in 2021 and in every year thereafter until 2080 following eight Shared Socioeconomic Pathways (SSPs). Assuming a medium-emissions trajectory (SSP2-4.5), we find that we are already committed to peak warming greater than 1.5°C with 42% probability, increasing to 66% by 2029 (340 GtCO₂ relative to 2021). Probability of peak warming greater than 2.0°C is currently 2%, increasing to 66% by 2057 (1550 GtCO₂ relative to 2021). Because climate will cool from peak warming as GHGs concentrations decline, committed warming of 1.5°C in 2100 won't occur with at least 66% probability until 2055.

The Paris Agreement has affirmed an international goal to hold global warming to well 1 below 2°C and to pursue efforts to limit it to 1.5°C relative to pre-industrial temperatures. 2 However, global warming is projected to exceed 1.5°C within decades, and 2°C by mid-3 century in all but the lowest emission scenarios [1]. That is, there is limited time and 4 allowable carbon dioxide (CO_2) emissions (i.e., a remaining carbon budget) before these 5 temperature thresholds are exceeded. Assessing the possibility of avoiding these global 6 warming levels requires a clear understanding of the unrealized warming that is inevitable 7 due to past emissions (a geophysical warming commitment), treated separately from the 8 warming associated with future, and therefore theoretically avoidable, emissions (a socioeg conomic warming commitment). 10

Here we provide a quantification of the geophysical warming commitment and its evolu-11 tion over time in terms of the zero emissions commitment (ZEC) [°C], a common metric used 12 to estimate the global temperature change that follows an abrupt cessation of emissions. 13 The magnitude of the ZEC depends on the evolution of atmospheric greenhouse gas and 14 aerosol concentrations after emissions cease, along with the multiple timescales of climate 15 response to changes in radiative forcing. If only CO_2 emissions cease, global temperature 16 is expected to remain relatively constant as both ocean heat uptake and atmospheric CO_2 17 forcing slowly decline by similar, and compensating, amounts [2, 3, 4, 5, 6]. Estimates of 18 the ZEC following a cessation of only CO_2 emissions (referred to here as ZEC_{CO_2}) range 19 from slight cooling to continued warming [6, 7] over multiple centuries, depending upon 20 model representations of ocean heat uptake, carbon cycle, climate feedbacks and historical 21 emissions pathways [4, 6, 8, 9, 10]. On average, ZEC_{CO_2} is taken to be small throughout 22 the 21^{st} century when estimated from multi-model simulations [1, 8]. This suggests that 23 future warming is primarily governed by future emissions rather than by past emissions, 24

and thus society is not geophysically-committed to exceeding key global warming levels
prior to reaching them.

However, the situation becomes more complex when the emissions of short-lived climate 27 forcers, including non-CO₂ greenhouse gases (GHGs) and aerosols, are considered [11, 3, 28 12]. Tropospheric aerosols produced through the combustion of fossil fuels and biomass 29 burning have atmospheric lifetimes of days to weeks and currently exert a strong net 30 cooling effect on the climate (a negative radiative forcing). Thus, the ZEC associated with 31 the cessation of all anthropogenic emissions (referred to here as ZEC_{anthro}) would include 32 warming associated with the rapid reduction of aerosols and consequent 'unmasking' of 33 a portion of GHG forcing. This warming is offset in small part by the removal of black 34 carbon on snow (a positive surface albedo forcing) and in larger part by a decrease in 35 tropospheric ozone, nitrous oxide and methane concentrations over the following weeks 36 to decades, followed by a slower decline as GHG concentrations decrease until the global 37 temperature stabilizes at a value determined by the residual forcing associated with the 38 portion of anthropogenic CO_2 that remains in the atmosphere for millennia [3, 12, 13]. 39

We thus focus on two measures of the climate commitment following a complete ces-40 sation of anthropogenic emissions: the peak temperature reached in the decades following 41 emissions cessation $(\text{ZEC}_{\text{anthro}}^{\text{peak}})$ and the eventual temperature reached in the year 2100 42 $(\text{ZEC}_{\text{anthro}}^{2100})$. These two measures represent different aspects of committed warming that 43 may be relevant to different components of the climate system and impacts thereupon; 44 i.e., systems that respond quickly to global temperature change would be sensitive to peak 45 warming (e.g., sea ice, the hydrological cycle, hurricanes, agriculture, and many ecosys-46 tems), while those that respond slowly to global temperature change would be sensitive to 47

⁴⁸ long-term warming (e.g., glaciers, ice sheets, and sea level).

Both measures of commitment $(\text{ZEC}_{anthro}^{\text{peak}} \text{ and } \text{ZEC}_{anthro}^{2100})$ depend on the magnitude and 49 evolution of GHG and aerosol radiative forcing following emissions cessation, the sensitivity 50 of climate to forcing changes (often characterized in terms of the equilibrium climate sen-51 sitivity (ECS) $[^{\circ}C]$), and the timescales of climate adjustment associated with the oceans 52 [3, 13]. Cessation of emissions from present-day levels generally results in a $\text{ZEC}_{\text{anthro}}^{\text{peak}}$ of 53 a few tenths of a degree Celsius above the current temperature, with an overshoot lasting 54 approximately a decade before cooling to near-present temperatures [13, 14, 15]. However, 55 a larger ZEC^{peak}_{anthro} with a more prolonged overshoot is possible if aerosol forcing is strong 56 and climate sensitivity is high [3, 15]. Thus, a full accounting of past emissions suggests 57 that society may be geophysically-committed to peak warming exceeding key global warm-58 ing levels many years before those levels are reached – absent efforts to directly remove 59 CO_2 from the atmosphere. 60

Recent research has substantially advanced scientific understanding of the instrumental 61 record of global warming [16], Earth's energy imbalance [17, 18], aerosol radiative forcing 62 [19, 18] and climate sensitivity [20, 18]. In light of these advances, the current geophysical 63 climate commitment needs to be revisited. Furthermore, both $\text{ZEC}_{\text{anthro}}^{\text{peak}}$ and $\text{ZEC}_{\text{anthro}}^{2100}$ 64 will change over time as GHG emissions continue and the blend of radiative forcing agents 65 in the atmosphere evolves. Key questions are – when will the world be geophysically-66 committed to reaching key global warming levels, such as 1.5 and 2.0°C, either temporarily 67 (overshoot) or at the end-of-century, and how do these estimates depend upon the emissions 68 trajectory? 69

