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Abstract: Citizen science has become an increasingly popular approach to scientific data collection,
where classification tasks involving visual interpretation of images is one prominent area of appli-
cation, e.g., to support the production of land cover and land-use maps. Achieving a minimum
accuracy in these classification tasks at a minimum cost is the subject of this study. A Bayesian
approach provides an intuitive and reasonably straightforward solution to achieve this objective.
However, its application requires additional information, such as the relative frequency of the classes
and the accuracy of each user. While the former is often available, the latter requires additional data
collection. In this paper, we present a two-stage approach to gathering this additional information.
We demonstrate its application using a hypothetical two-class example and then apply it to an actual
crowdsourced dataset with five classes, which was taken from a previous Geo-Wiki crowdsourcing
campaign on identifying the size of agricultural fields from very high-resolution satellite imagery.
We also attach the R code for the implementation of the newly presented approach.

Keywords: citizen science; crowdsourcing; classification task; visual interpretation; earth observation;
satellite imagery; Bayesian; cost optimization; Geo-Wiki; field size

1. Introduction

Citizen science, in which the general public contributes to the generation of knowledge
through, for example, data collection, interpretation, analysis and/or research design,
has expanded greatly over the last two decades [1–3]. In Haklay’s topology of citizen
participation in citizen science [4], crowdsourcing, which is defined as the outsourcing
of tasks to the crowd [5], is the most basic level of citizen contribution, usually involving
data collection. Both citizen science and crowdsourcing are being used more and more
within a variety of fields, including land use and land cover [6], astronomy [7], ecology [8],
hydrology [9], crop monitoring [10] and land consolidation [11], among others. Citizen
science is a powerful tool for data collection because it provides researchers with access to
data that are potentially collected at higher spatial and temporal frequencies than those of
more traditional data sources, such as censuses and household surveys, and with lower
potential costs [12]. These advantages have led to the proliferation of citizen science projects,
particularly given the limited resources often available to undertake research [13]. At the
same time, citizen science projects provide users with the opportunity to be involved in a
range of projects that can increase their scientific knowledge and skills while being engaged
within a broader community, along with many other motivations and positive incentives to
participate [14].

There are many different ways in which citizens can contribute to citizen science
and crowdsourcing projects. This diversity of activities has been captured in a recently
developed conceptual model of citizen participation [15]. One type of task is in the area
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of classification, which uses the visual interpretation skills of humans to identify features
found in images. One of the most famous examples is the classification of galaxies in the
Galaxy Zoo project, which has also led to the discovery of new galaxies by citizens [16].
Once enough images have been classified by citizens, the use of computer vision algorithms
from the field of machine learning is increasingly being used to do the same classification
automatically, often with very good results [17]. Hence, citizen science can provide very
useful training data for automating tasks that were previously only carried out manually.
Geo-Wiki is another example of a crowdsourcing tool that involves citizens in the visual in-
terpretation of very high-resolution satellite imagery to identify land cover and land use [6].
For example, Geo-Wiki has been used previously in the collection of data on agricultural
field sizes in order to understand their distribution globally, which has implications for
land management and food security [18]. Data from this campaign are used in this study
as described in the sections that follow.

In addition to the use of such data for different scientific and/or humanitarian applica-
tions, the quality of the data from citizen science and crowdsourcing has been the subject of
intensive research in this field [19–22], including comparisons in accuracy between experts
and volunteers [23]. Other papers have outlined the variety of methods that can be used
to improve data quality in crowdsourcing, e.g., [24]. One common method of quality
control in tasks related to image interpretation has been to give the same image to multiple
volunteers, thereby providing an indication of agreement between contributors for each
image classified. Simple Majority and Bayesian approaches are the most popular methods
used to aggregate these multiple classifications into a final answer [25–27]. While Simple
Majority is the easiest classification rule, it has problems. First, for more than k = 2 classes,
there is no guarantee that n > k responses will result in a majority. Secondly, there is no
intuitive way to weigh the opinions of different categories of users if such categories exist
(e.g., experts and amateurs). Finally, the relative frequency of the classes is not considered:
if a particular class is known to be extremely rare, one would intuitively need a more
substantial majority to identify it as such, as compared to an extremely common class. A
Bayesian approach provides a solution to the above problems via two mechanisms. First,
instead of simply identifying the most popular voted category, the Bayesian approach
produces so called posterior probabilities for each item belonging to each possible class.
This may still result in equally likely choices when the categories are assumed to be equally
prevalent and the users equally accurate. However, that will generally not be the case.
Moreover, these posterior probabilities directly reflect our confidence in the obtained classi-
fication. Secondly, it allows for the inclusion of external—prior—information on both the
relative prevalence of classes and the user accuracy. While the former is often available, the
latter may present more of a challenge to quantify. This does not technically invalidate the
Bayesian approach since one can always assume equal category prevalences and constant
user accuracies, but it makes it less useful.

