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Abstract 

 

Biodiversity is declining fast so we need robust tools to predict how biodiversity will respond 

to changes in land-use and climate. Available global biodiversity indicators, such as the 

Living Planet Index, help us prioritise conservation resources and evaluate the effectiveness 

of conservation and policy interventions and show progress towards environmental targets. 

But is it possible to accurately extrapolate these indicators spatially and/or project them into 

the future? And if so, how far can we reliably project them and when do predictions become 

too inaccurate to be useful? To assess the predictability of biodiversity trends, we apply a 

set of models to predict inter-annual change within time-series of vertebrate population 

abundance based on historical land use and climate data and assess their performance 

against withheld data. For this, we used a hindcasting validation approach. For a time series 

of length t we stepwise removed x years (ranging from 1-10) a) at the tail end of the time 

series, b) at the beginning of the time series and c) randomly in the middle of the time 

series creating gaps of maximum length x. The removed data points in each time-series 

represented our test set and the remaining data points the training set. We then applied 

random forest and linear mixed effects models to the training data, with relative population 

change and Relative Percent Difference (RPD) between years as response variables. As this 

analysis is in progress, we present a sample of results for random forest models, and discuss 

how we plan to progress the work in order to provide a complete assessment of 

predictability of vertebrate population trends. Being able to accurately predict population 

trends is important as population declines can be a prelude to extinction and – if we get 

them right - predicted trends could be used to determine a species’ extinction risk via IUCN 

criterion A.  
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Introduction       

As global biodiversity continues to decline it is critical that we have robust tools to rapidly 

assess drivers of wildlife abundance trends across biodiversity dimensions. Explanatory models 

help identify what traits and ecological factors are good at predicting population trends of 

species we know about, and at testing potentially theoretically important predictors. 

Abundance trends in birds and mammals are associated with body mass, rates of climate 

warming, and conversion to anthropogenic land use (Spooner, Pearson and Freeman, 2018). 

Past environmental change also strongly correlates with abundance trends (Cornford et al., 

Manuscript under revision) and with biodiversity responses more generally (Kuussaari et al., 

2009; Semper-Pascual et al., 2021). However, we also need models to accurately predict 

future biodiversity trends from past data, a process known as forecasting. This is important 

for conservation and management decision-making, particularly in the context of future 

environmental change. If sufficiently accurate, this process would allow us to estimate the 

rate of biodiversity loss in data-poor regions (Yates et al., 2018), improve our ability to predict 

biodiversity trends under different scenarios (Nicholson et al., 2012; Visconti et al., 2016; 

Powers and Jetz, 2019; Leclère et al., 2020) and help us gauge which actions are needed to 

achieve targets (Visconti et al., 2016; Nicholson et al., 2019).  

If models are used to make predictions to inform conservation policy at different scales, 

their outputs need to be evaluated carefully, their limitations known and their accuracy 

specified and communicated (Mouquet et al., 2015). It is important to understand what 

aspects of ecological systems are predictable, and to quantify the uncertainty around these 

predictions or forecasts (Pennekamp et al., 2017), especially in the near-term (Dietze et al., 

2018). Predictions should be calculated over a range of dimensions, such as space, time, 

and phylogeny (Petchey et al., 2015) and evaluated in terms of their accuracy (Harris, 

Taylor and White, 2018). However, knowledge about how far into the future (or along other 
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dimensions) we can accurately predict is limited in ecology. A recent study (Cornford et al., 

Manuscript under revision) suggests that the linear mixed effects models developed so far to 

predict average population trends, such as Spooner, Pearson and Freeman (2018), have 

high explanatory power, but do not perform well in out-of-sample predictions. Here, we 

apply random forest and linear mixed effects models to predict change in population 

abundance of vertebrate species. We test our models’ ability to accurately predict existing 

values withheld from the models during training. This is known as hindcasting, a term 

borrowed from meteorology (Jolliffe and Stephenson, 2011). With this work, we hope to 

establish a forecasting horizon for predictions of vertebrate population trends. Population 

declines are a sensitive indicator of biodiversity loss as they can be a prelude to extinction. 

Our outputs could ultimately also be used to inform the IUCN Red List criteria, particularly 

via criterion A, which is based on population declines (IUCN, 2012). 