We quantify both ZEC_{anthro}^{peak} and ZEC_{anthro}^{2100} associated with a cessation of all anthro-

pogenic emissions using an emissions-based climate model, FaIR (Finite Amplitude Impulse 71 Response Model, v1.3) [21, 22] with model parameters constrained by observations of global 72 energy budget and temperature trends since the 1800s (Methods). FaIR produces effec-73 tive radiative forcing from emissions time-series of 39 gases and short-lived climate forcers, 74 with an intermediate concentration calculation for GHGs and a four-timescale carbon-cycle 75 representation that is sensitive to changes in uptake efficiency with cumulative emissions 76 and temperature. Changes in land-use forcing are excluded from this analysis because it 77 is unclear how they should be represented in the ZEC framework (e.g., [23]), but sensi-78 tivity tests show that including land-use forcing has little impact on the results presented 79 here (Methods and Supplementary Figure S1). Global temperature is calculated using a 80 two-layer ocean model [24, 25] (Methods) which was also used for the global temperature 81 projection assessment in the IPCC's Sixth Assessment Report (IPCC AR6) [1]. 82

Priors for key model parameters, including the radiative feedback parameter (which 83 governs ECS), the efficiency of ocean heat uptake, ocean effective heat capacities, the 84 magnitude of GHG and aerosol forcing, and carbon cycle parameters are generated to 85 match distributions of state-of the-art global climate models [25] and IPCC AR6 estimates 86 [18, 26] (Methods; Extended Data Figs. E1-E4). Posterior model parameter distributions 87 are then selected based on fits to observational records of global surface temperature, 88 global energy accumulation and radiative forcing since 1850, as well as present-day CO_2 89 levels. These constraints result in a posterior FaIR model ensemble that accurately fits 90 the historical temperature record to within an estimate of internal temperature variability 91 (Fig. E5), and closely matches the projections of 21st century warming as assessed by 92 IPCC AR6 [1] (Fig. 1a). 93

Posterior estimates of ECS and the transient climate response (TCR) are 2.9°C [1.8-4.7°C, 5-95% confidence] and 1.7°C [1.2-2.5°C], respectively. Median aerosol forcing is estimated to be -1.2 W m^{-2} [-1.8 to -0.6 W m^{-2}] in 2018 relative to 1765. These values are all in good agreement with recent assessments based on multiple lines of evidence [20, 19] including IPCC AR6 [18].

With the posterior FaIR ensemble, we first evaluate $\text{ZEC}_{\text{anthro}}^{\text{peak}}$ and $\text{ZEC}_{\text{anthro}}^{2100}$ associated 99 with an abrupt cessation of anthropogenic emissions near the present day (taken as January 100 2021) (Fig. 1b). We find a median $\text{ZEC}_{\text{anthro}}^{\text{peak}}$ of 0.22°C relative to 2020, with an overshoot 101 that lasts for approximately 18 years before eventually cooling to several tenths of a degree 102 Celsius below 2020 temperatures by the end-of-century (Fig. 1b, dashed line). Smith et 103 al.[13], also using FaIR, estimated a median ZEC^{peak}_{anthro} of approximately 0.1°C above 2018, 104 while Matthews and Zickfeld^[15], using an intermediate complexity model, found median 105 peak warming of 0.3 °C following a cessation of all emissions. This difference in results is 106 due in large part to differences in aerosol forcing at the time of emissions cessation between 107 ref[13] (-1.4 to -0.2 W m⁻², 90% confidence range), ref[15] (-1.9 to -0.8 W m⁻²), and this 108 study (-1.8 to -0.6 W m⁻²), as well as larger climate sensitivity in ref[15]. 109

Similar to Smith et al.[13], we find net cooling at the end-of-century following emissions cessation (a median $\text{ZEC}_{\text{anthro}}^{2100}$ of -0.4°C below the 2020 temperature), which is in contrast to the end-of-century warming of approximately 0.3°C found in a previous study [12] – a difference that may be due to different assumptions about residual GHG and non-CO₂ forcing in the ZEC experiment, and the sensitivity of atmospheric CO₂ uptake to global temperatures [13]. An assessment of the effect of different emissions choices on the presentday $\text{ZEC}_{\text{anthro}}^{\text{peak}}$ and $\text{ZEC}_{\text{anthro}}^{2100}$ is provided in the Supplementary (Fig. S2).

The 2018 IPCC Special Report on global warming of 1.5°C concluded that past emis-117 sions alone are unlikely (less than 33% probability) to raise global temperature above 1.5° C 118 relative to 1850-1900 [14]. We find that there is now a 42% probability that the world is 119 committed to peak global warming $(\text{ZEC}_{\text{anthro}}^{\text{peak}})$ of at least 1.5°C based on past emissions 120 alone, and a 2% probability that $\text{ZEC}_{\text{anthro}}^{\text{peak}}$ reaches at least 2.0°C (Fig. 1b). For sustained 121 warming of greater than 1.5° C and 2.0° C at the end-of-century (ZEC²¹⁰⁰_{anthro}), the probabili-122 ties are 5% and 0%, respectively, meaning that society is not yet committed to these levels 123 of long-term warming. 124

For comparison, we find that a cessation of CO_2 emissions (ZEC_{CO_2}), while holding all other forcings fixed at present-day levels, results in temperatures remaining within approximately 0.1°C of the present-day temperature throughout the century (Fig. 1b, dotted line), consistent with previous studies [3, 12, 8]. The end-of-century ZEC_{CO_2} is approximately 0°C [-0.02 to 0.12°C, 66% confidence] relative to present-day temperatures, in good agreement with the AR6 assessed likely range of 0°C ±0.19°C.