Approaches to overcome this challenge have included using user-recorded confidence
in their classification as a proxy for user accuracy. This method is problematic as some users
overestimate their abilities while other users underestimate their abilities [28]. A more
sophisticated and reliable approach has been to use variations of the Independent Bayesian
Classier Combination (IBCC) model, originally defined by [29], to infer user accuracies
and aggregate citizen scientists’ image classifications [7,30]. The IBCC does not require
any ground truth control images to estimate user accuracy or any additional information
from the users. However, the iterative method of estimating user accuracy and aggregating
classifications adds to the computational expense and complexity of the method.

Here we present a two-stage approach in which a subset of the images are ground
truth control points and are used to calculate an estimate of user accuracy, followed by a
second classification stage that uses Bayes’ formula to combine the user accuracy estimates
from stage one with the relative frequency of classes, and user classifications, to obtain
the aggregated classification for each image. This approach is simple and efficient to
implement, has a reliable measure of user accuracy and leverages classifications on images
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with known ground truths that is often included in citizen science projects within a training
stage. In addition, we use data from a previous Geo-Wiki campaign on field size in which
participants were asked to classify the size of agricultural fields using a visual interpretation
of very high-resolution satellite images. Several classifications per geographical location
were collected, and some of the geographical locations were ground truth control points.
We start the paper by examining how sensitive Bayesian inference is to assumptions about
user accuracy. We then explain how to estimate the number of responses per item needed to
achieve a pre-specified classification accuracy when (i) the user accuracy is perfectly known
and when (ii) it must be estimated first. For the latter case, we provide recommendations
for the optimal distribution of resources between estimating the user accuracy and the
classification stage. We demonstrate the approach using both a hypothetical binary class
data set and one that has multiple classes from the Geo-Wiki campaign.

2. Materials and Methods

The methods are first presented for a two-class model, e.g., if the land cover were to
be classified into forest and non-forest based on visual interpretation. This is followed by
a demonstration of how the method can be generalized to multiple classes, e.g., if there
were several land cover classes visually interpreted. Finally, we present a dataset from a
previous Geo-Wiki campaign on agricultural field size, interpreted as five classes from very
small to very large, to show how this proposal’s two-stage approach could work in practice.

2.1. Two Class Model

Consider first a case where each item i = 1, . . . , I belongs to one of the two classes
C = 0 or C = 1, and the relative frequencies of these two classes are known to be
p1 = Pr(Ci = 1) and p0 = 1 − p1 = Pr(Ci = 0). Assume that the users are equally
accurate at identifying either of the two classes and all items are of equal difficulty to
classify, so that Pr(Xui = 1|Ci = 1) = Pr(Xui = 0|Ci = 0) = θ, where Xui is the class
to which the user u assigns the item i, u = 1, . . . , U and U denote the total number of
users. In the context of a two-class land-cover classification (e.g., forest, non-forest), this
would just be the dataset that was collected during the campaign where we have multiple
classifications of the same location but from different users.

In this case, a particular item has been classified by n users, respectively, as {x1, . . . , xn},
so the easiest way to assign it to a class is by the Simple Majority (SM) rule:

ĈSM = I∑j xj≥ n
2
, (1)

where I• is an indicator function that equals 1 when the condition “•” in the subscript is
true and 0 otherwise. For example, if a location was classified four times as forest and one
time as non-forest by five different users, we could use the SM rule to assign forest to that
location because it is the majority answer.