Methods 

We applied random forest and linear mixed effects models to predict interannual change in 

population abundance of vertebrate species. We used data from one of the most 

comprehensive abundance databases available and aligned to best practices for making and 

evaluating ecological forecasts (Harris, Taylor and White, 2018). We used a broad range of 

predictors, including environmental and trait data. We then assessed the temporal 

predictability of population trends by testing model results against data already available at 

the time when the predictions were made, but that were withheld from the model during 

training. The withheld values were removed from different sections of the time series (at the 

beginning, at the end and in the middle). Two different error metrics were calculated to 

evaluate the gap between predicted and observed values. A schematic representation of the 

modelling process and validation steps is provided in Figure 1.  
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Figure 1 Illustration of the modelling process and validation steps with hypothetical data. 
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Data preparation 

Population data 

Population abundance data were gathered from the Living Planet Index (LPI) database 

(https://www.livingplanetindex.org). The LPI database contains time series of population 

estimates for over 27,000 vertebrate populations monitored across the globe during the 

period 1950–2019. Time series are collated from the scientific literature, online databases 

and gray literature. To be included in the database, data must meet three conditions (Loh et 

al., 2005). The data source must be referenced and traceable. Data must have been 

collected using comparable methods for at least two years for the same population. Units 

must be of population size, either a direct measure such as population counts, densities, or 

indices, or a reliable proxy such as breeding pairs, nests, tracks, capture per unit effort or 

measures of biomass. We further filtered the data to include only populations that met the 

following additional criteria: a) data was covering terrestrial and freshwater tetrapod 

species, b) populations were monitored in specific locations with accurate coordinates 

(therefore excluding many of the LPI population trends that are aggregated over large areas 

and thus cannot be spatially linked to environmental data), c) time-series spanned a period 

of at least 4 years, d) the time-series had at least 3 data points. 

Missing values between the start and end point of a time series were interpolated using 

moving weighted exponential average with +/-4 window size. Relative percentage change 

and relative percent difference (RPD) were then calculated on the imputed dataset between 

consecutive years. Relative percentage change was calculated as the difference between the 

population value at time t and the value at t-1, divided by the value at t-1, multiplied by 

100: 

 

𝑥𝑡 −  𝑥𝑡−1

𝑥𝑡−1
∗ 100 

https://www.livingplanetindex.org/
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Relative population change varies between -100% and infinite, but positive change was 

capped at 10000%. We thus retained very large values, but capped their extent to an 

arbitrary threshold for changes deemed biologically realistic. RPD between X and Y is 

defined as follows: 

𝑑1 (𝑥, 𝑦)  =
𝑥 − 𝑦

(|𝑥|  + |𝑦|)/2
 =  2

𝑥 − 𝑦

|𝑥|  + |𝑦|
 

 

RPD values always lie between -2 and 2 and they are positive when x exceeds y and 

negative when y exceeds x. 

Species characteristic, climate and environmental data 

Geographical range size data was sourced from Birdlife (2021) for birds and IUCN (2021) for 

all other species. Only the portions of the range where the species is “extant” or “possibly 

extant” were taken into account. Body mass for each species was sourced from a recent 

study on threats to vertebrate populations (Noviello et al., 2020). We extracted mean values 

of 21 environmental and anthropogenic pressure variables (Table 1) across an azimuthal 

equidistant projection 25km2 buffer centered around the midpoint of each population’s 

location as per Spooner et al. (2018) to take into account changes at landscape level around 

each population. Mean accessibility and elevation were extracted as static variables (one 

data point only) due to data availability. All other variables were extracted in the form of 

time-series, as per best practices recommendations for producing and evaluating ecological 

forecasts (Tredennick et al., 2016; Harris, Taylor and White, 2018). The number of records 

within the buffered zone available for each species in the Global Biodiversity Information 

Facility (GBIF) (GBIF: The Global Biodiversity Information Facility, 2021) was included to test 

for the presence of site-selection bias (Palmer, 1993; Fournier, White and Heard, 2019). 

These extracted variables were filtered to include only the years for which population 

estimates were available (with a lag of 1 year, so that relative change in population 
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abundance between e.g. 1970 and 1971 is associated with predictors for the year 1970). 