We next consider how $\text{ZEC}_{\text{anthro}}^{\text{peak}}$ and $\text{ZEC}_{\text{anthro}}^{2100}$ change over time following a range of 131 emissions pathways prior to cessation, as illustrated by eight Shared Socioeconomic Path-132 way (SSP) emission scenarios: SSP1-1.9, SSP1-2.6, SSP4-3.4, SSP2-4.5, SSP4-6.0, SSP3-133 7.0-lowNTCF ('Near Term Climate Forcing'), SSP3-7.0, and SSP5-8.5 [27]. We conduct 134 simulations of the climate response to a cessation of anthropogenic emissions within FaIR 135 in every year for the period 2021-2080 or until CO_2 emissions reach net-zero, following 136 each of these SSP scenarios, each run with 6,729 posterior ensemble members (Methods). 137 Fig. 2a shows $\text{ZEC}_{\text{anthro}}^{\text{peak}}$ and $\text{ZEC}_{\text{anthro}}^{2100}$ relative to the pre-industrial period 1850-1900 as a 138 function of the year in which emissions cease along a moderate mitigation scenario (SSP2-139

4.5) (solid black and dashed black lines, respectively). A key result is that the time at 140 which ZEC^{peak}_{anthro} is reached occurs from four to seven years before that temperature would 141 be exceeded following SSP2-4.5 (horizontal distance between orange and solid black lines 142 and shading in Fig. 2a); while there is a 66% probability of *exceeding* 1.5°C by 2035, there 143 is a 66% probability of being *committed* to at least 1.5° C of warming by 2029 (ZEC^{peak}_{anthro} in 144 Fig. 2a; Table 1). For 2°C, this becomes 2061 and 2057, respectively (ZEC^{peak}_{anthro} in Fig. 2a; 145 Table 1). The number of years that ZEC^{peak}_{anthro} is reached before a given warming level is 146 exceeded depends on the probability threshold considered, with the 17th percentile of the 147 ensemble (corresponding to high aerosol forcing and high climate sensitivity) producing 148 a larger difference, and the 83rd percentile of the ensemble (corresponding to low aerosol 149 forcing and low climate sensitivity) producing a smaller difference (Table 1). 150

A similar assessment can be made for $\text{ZEC}_{\text{anthro}}^{2100}$, for which temperature thresholds are 151 surpassed after the thresholds themselves are reached in the emissions scenario. We find 152 that end-of-century warming commitments of 1.5 and 2.0°C are reached by 2055 and 2061 153 with 66% probability -15 and 16 years after those temperatures are reached, respectively, 154 when following SSP2-4.5 (Fig 2a). Since global temperature in 2100 after a cessation of 155 emissions is relatively stable compared to peak warming, this implies that society is not 156 committed to long-term warming of a given magnitude prior to when that temperature is 157 reached following an emissions trajectory. 158

¹⁵⁹ Considering the seven other emissions scenarios, results show that committed warm-¹⁶⁰ ing of 1.5 and 2°C (ZEC^{peak}_{anthro}) occurs roughly half a decade before those temperatures ¹⁶¹ would actually be exceeded if emissions were never halted (Figs. 3a,c,e; Table 1). The ¹⁶² choice of emissions pathway becomes increasingly important with time, with high and very high emissions scenarios (SSP3-7.0, SSP5-8.5) generating a ZEC^{peak}_{anthro} of 2°C earlier than lower emissions scenarios. Conversely, only high mitigation (SSP1-1.9, SSP1-2.6) avoids ZEC^{peak}_{anthro} of 2°C over this century in the 66th percentile. A ZEC²¹⁰⁰_{anthro} exceeding 1.5°C and 2.0°C following a cessation of emissions in this century is avoided in low (SSP1-2.6) and in low to moderate (SSP4-3.4, SSP2-4.5) emissions scenarios, respectively.

The elevated warming following a cessation of emissions in 2021 (temperature overshoot) lasts 11-48 years (66% confidence range). The length of the temperature overshoot generally declines with aerosol forcing, and is therefore dependent upon the emissions trajectory; by 2060, a cessation of all emissions along medium-to-high aerosol forcing scenarios (SSP3-7.0, SSP4-6.0; Fig. E6) results in 6-31 year overshoots, while low aerosol forcing scenarios (SSP1-1.9, SSP1-2.6), result in 3-10 year overshoots (66% confidence range).

¹⁷⁴ Committed warming as a function of cumulative emissions

The projected 21st century warming following different SSP emissions scenarios (Fig. 3a) 175 simplifies greatly when cast in terms of the cumulative CO_2 emissions (Fig. 3b; calculated 176 as cumulative anthropogenic CO_2 emitted since January 2021). Consistent with previous 177 studies [28, 29, 30], global warming is nearly proportional to cumulative CO₂ emissions, 178 with small differences between scenarios arising from the assumed rate of emissions and 179 the fractional contribution of non- CO_2 climate forcing to total forcing. A relevant measure 180 of this proportionality is the Transient Climate Response to Emissions (TCRE), defined 181 as the global temperature change per 1000 GtCO_2 emitted. We find that the constrained 182 FaIR ensemble has TCRE = 0.44°C per 1000 GtCO₂ [0.33-0.59°C per 1000 GtCO₂, 66% 183 confidence range] when calculated for SSP2-4.5 for the period 2018-2068 (Supplementary 184

Figure S4). These estimates are in line with Matthews et al.'s [31] estimate of 0.44° C per 1000 GtCO₂ [0.32-0.62 °C per 1000 GtCO₂, 90% range] and the IPCC AR6 [32] estimate 187 of 0.45° C per 1000 GtCO₂ [0.27-0.63 °C per 1000 GtCO₂, 66% range].