Another way to classify an item is to apply Bayes’ Formula (BF) to obtain a posterior
probability of belonging to class C = 1:

Pr(C = 1|x1, . . . , xn) =
∏n

u=1 θxu
u (1− θu)1−xu p1

∏n
u=1 θxu

u (1− θu)1−xu p1 + ∏n
u=1(1− θu)xu θ1−xu

u p0
, (2)

and then to assign the item to the class C = 1 if Pr(C = 1|x1, . . . , xn) ≥ 0.5, i.e., for common
accuracy θu ≡ θ, if

∑
j

xj ≥
n
2
− 1

2

log p1
1−p1

log θ
1−θ

, (3)

and to C = 0 otherwise. Note that when θ > 0.5 and the classes are equally likely, this will
be the same as the Simple Majority rule. However, when one class is more dominant than
the other, i.e., p1 > 0.5, the rules may be quite different. The SM rule is identical to the
BF rule as θ → 1, i.e., when the users are assumed to be absolutely accurate. Finally, as n
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increases, the relative importance of the term 1
2

log p1
1−p1

log θ
1−θ

diminishes, and the two methods

will again give similar results.
Figure 1 shows the overall classification accuracy α as a function of the user accuracy

θ, for p1 = 1− p0 = 0.9 and θ = 0.7 for the dominant and the minority class as the result
of applying the SM and BF rules, respectively. The graph shows that a higher overall
BF accuracy is achieved by better identifying the dominant class at the cost of a poorer
identification of the minority class.
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Figure 1. The overall classification accuracy α of the Simple Majority (SM) and Bayes Formula (BF)
for the dominant and minority classes and overall as the function of user accuracy θ (assumed fully
known) for p1 = 0.9. BF performs better than SM on average by better identifying the dominant class
at the cost of misidentifying the minority class.

Given the prior class frequencies p0 and p1, the true user accuracy θ and the perceived
user accuracy θ̂ and n responses per item, the accuracy of the BF classification can be
evaluated as

α = F(x∗, n, 1− θ) ∗ p0 + (1− F(x∗, n, θ)) ∗ p1, (4)

where

x∗ < −n
2
− 1

2
∗

log( p1
(1−p1) )

log( θ̂
(1−θ̂)

)
, (5)

and F(x, n, p) is the cumulative probability function of the binomial distribution with
parameters n and p.

Assuming that the class frequencies and user accuracies are perfectly known, one can
use these equations to perform a sort of statistical power analysis by producing a plot of
the overall classification accuracy α as a function of n, and thus identifying the minimum
number of responses necessary to reach a pre-specified accuracy level. Figure 2 illustrates
such an analysis for p1 = 0.9 and θ = 0.7. Here, in order to reach an average accuracy of at
least 95%, one needs at least 8 responses per item.
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Figure 2. The overall classification accuracy α as a function of the number of responses per item n
estimated for BF with p1 = 0.9 and θ = 0.7 and fully known. Based on these calculations, one needs
at least 8 responses per item to achieve an accuracy of 0.95.

While it is often reasonable to assume that the relative frequencies of the classes p0
and p1 are known a priori, little or no information may be available on the user accuracies.
However, as Figure 3 illustrates in the case of p1 = 0.9 and θ = 0.7, getting the user
accuracy correct is important as the final classification accuracy may be quite sensitive to
these assumptions.
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Figure 3. The overall classification accuracy α for BF as a function of the perceived user accuracy θ̂

when p1 = 0.9, θ = 0.7 and n = 12. The classification user accuracy for SM and for BF2 when m = 11
and n = 11 are given for comparison. For the same cost Um + In, BF2 generally performs better than
the other methods.
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To obtain information on user accuracy, we propose that a testing stage is added to the
set-up of the crowdsourcing campaign. During this stage, all users will classify a set of m
ground-truthed items for which the ground truth is known. Given yu correct identifications
out of m returned by user u, the accuracy of user u may then be estimated as

θ̂u =
a + yu

a + b + m
, (6)

where a and b are values that represent prior information about the user’s accuracy. We
have chosen this Bayesian estimator rather than the standard yu

m one for several reasons
as follows: (i) it allows knowledge about user accuracy from other similar exercises to
be incorporated, if available; (ii) it avoids the problematic estimated values of 0 and 1,
which tend to occur in small samples; and (iii) it has a more general form, allowing for the
standard estimator with a = 0 and b = 0. In the absence of any other information, it is
common to choose either a = b = 1 or some smaller but still equal values for the two.

Our proposed experimental set-up thus consists of two stages: the testing stage and
the classification stage. During the former, the user accuracies are estimated, and during
the latter, the classification data are combined with these user accuracies via BF to assign
each item to the class with the highest posterior probability. In the testing stage, each user
classifies m items, and in the classification stage, each classified item is rated by n users,
bringing the classification effort (i.e., cost), defined as the total number of classifications, to
mU + nI. We will refer to this classification set-up as BF2.