When variables were available as daily or monthly values, an average value was calculated 

for each year. As Jung, Scharlemann and Rowhani (2020) showed that incorporating lagged 

environmental change into models increases prediction accuracy, historical land use was 

included in the models as the average across the 30 years prior to the start of the time-

series.  

Dataset creation and software used 

Time-series of population abundance and predictors were combined to generate the final 

datasets, comprising over 65,000 data points from 4,675 time-series of 1,262 species. If 

ecological forecasts are to be improved, it is important to continue making them available 

for future assessment (Dietze et al., 2018). We plan to make most of the data and the code 

to replicate the analysis publicly available. LPI data are publicly available except for the time 

series that have been provided to the LPI team under the agreement they would be kept 

confidential, usually because of sensitivity around the species location. The final code to 

replicate the analysis and the non-confidential data will be available on GitHub. 

Data extraction and preparation were carried out using Google Earth Engine (Gorelick et al., 

2017) and R (R Core Team, no date). The dplyr (Wickham et al., 2019), ggplot2 (Wickham 

et al., 2021), data.table (Dowle et al., 2021), reshape 2 (Wickham, 2020), lubridate (Spinu 

et al., 2021),zoo (Zeileis et al., 2021), xts (Ryan et al., 2020) and imputeTS (Moritz, Gatscha 

and Wang, 2021) packages were used to format the population trend data. The raster 

(Hijmans et al., 2022) and reshape2 (Wickham, 2020) packages were used to extract and 

format the environmental data. The packages lme4 (Bates et al., 2015), mgcv (Wood, 

2011), MuMIn (Bartoń, 2022), caret (Kuhn et al., 2021) and ranger (Wright, Wager and 

Probst, 2021) were used to model and predict population trends. 
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Table 1 Variables included in the models as predictors. 

Class Variable URL Source Unit Static/

Time 
span 

Resolution 

Trait data Body mass https://doi.org/10.1101/2020.12.17.423192 Noviello et al. 
(2020) 

g Static 
 

Range Range size https://www.iucnredlist.org/resources/spatial-data-

download, 

http://datazone.birdlife.org/species/requestdis 

Birdlife 

(2021); IUCN 

(2021) 

km2 Static 
 

Environme
ntal 

Elevation https://srtm.csi.cgiar.org Jarvis et al., 
(2008) 

m Static 90m 

Environme
ntal 

Precipitation, temperature, soil 
temperature, snow cover, 

evaporation 

https://cds.climate.copernicus.eu/cdsapp#!/dataset
/10.24381/cds.68d2bb30?tab=overview 

Copernicus 
Climate 

Change 
Service, 

(2019) 

Multip
le 

units 

1981-
2019 

0.1◦ 

Environme

ntal 

Normalized Difference Vegetation 

Index (NDVI) 

https://climatedataguide.ucar.edu/climate-

data/ndvi-normalized-difference-vegetation-index-
noaa-avhrr 

Vermote et al., 

(2014)  

Norm

alized 
differ

ence 

veget
ation 

index 

1981-

2018 

0.05° 

Human 

impact 

Number of GBIF occurrence 

records 

https://www.gbif.org/ The Global 

Biodiversity 
Information 

Facility, (2021) 

numb

er of 
recor

ds 

1950-

2019 

Aggregated 

in 25km2 

buffer areas 

around 
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population 
location 

Human 

impact 

Mean accessibility https://figshare.com/articles/dataset/Travel_time_t

o_cities_and_ports_in_the_year_2015/7638134/3 

Nelson et al., 
(2019) 

Travel 

time 

in 
minut

es to 
neare

st 

urban 
area 

with a 
popul

ation 
of 

over 

50,00
0 

peopl
e in 

2015 

Static 

(2015) 

30 seconds 

Human 

impact 

Land use (primf: forested primary 

land, primn: non-forested primary 
land, secdf: potentially forested 

secondary land, secdn: potentially 

non-forested secondary land, 
pastr: managed pasture, range: 

rangeland, urban: urban land, 
c3ann: C3 annual crops, c3per: C3 

perennial crops, c4ann: C4 annual 
crops, c4per: C4 perennial crops, 

c3nfx: C3 nitrogen-fixing crops 

https://luh.umd.edu/data.shtml Hurtt et al., 
(2020)  

Propo

rtion 
of 

grid 

cell 
cover

ed by 
land 

use 
type 

850-‐

2015 

0.25◦×0.25◦ 

 

 



 

9 

 

 

Research design 

Cross validation    

To evaluate predictability of local biodiversity change over time, we applied a hindcasting 

validation approach. For a time series of length t we stepwise removed x years (ranging 

from 1-10) a) at the tail end of the time series, b) at the beginning of the time series and c) 

randomly in the middle of the time series creating gaps of maximum length x (Figure 1). 