We next evaluate how ZEC_{anthro}^{peak} and ZEC_{anthro}^{2100} scale with the cumulative CO_2 emit-188 ted until the year emissions cease. The evolution of $\text{ZEC}_{\text{anthro}}^{\text{peak}}$ is nearly proportional to 189 cumulative CO_2 emissions (Fig. 3b), despite its dependence on aerosol forcing at the time 190 emissions cease. This is likely due to the approximately constant fraction of aerosol forcing 191 relative to total forcing over time for most individual SSP pathways. Exceptions are SSP1-192 2.6 and SSP1-1.9, wherein aerosols decrease rapidly during the first half of the 21st century 193 and decline more slowly thereafter (Fig. E6), resulting in a non-linear response in peak 194 warming as a function of emissions cessation year. The proportionality with cumulative 195 CO_2 emissions is more evident for ZEC_{anthro}^{2100} , which is independent of the emissions sce-196 nario (Fig. 3c) because the residual CO_2 forcing dominates total forcing by 2100 following 197 a cessation of emissions. 198

The proportionality of committed warming to cumulative CO_2 emissions permits the 199 quantification of a remaining carbon budget for committed warming of 1.5, 1.7, and 2°C 200 (Table 2). Total cumulative carbon emitted between 1850 and 2019 is approximately 2,290 201 $GtCO_2$, within the IPCC AR6 estimate of 2,390 +/- 240 $GtCO_2$ for the same period [32]. A 202 median $\text{ZEC}_{\text{anthro}}^{\text{peak}}$ of 1.5°C is reached after the emission of 120 GtCO₂ [0-340 GtCO₂, 66% 203 confidence] relative to the beginning of 2021 (Fig. 2b); for 2°C the remaining carbon budget 204 is 1,120 GtCO₂ [470-1,550 GtCO₂]. At the end-of-century ($\text{ZEC}_{\text{anthro}}^{2100}$), 1.5°C is reached 205 after the emission of 1,080 GtCO₂ [420-1,470 GtCO₂]; for 2°C this remaining carbon budget 206 is $1,980 \text{ GtCO}_2$ [1,170-not reached within the experiments]. Uncertainty in the remaining 207

carbon budgets stems mainly from uncertainties in aerosol forcing and climate sensitivity.
However, the results are consistent across the emissions scenarios (Table S2) – a key to
maintaining consistency in the calculation of carbon budgets [31].

Remaining carbon budgets estimated using the ZEC can be contrasted to those esti-211 212 mated following emissions pathways without a cessation of emissions (Table 2). 1.5°C is exceeded with 66% probability when cumulative emissions since 2021 reach 600 GtCO₂ 213 following SSP2-4.5 (orange line in Fig. 2b), a measure of the 'threshold exceedance bud-214 get' [32]. This is substantially larger than the 66th percentile estimate of 340 GtCO₂ using 215 ZEC^{peak}_{anthro} because it does not account for the additional warming that would occur as 216 aerosol forcing is reduced upon abrupt cessation of emissions. The smaller carbon bud-217 gets obtained using $\text{ZEC}_{\text{anthro}}^{\text{peak}}$ would provide an underestimate for emissions pathways that 218 achieve net-zero CO_2 through the implementation of carbon dioxide removal technologies 219 while maintaining some level of anthropogenic aerosol emissions. However, compared to 220 scenarios that phase out emissions more slowly and without net-negative CO_2 , ZEC_{anthro}^{peak} 221 provides the smallest estimate of peak warming over the 21st century, and therefore can be 222 considered a lower bound on committed warming (Fig. E7). 223

These calculations are relatively pathway-independent across priority SSPs, and are therefore robust to choice of emissions trajectory. As such, they do not require an examination of only a subset of emissions trajectories that are calibrated to avoid 1.5 or 2°C (such as those presented in IPCC AR6), or that are constrained by socioeconomic feasibility [14, 33]. This methodology is appropriate when considering the possibility of a temperature overshoot that may persist for over a decade, with subsequent impacts on human and natural systems that respond quickly, and perhaps irreversibly, to global warming.

Two important insights are that: (i) the world will have a greater than 66% probability 231 of being committed to peak warming above 1.5°C by 2027-2032 in all emissions scenarios, 232 and 2°C by 2043-2057 in medium to high emissions scenarios (SSP2-4.5 to SSP5-8.5), and 233 (ii) these temperature commitments will occur 4 to 6 years before the 1.5 and 2°C warming 234 levels will actually be exceeded, assuming emissions follow SSP2-4.5. We find that the 1.5 235 and 2.0° C peak warming commitments (ZEC^{peak}_{anthro}) correspond to median carbon budgets of 236 approximately 120 and 1,120 Gt CO₂ relative to the beginning of 2021, respectively. Given 237 that FaIR does not capture the possibility of future destabilizing climate feedbacks such 238 as decreased ice sheet cover [34], thawing permafrost and methane hydrate dissociation 239 due to ocean warming [35, 36], or a sea-surface temperature pattern effect that allows for 240 a more substantial shift toward destabilizing cloud feedbacks in the future than modeled 241 here [37, 38, 39, 40, 10], these estimates of the timing of geophysical warming commitments 242 may become underestimates as global temperatures rise. 243

Acknowledgements.

The authors acknowledge funding from the following sources: National Science Foundation Grant AGS-1752796 (M.T.D., K.C.A.), Alfred P. Sloan Research Fellowship FG-2020-13568 (K.C.A), NOAA Grant UWSC12184 (C.P.), NERC/IIASA Collaborative Research Fellowship NE/T009381/1 (C.J.S), and NSF grant AGS-1665247 (D.M.W.F.).

Author contributions statement.

M.T.D., K.C.A., and C.P. designed the study. M.T.D. performed the analysis. K.C.A., C.P., D.M.W.F., M.B.B., and C.J.S. made suggestions to the analysis and helped interpret

the results. M.T.D. wrote the manuscript with edits from all other authors.

Competing interests statement.

The authors declare no competing interests.

Tables.

Table 1. Year in which a cessation of anthropogenic emissions leads to $\text{ZEC}_{\text{anthro}}^{\text{peak}}$ and $\text{ZEC}_{\text{anthro}}^{2100}$ of 1.5, 1.7 and 2°C following SSP2-4.5 at the 17th, 50th, 66th, and 83rd percent confidence levels. 'No cessation' refers to the year in which these temperatures are reached following the emissions scenario without a cessation of emissions. 'A/R' indicates that the temperature commitment has already been reached at that probability level as of the beginning of 2021, while 'N/R' indicates that the commitment is not reached at that probability level within the bounds of the experiment (up to year 2080).

Global warming since 1850-1900 (°C)	Temperature metric	Commitment year by ensemble percentile					
		17^{th}	50 th	66^{th}	$83^{\rm rd}$		
1.5	$\mathrm{ZEC}_{\mathrm{anthro}}^{\mathrm{peak}}$	A/R	2024	2029	2037		
	ZEC_{anthro}^{2100}	2031	2046	2055	2065		
	No cessation	2024	2031	2035	2040		
1.7	ZEC_{anthro}^{peak}	A/R	2032	2040	2050		
	ZEC_{anthro}^{2100}	2038	2055	2064	2076		
	No cessation	2031	2039	2044	2052		
2.0	ZEC ^{peak} _{anthro}	2032	2047	2057	2074		
	ZEC ²¹⁰⁰ _{anthro}	2048	2068	N/R	N/R		
	No cessation	2040	2052	2061	2077		

Table 2. Estimated remaining carbon budget $(GtCO_2)$ relative to the beginning of 2021

Global warming since 1850-1900 (°C)	Temperature metric	Estimated remaining carbon budget					
		$17^{\rm th}$	50^{th}	66^{th}	$83^{\rm rd}$		
	ZEC_{anthro}^{peak}	0	120	340	680		
1.5	ZEC_{anthro}^{2100}	420	1080	1470	1870		
	No cessation	120	420	600	820		
1.7	ZEC_{anthro}^{peak}	0	470	820	1260		
	ZEC_{anthro}^{2100}	730	1470	1830	2250		
	No cessation	420	770	990	1340		
	ZEC_{anthro}^{peak}	470	1120	1550	2190		
2.0	ZEC ²¹⁰⁰ _{anthro}	1170	1980	N/R	N/R		
	No cessation	820	1340	1720	2280		

for $\text{ZEC}_{\text{anthro}}^{\text{peak}}$ and $\text{ZEC}_{\text{anthro}}^{2100}$ of 1.5, 1.7 and 2°C following SSP2-4.5 at the 17th, 50th, 66th, and 83rd percent confidence levels. 'No cessation' and 'N/R' are as in Table 1.

Figure Legends.

Figure 1. Constrained FaIR ensemble global temperature projections. a) Global warming following Shared Socioeconomic Pathways (SSPs) with the historical temperature record from HadCRUT5 [41] overlaid in black. b) SSP2-4.5 with no cessation of emissions (orange line), a cessation of only CO₂ emissions (dotted line, ZEC_{CO_2}) and of all anthropogenic emissions (dashed line, ZEC_{anthro}) in the beginning of 2021. Shading represents the 66% confidence interval obtained from a 6729 posterior member ensemble (Methods). Global temperature anomalies are taken relative to the 1850-1900 average.

Figure 2. Committed warming and scenario warming following SSP2-4.5. FaIR ensemble temperature projections assuming no cessation of emissions (orange line) and warming commitments, $\text{ZEC}_{\text{anthro}}^{\text{peak}}$ (solid black line) and $\text{ZEC}_{\text{anthro}}^{2100}$ (dashed black line), as functions of emissions cessation year (a) and cumulative anthropogenic CO₂ emissions since the beginning of 2021 (b). For SSP2-4.5 in (a), the x-axis is 'Year'. Shading indicates the 66% confidence interval. Global temperature anomalies are taken relative to the 1850-1900 average.

Figure 3. Committed warming and scenario warming relative to 1850-1900 for all SSPs. Temperature response following each SSP with no cessation of emissions as a function of year (a); ZEC_{anthro}^{peak} (b) and ZEC_{anthro}^{2100} (c) as a function of shut-off year until 2080 or when emissions reach net-zero. d-f are as in a-c, but as functions of cumulative emissions since the beginning of 2021. Note that a, b, and c correspond to the orange, solid black and dashed black lines presented in Fig. 2, respectively, but for all SSPs. Shading represents the 66% confidence interval.

References

- Lee, J.-Y., Marotzke, J., Bala, G. et al. Future Global Climate: Scenario-Based Projections and Near-Term Information. In [Masson-Delmotte, V., Zhai, P., Pirani, A. & others] (eds.) Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change (Cambridge University Press. In Press., 2021).
- [2] Solomon, S., Plattner, G.-K., Knutti, R. & Friedlingstein, P. Irreversible climate change due to carbon dioxide emissions. *Proc. Natl. Acad. Sci. USA* **106**, 1704–1709 (2009).
- [3] Armour, K. C. & Roe, G. H. Climate commitment in an uncertain world. Geophys. Res. Lett. 38 (2011). URL https://doi.org/10.1029/2011GL048739.

- [4] Ehlert, D. & Zickfeld, K. What determines the warming commitment after cessation of CO₂ emissions? *Environ. Res. Lett.* **12**, 015002 (2017). URL https://doi.org/10.1088/1748-9326/aa564a.
- [5] Goodwin, P., Williams, R. G. & Ridgwell, A. Sensitivity of climate to cumulative carbon emissions due to compensation of ocean heat and carbon uptake. *Nature Geosci.* 8, 29–34 (2015). URL https://doi.org/10.1038/ngeo2304.
- [6] Williams, Τ. L. R. G., Roussenov, V., Frölicher, & Goodwin, Ρ. Drivers of continued surface warming after cessation of carbon emissions. Geophys. Res. Lett. 44, 10,633-10,642 (2017). URL https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1002/2017GL075080.
- [7] Frölicher, T. L., Winton, M. & Sarmiento, J. L. Continued global warming after CO₂ emissions stoppage. *Nature Clim. Change* 4, 40-44 (2014). URL https://doi.org/10.1038/nclimate2060.
- [8] MacDougall, A. H. et al. Is there warming in the pipeline? a multi-model analysis of the Zero Emissions Commitment from CO₂. Biogeosciences 17, 2987-3016 (2020). URL https://bg.copernicus.org/articles/17/2987/2020/.
- [9] Winton, M., Takahashi, K. & Held, I. M. Importance of ocean heat uptake efficacy to transient climate change. Journal of Climate 23, 2333 – 2344 (2010). URL https://journals.ametsoc.org/view/journals/clim/23/9/2009jcli3139.1.xml.
- [10] Zhou, C., Zelinka, M. D., Dessler, A. E. & Wang, M. Greater committed warming after accounting for the pattern effect. *Nature Climate Change* 11, 132–136 (2021).
 URL https://doi.org/10.1038/s41558-020-00955-x.