The removed data points in each time-series represented our test set and the remaining 

data points the training set.  

Modelling  

To assess the predictability of population time series of population abundance, we applied 

two modelling approaches to the training data, with relative population change and Relative 

Percent Difference (RPD) between years as response variables. For the modelling, all 

numeric predictor variables were scaled by centering them to a mean of zero and dividing 

them by one standard deviation. As some variables had missing data, we excluded all 

observations that had missing data. We fitted random forest models to predict the withheld 

population abundance values based on the predictors included in the data set. We grew 500 

random forest trees for each random forest iteration and calculated variable importance for 

each permutation. We also constructed linear mixed effects models with study ID and 

Binomial as random effects to take into account differences between monitoring methods, 

locations and individual species, as suggested by Harris et al. (2018) as a way to address 

unknown or unmeasured predictors. The number of records in GBIF, range size, body mass 

and the year the data had been collected in were included in all models as fixed effects. In 

addition to these, for each permutation (removing trailing and starting years and creating 

gaps) we selected the top 5 remaining variables of higher importance from the random 
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forest models for that specific subgroup and added those to the models as additional fixed 

effects. The variables included in the models are summarised in Table 2. Using the dredge() 

function from the Mumin R package (Bartoń, 2022) we evaluated all models resulting from 

all possible combinations of the selected predictors and their pair interactions. The top 

models (where the cumulative sum of the AIC weights were ≤0.95) were used to generate 

predicted values for the test data. Predictions were obtained from each of the tops models 

and then averaged based on the respective coefficients (Burnham and Anderson, 2002; 

Anderson, 2008).  

 

Table 2 Data included in the linear mixed effects models as fixed effects. 
 

Percentage change RPD 

 
START GAP TRAIL START GAP TRAIL 

Number of GBIF records X X X X X X 

Range size X X X X X X 

Body mass X X X X X X 

Year X X X X X X 

Historical C4 perennial crops coverage X X X X X X 

Historical forested primary land coverage X X X X X X 

Historical potentially forested secondary 

land coverage 

X X X X X X 

C4 perennial crops coverage 

at year -1 

X X X X X X 

Mean snow cover at year -1 
  

X 
 

X X 

Forested primary land coverage at year -1 X X 
 

X 
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Evaluation of predictability 

Our work differs from previous studies that have used a summary metric averaged across 

time as a response variable (Spooner, Pearson and Freeman, 2018; Cornford et al., 

Manuscript under revision). We chose to predict interannual change as we are ultimately 

interested in establishing a forecasting horizon for the predictions (Petchey et al., 2015). 

Forecast proficiency is defined by Petchey et al. (2015) as “a measure of how useful a 

forecast is, usually some function of accuracy and precision”. To measure it, we calculated 

three error metrics: Root Mean Square Error (RMSE), Mean Square Error (MSE), and Mean 

Absolute Error (MAE) for all time-series that had 3 or more data points left after removal of 

data points. 

Results 

As these analyses are ongoing, we are limited in terms of the conclusion we can draw from 

the data at this stage. Here we show initial results using RPD as the response variable and 

RMSE as the error metric for random forest models. RMSE has the advantage of being 

expressed in the same unit of measurement as the data. As the number of years removed 

from the time-series increases, the RMSE also increases (Figure 2). For percentage change, 

the error for predictions of years removed at the beginning and in the middle of a time-

series follow similar trajectories. The error for predictions of years removed at the end of a 

time-series initially trails behind, but becomes greater than the other two around the five 

year mark (Figure 2). This might suggest that five year could represent the forecasting 

horizon for predicting into the future. For RPD, the error relative to predictions of years 

removed in the middle of a time-series appears to increase more slowly, and it remains 

below the other two lines up to the five year mark. Predictions for years removed at the 

start and at the end of a time series initially follow a similar trajectory to then diverge in the 

last five years (Figure 2). 
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Figure 2 Changes in the precision metric RMSE (Y-axis) against the number of years removed from 

the tail (blue line) or start (yellow line) end of a time-series, and the length of the gap removed from 
the middle of a time-series (gray line) (X-axis) for both percentage change (left) and RPD (right) 

calculated from random forest models outputs. 