- [11] Hare, B. & Meinshausen, M. How much warming are we committed to and how much can be avoided? *Climatic Change* 75, 111-149 (2006). URL https://doi.org/10.1007/s10584-005-9027-9.
- [12] Mauritsen, T. & Pincus, R. Committed warming inferred from observations. Nature Clim. Change 7, 652-655 (2017). URL https://doi.org/10.1038/nclimate3357.
- [13] Smith, C. J. et al. Current fossil fuel infrastructure does not yet commit us to 1.5 °C warming. Nature Communications 10, 101 (2019). URL https://doi.org/10.1038/s41467-018-07999-w.
- [14] Allen, M., de Coninck, H., Dube, O. et al. Technical Summary. In Masson-Delmotte, V., Zhai, P., Portner, H.-O. et al. (eds.) Global Warming of 1.5°C. An IPCC Special Report on the impacts of global warming of 1.5°C above pre-industrial levels and related global greenhouse gas emission pathways, in the context of strengthening the global response to the threat of climate change, sustainable development, and efforts to eradicate poverty (2018).
- [15] Matthews, H. & Zickfeld, K. Climate response to zeroed emissions of greenhouse gases and aerosols. Nature Climate Change 2, 338 – 341 (2012). URL https://doi.org/10.1038/nclimate1424.
- [16] Chen, D., Rojas, M., Samset, B. et al. Framing, Context, and Methods. In Masson-Delmotte, V., Zhai, P., Pirani, A. et al. (eds.) Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change (Cambridge University Press. In Press, 2021).

- [17] von Schuckmann, K. et al. Heat stored in the Earth system: where does the energy go? Earth System Science Data 12, 2013-2041 (2020). URL https://essd.copernicus.org/articles/12/2013/2020/.
- [18] Forster, P., Storelvmo, T., Armour, K. et al. The Earth's Energy Budget, Climate Feedbacks, and Climate Sensitivity. In Masson-Delmotte, V., Zhai, P., Pirani, A. et al. (eds.) Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change (Cambridge University Press. In Press, 2021).
- [19] Bellouin, N. et al. Bounding global aerosol radiative forcing of climate change. Reviews of Geophysics 58, e2019RG000660 (2020). URL https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/2019RG000660.
- [20] Sherwood, S. C. et al. An assessment of Earth's climate sensitivity using multiple lines of evidence. Reviews of Geophysics 58, e2019RG000678 (2020). URL https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/2019RG000678.
- [21] Smith, C. J. et al. FAIR v1.3: A simple emissions-based impulse response and carbon cycle model. Geoscientific Model Development 11, 2273-2297 (2018). URL https://gmd.copernicus.org/articles/11/2273/2018/.
- [22] Millar, R. J., Nicholls, Z. R., Friedlingstein, P. & Allen, M. R. A modified impulse-response representation of the global near-surface air temperature and atmospheric concentration response to carbon dioxide emissions. Atmospheric Chemistry and Physics 17, 7213-7228 (2017). URL https://acp.copernicus.org/articles/17/7213/2017/.

- [23] Jones, C. D., Frolicher, T. M., Koven, C. et al. The Zero Emissions Commitment Model Intercomparison Project (ZECMIP) contribution to C4MIP: quantifying committed climate changes following zero carbon emissions. Geoscientific Model Development 12, 4375 – 4385 (2019). URL https://doi.org/10.5194/gmd-12-4375-2019.
- [24] Held, I. M. et al. Probing the fast and slow components of global warming by returning abruptly to preindustrial forcing. Journal of Climate 23, 2418 – 2427 (2010). URL https://journals.ametsoc.org/view/journals/clim/23/9/2009jcli3466.1.xml.
- [25] Geoffroy, O. et al. Transient Climate Response in a two-layer energy-balance model. Part I: Analytical solution and parameter calibration using CMIP5 AOGCM experiments. Journal of Climate 26, 1841 1857 (2013). URL https://journals.ametsoc.org/view/journals/clim/26/6/jcli-d-12-00195.1.xml.
- [26] Smith, C., Nicholls, Z., Armour, K. et al. The Earth's Energy Budget, Climate Feedbacks, and Climate Sensitivity Supplementary Material. In [Masson-Delmotte, V., Zhai, P., Pirani, A. & others] (eds.) Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change (2021).
- [27] Riahi, K., van Vuuren, D. P., Kriegler, E. et al. The Shared Socioeconomic Pathways and their energy, land use, and greenhouse gas emissions implications: an overview. Global Environmental Change 42, 153 – 168 (2017). URL https://doi.org/10.1016/j.gloenvcha.2016.05.009.
- [28] Allen, M. R. et al. Warming caused by cumulative carbon emissions towards the trillionth tonne. Nature 458, 1163-1166 (2009). URL https://doi.org/10.1038/nature08019.

- [29] Matthews, H. D., Gillett, N. P., Stott, P. A. & Zickfeld, K. The proportionality of global warming to cumulative carbon emissions. *Nature* 459, 829–832 (2009).
- Η. Friedlingstein, Ρ. [30] MacDougall, А. & The origin and limits of the proportionality between climate warming and cumulative near of Climate **28**, 4217 – 4230 CO_2 emissions. Journal (2015).URL https://journals.ametsoc.org/view/journals/clim/28/10/jcli-d-14-00036.1.xml.
- [31] Matthews, H. D. et al. Opportunities and challenges in using remaining carbon budgets to guide climate policy. Nature Geoscience 13, 769-779 (2020). URL https://doi.org/10.1038/s41561-020-00663-3.
- [32] Canadell, J. G., Monteiro, P., Costa, M. et al. Global Carbon and other Biogeochemical Cycles and Feedbacks. In Masson-Delmotte, V., Zhai, P., Pirani, A. et al. (eds.) Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change (Cambridge University Press. In Press, 2021).
- [33] Rogelj, J., Forster, P. M., Kriegler, E., Smith, C. J. & Séférian, R. Estimating and tracking the remaining carbon budget for stringent climate targets. *Nature* 571, 335–342 (2019). URL https://doi.org/10.1038/s41586-019-1368-z.
- [34] Goosse, H. et al. Quantifying climate feedbacks in polar regions. Nature Communications 9, 1919 (2018). URL https://doi.org/10.1038/s41467-018-04173-0.
- [35] MacDougall, A. H. Estimated effect of the permafrost carbon feedback on the Zero Emissions Commitment to climate change. *Biogeosciences* 18, 4937–4952 (2021). URL https://bg.copernicus.org/articles/18/4937/2021/.

- [36] Ruppel, C. D. & Kessler, J. D. The interaction of climate change and methane hydrates. *Reviews of Geophysics* 55, 126-168 (2017). URL https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1002/2016RG000534.
- Τ. [37] Andrews, etal. Accounting for changing temperature patterns increases historical estimates of climate sensitivity. Geophysical Research Letters **45**, 8490-8499 (2018).URL https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/2018GL078887.
- [38] Silvers, D. The L. G., Paynter, & Zhao, М. diversity of cloud responses to twentieth century sea surface tempera-URL tures. Geophysical Research Letters **45**, 391 - 400(2018).https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1002/2017GL075583.
- [39] Zhou, C., Zelinka, M. D. & Klein, S. A. Impact of decadal cloud variations on the Earth's energy budget. Nature Geoscience 9, 871-874 (2016). URL https://doi.org/10.1038/ngeo2828.
- [40] Zhou, C., Zelinka, M. D. & Klein, S. A. Analyzing the dependence of global cloud feedback on the spatial pattern of sea surface temperature change with a Green's function approach. *Journal of Advances in Modeling Earth Systems* 9, 2174–2189 (2017). URL https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1002/2017MS001096.
- [41] Morice, C. P., Kennedy, J. J., Rayner, N. A. & Jones, P. D. Quantifying uncertainties inglobal regional temperature change and usensemble of observational estimates: the HadCRUT4 data ing an Journal of Geophysical Research: Atmospheres 117 (2012). URL set. https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/2011JD017187.

- [42] Meinshausen, M. et al. The RCP greenhouse gas concentrations and their extensions from 1765 to 2300. Climatic Change 109, 213 (2011). URL https://doi.org/10.1007/s10584-011-0156-z.
- [43] Andrews, T., Gregory, J. M. & Webb, M. J. The dependence of radiative forcing and feedback on evolving patterns of surface temperature change in climate models. *Journal of Climate* 28, 1630 – 1648 (2015). URL https://doi.org/10.1175/JCLI-D-14-00545.1.
- [44] Dong, Y., Proistosescu, C., Armour, K. C. & Battisti, D. S. Attributing historical and future evolution of radiative feedbacks to regional warming patterns using a Green's function approach: the preeminence of the Western Pacific. Journal of Climate 32, 5471 – 5491 (2019). URL https://journals.ametsoc.org/view/journals/clim/32/17/jcli-d-18-0843.1.xml.
- [45] Dong, Υ. etal.Intermodel spread inthe pattern effect and sensitivity CMIP5 CMIP6 its contribution to climate in and Journal of Climate 33. (2020).models. 77557775 URL https://journals.ametsoc.org/view/journals/clim/33/18/jcliD191011.xml.
- [46] Armour, K. C. Energy budget constraints on climate sensitivity in light of inconstant climate feedbacks. Nature Climate Change 7, 331-335 (2017). URL https://doi.org/10.1038/nclimate3278.
- [47] National Oceanic and Atmospheric Administration (NOAA) Global Monitoring Laboratory. Trends in Atmospheric Carbon Dioxide: Mauna Loa CO_2 Annual Mean Data (2020).URL https://gml.noaa.gov/webdata/ccgg/trends/co2/co2_annmean_mlo.txt.

- [48] Dvorak, M. Data for 'estimating the timing of geophysical commitment to 1.5 and 2.0°c'. URL https://doi.org/10.5281/zenodo.6456363.
- [49] Dvorak, M. Methods and results for 'estimating the timing of geophysical commitment to 1.5 and 2.0°c'. URL https://doi.org/10.5281/zenodo.6455705.

Methods

Model.

We use FaIR v1.3.6 [21] for all historical and future climate simulations. Historical simulations are run using the Reduced-Complexity Model Intercomparison Project (RCMIP)generated SSP emissions time-series for the period 1765-2016; future scenarios are run for SSP1-1.9, SSP1-2.6, SSP4-3.4, SSP2-4.5, SSP4-6.0, SSP3-7.0-lowNTCF, SSP3-7.0, and SSP5-8.5 for the period 2016-2100, with an abrupt cessation of all anthropogenic emissions in every year along each pathway until 2080 or until CO₂ emissions reach net zero; CO₂ emissions are set to zero while all other emissions are set to pre-industrial (1765) levels in order to retain background sources. Background emissions of N₂O and CH₄ for the historical period and into the future are prescribed using the default time-series in FaIR, where emissions vary over the historical period but are constant from 2005 onwards as a proxy for natural sources.

Forcing associated with land-use change is not included over the historical record or in future projections due to the lack of a dynamic vegetation model and its overestimation in FaIR relative to AR6 estimates [18]. Land-use change associated with the zero emissions commitment was also not modeled in intermediate complexity models participating in ZECMIP [23]. Including land-use forcing does not substantially change the results (Fig. S1). Volcanic and solar forcing are not included in future emissions scenarios in order to isolate anthropogenic warming. Volcanic forcing for the historical period is scaled by a factor of 0.6 in order to obtain better agreement with historical aerosol forcing and global temperatures (similar scaling-down of volcanic efficacy has previously been performed in the MAGICC simple climate model for better correspondence to observed temperatures [42]).