 

 

Even though we are not using these models within an explanatory framework, we note that 

for random forest models, the number of GBIF records, range-size, mean snow cover, C4 

perennial crops coverage and forested primary land coverage are among the variables of 

higher importance alongside historical C4 perennial crops coverage, historical forested 

primary land coverage and historical potentially forested secondary land coverage. All these 

predictors have high importance across permutations and irrespective of the response 

variable, except for mean snow cover and range size, which only appear in the model 

predicting RPD when data have been removed from the end of a time-series. 

The analysis applying linear mixed effects models is in progress. However, our ability to 

compare the two modelling techniques (random forest and linear mixed effects models) is 

limited. This is primarily because due to methodological constraints it wasn’t possible to run 

the linear mixed effects models using all predictors as in the random forest models. Some 

predictors had to be selected or excluded a priori (Table 2), thus making it difficult to 

compare results at this stage.  
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Discussion and next steps 

Research with a primarily predictive goal is a relatively recent feature in ecology (Tredennick 

et al., 2021), but the number of studies aimed at and advocating for predicting and 

forecasting ecological phenomena has increased in recent years (Petchey et al., 2015; 

Houlahan et al., 2017; Dietze et al., 2018; Harris, Taylor and White, 2018). Fields with a 

successful forecasting culture, such as meteorology, can provide useful insight on how to 

improve forecasts (Dietze et al., 2018). Based on this, we outline here what our next steps 

are to provide a complete assessment of predictability of time-series of population 

abundance.  

We have gathered additional data from the BIOTIME database (Dornelas et al., 2018), 

which we plan to use to expand our sample size. We also plan to test additional predictors 

and to test the use of alternative climate and land use maps. It has been shown that 

population trends projections are dependent on the land use data chosen for the analysis 

(Cornford et al., Manuscript under revision). We also intend to expand the dataset by 

imputing environmental and climate time-series as done for time-series of population 

abundance to create a larger (imputed) dataset. 

We will expand the set of models used to generate predictions in order to compare 

predictive performance across models. In particular, we aim to apply a Generalised Additive 

Modelling (GAM) framework and a Gradient Boosting framework to prediction population 

trends. This will help us establish which approach performs better - comparatively - in the 

task of predicting annual population change. Particularly as - due to the a priori selection of 

predictors - the two approaches tested so far cannot be directly compared. It is also 

important to compare the chosen modelling approaches to simple baselines models, as done 

by Harris et al. (2018). This will allow us to establish if the forecasts obtained are more 

accurate than models based on naive assumptions (Jolliffe and Stephenson, 2011; Perretti, 
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Munch and Sugihara, 2013). We plan to construct two baseline models, based on one of the 

following assumptions; a) that future values of the parameter of interest are not going to 

deviate from the average across the time-series and b) that future values will be similar to 

the last observed value.  

In order to make the models useful for actual long- and short-term predictions, we plan to 

make predictions from the whole dataset (without splitting it into training and prediction set) 

as done by Harris et al. (Harris, Taylor and White, 2018). This will allow future researchers 

to assess the performance of our models on longer time horizons as more years of data 

become available. 

In terms of testing the robustness of our results, we will use error measurements to inform 

the data preparation stage. In this first iteration, we have interpolated all time-series of 

population abundance using moving weighted exponential averages. We have not set a 

threshold for the maximum length of gaps we want to interpolate over. The trajectory of 

error over time across models could suggest a suitable threshold. We would then re-run the 

models having only interpolated time-series with gaps lower than the threshold. This would 

also serve as a sensitivity analysis to gauge how robust our results are to changes in the 

initial dataset (exclusion of time-series with long gaps). We also intend to test additional 

cross-validation techniques, by removing entire time-series (Leave One Out Cross Validation) 

from the training set or removing data in blocks based on population location or taxonomic 

groupings. 
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