We modify FaIR to use the Held et al. [24] two-layer energy balance model (EBM) to calculate global temperatures from radiative forcing. The equations for this EBM are:

$$C\frac{dT}{dt} = F + \lambda T - \epsilon \gamma (T - T_0)$$
$$C_0 \frac{dT_0}{dt} = \gamma (T - T_0)$$

where C and C_0 are, respectively, the heat capacities of the first layer (representing the surface components of the climate system including the atmosphere, land, sea ice, and ocean mixed layer) and second layer (representing the deep ocean); γ is the coefficient of heat exchange between the two layers, representing a measure of the ocean heat uptake efficiency; λ is the radiative feedback parameter; and ϵ is a deep ocean efficacy factor that expresses the time dependence of the global radiative feedback (see Held et al. [24], Geoffroy et al. [25]). The equilibrium climate sensitivity is given by

$$ECS = -\frac{F_2 x}{\lambda}$$

where F_{2x} is the forcing for CO₂ doubling. Retaining the Held formulation of energy balance in FaIR allows us to diagnose heat uptake, account for feedback time dependence, and model feedback parameters estimated from general circulation models [25].

Ensemble development.

A 300,000 member FaIR ensemble is generated by drawing random values from prior probability distributions of ECS (uniform from 1 to 6°C), ocean model variables, and carbon cycle parameters. Normal prior distributions of γ , C and C_0 are generated using distributions from GCMs (Global Climate Models) (Geoffroy et al.) [25], but with standard deviations (σ) expanded by 50%; the distribution in γ is truncated to avoid values less than 0.1, while C_0 is truncated to avoid sampling deep ocean heat capacities less than 10 W m⁻² °C⁻¹ yr (γ : mean = 0.67 W m⁻² °C⁻¹, σ = 0.225 W m⁻² °C⁻¹; C: mean = 8.2 W m⁻² °C⁻¹ yr, σ = 1.4 W m⁻² °C⁻¹ yr; C_0 : mean = 124.7 W m⁻² °C⁻¹ yr, σ = 65.8 W m⁻² °C⁻¹ yr). A lognormal prior distribution for ϵ is generated using distributions from GCMs [25] (mean = 1.28, σ = 0.375), with values of ϵ above unity reflecting the fact that the effective climate sensitivity is expected to become larger in the future as the geographic pattern of warming changes on timescales of multiple centuries [18, 43, 44, 45].

We scale GHG forcing due to CO₂, CH₄, and N₂O in every year by a constant amount generated from normal distributions that match the updated IPCC AR6 "very likely" range (90% confidence interval) of radiative forcing over the industrial period (1750-2018; CO₂: mean = 2.15 W m⁻², $\sigma = 0.16$ W m⁻²; CH₄: mean = 0.54 W m⁻², $\sigma = 0.07$ W m⁻²; N₂O: mean = 0.19 W m⁻², $\sigma = 0.02$ W m⁻²). Aerosol forcing is also scaled by a constant amount by values drawn from a uniform distribution ranging from -2.2 to -0.1 W m⁻² in order to adequately sample the full range of possible forcing values. All other gases and short-lived climate forcers (SLCFs) are treated using default parameterizations in FaIR (not scaled). Uncertainty in FaIR carbon cycle parameters associated with various uptake processes is treated as in Smith et al. [21, 13]. Because FaIR has no representation of internal variablity, $\text{ZEC}_{\text{anthro}}^{\text{peak}}$ and $\text{ZEC}_{\text{anthro}}^{2100}$ are quantified based on annual mean temperature values.

Constraining the model.

Following the methods of Armour [46], a Bayesian framework is used to constrain model outputs to observational estimates of global mean sea surface temperature (T), ocean heat uptake (Q), and radiative forcing (F) for the 2006-2019 mean relative to the 1850-1900 baseline, reducing the model ensemble to 6,729 members. Specifically, only ensemble members that satisfy the condition:

$$\sqrt{\left(\frac{\delta T}{\sigma T}\right)^2 + \left(\frac{\delta Q}{\sigma Q}\right)^2 + \left(\frac{\delta N}{\sigma N}\right)^2} < 1.65$$

are kept, where δT , δQ and δF are the differences between the model-derived estimates of global surface temperature, ocean heat uptake and total radiative forcing anomalies (2006-2019 mean relative to the 1850-1900 baseline) and observational estimates, with σ_T , σ_Q and σ_N representing one standard deviation of the mean for each of these values, and 1.65 corresponding to the 90% confidence level. Observational values are taken from the IPCC AR6: $\Delta T_{obs} = 1.03 \pm 0.2$ °C, $\Delta Q_{obs} = 0.59 \pm 0.35$ W m⁻² and $\Delta N_{obs} = 2.20 \pm 0.7$ W m⁻² [18]. Modeled CO₂ concentrations are additionally constrained to be within \pm 2 ppm of the 2006-2018 mean (395.98 ppm) [47].

This method produces a posterior estimate on the equilibrium climate sensitivity of 2.9°C [1.8-4.7°C], which is consistent with the most recent estimate of 2.3-4.7°C provided by Sherwood et al. [20] and 2-5°C as assessed in IPCC AR6. Posterior estimates of aerosol

forcing and the remaining four free parameters in the two-layer ocean model (γ , ϵ , C and C_0) are shown in Figs. E1-E4). However, the observational record is not long enough to adequately constrain ϵ owing to the slow adjustment of the deep ocean (the timescale on which the value of ϵ becomes relevant for surface warming). The posterior distribution of ϵ used in this study is thus the same as the prior (Fig. E2c); however, sensitivity tests show that the choice of prior distribution in ϵ does not significantly affect the conclusions presented here (Supplementary Fig. S3).

Data availability.

All data necessary to interpret, verify and extend the research in this article are available to download from the online repository, Zenodo [48].

Code availability.

The FaIR model is available to download from the public code repository, GitHub (https://github.com/OMS-NetZero/FAIR). All other code used to used to set up model simulations, analyze model output and create figures, are available to view and download from GitHub [49].