Simulations can be used to estimate the overall classification accuracy resulting from
the specific distribution of resources between the two stages, given assumptions about
p0, p1, θ, a and b. Simulations, performed for all reasonable combinations of m and n, are
as follows:

• For each user, simulate the number of correct testing stage responses y1, y2, . . . , yU
out of m from the Binomial distribution, and thus estimate each user’s accuracy as in
Equation (6).

• For each item, simulate the responses obtained from the set of users classifying this
item, using the true user accuracy θ.

• Apply BF to the estimated user accuracy from step 1 and classification responses from
step 2 to produce the final classification as in Equation (2).

• Evaluate the overall accuracy as the proportion of correct identifications.

Figure 4 shows the overall classification accuracy estimated for I = 104 items and
U = 103 users with p1 = 1− p0 = 0.9 and θu = 0.7 for u = 1, . . . , U. The prior parameters
for the user accuracy were set at a = 6 and b = 4, corresponding to the low expectation
of 60% individual user accuracy. The solid iso-accuracy contours show that the same
accuracy may be achieved with different combinations of m and n. The dotted iso-cost lines
show different m and n combinations that result in the same overall classification effort.
The optimal allocation of resources, shown as black points on the graph, is then reached
at the tangent points of the two types of curves. One may thus use such simulations to
identify the highest accuracy reachable with a certain set of resources (i.e., the iso-accuracy
curve, furthest from the origin, tangent to the given iso-cost line). Or alternatively, one
may identify the total number of responses and the best distribution necessary to reach a
certain goal accuracy. In the example illustrated in Figure 4, the highest accuracy reachable
with 121× 103 responses is 0.95. Correspondingly, the minimum number of responses
necessary to achieve the minimum accuracy of 0.95 is 121× 103, of which each of the 104

users identifies 11 items in the first testing stage, and then each of the 105 items is identified
12 times to provide the final classification.
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Figure 4. The overall classification accuracy α for BF2 as a function of m and n, the first stage and
second stage sizes for p1 = 0.9, θ = 0.7, a = 6 and b = 4. The solid lines are the iso-accuracy lines,
corresponding to combinations of m and n, resulting in the same accuracy. The dashed lines are the
iso-cost lines, corresponding to combinations of m and n, resulting in the same cost or effort. The
tangent points of iso-cost and iso-accuracy lines correspond to optimal resource allocation.

Figure 5 shows that BF2 will significantly outperform SM, especially when the number
of users available for the second stage (n) is small. It also shows that the effect of the number
of user ratings involved in the first stage (m) becomes marginally smaller. Thus, while
increasing this number from m = 0 to m = 5 will increase the overall classification accuracy
in this particular case by several percentage points, the effect of a further increase from
m = 5 to m = 20 on the overall accuracy is negligible.

Figure 3 compares the accuracy of the above BF2 set-up to those of the SM and the BF
with n = 12, which corresponds to the comparable total effort of 120× 103 classifications.
While the single-stage BF performs better than BF2 for a θ̂ close to the true value, BF2
performs well overall and is a less risky proposition. Furthermore, note that our prior
assumption of 60% user accuracy, which was corrected somewhat during the testing stage
of BF2, would have resulted in the expected classification accuracy of 0.9477, i.e., very
slightly lower than that of BF2.

The slope of the iso-cost lines in Figure 4 is−U
I , i.e., if the number of users is high with

respect to the number of items, the curves will be steep, and optimal solutions will tend to
require a small m and large n. On the contrary, if the number of users is relatively small,
the optimal solutions will occur at a large m and small n. In the former case, an optimal
solution may be m = 0, i.e., a simple one-stage BF classification, which is thus a special case
of the proposed two-stage BF2. All the simulations for this study have been implemented
in R [31], and the relevant code is provided in Appendix A.
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Figure 5. Comparison of the overall classification accuracy α for Simple Majority (SM) and the 2-stage
Bayesian approach (BF2) as a function of m and n, the first stage and second stage sizes, for p1 = 0.9,
θ = 0.7, a = 6 and b = 4. BF2 consistently outperforms SM. Implementing the 2-stage testing
improves accuracy, although the marginal effect of adding further tests (m) decreases.

2.2. Generalization of the Model to K Classes

If the number of classes K ≥ 2, let xu ∈ {1, . . . , K} describe the class to which the user
u assigned a particular item. Then, applying BF, we get the posterior probability of an item
belonging to a class C as

Pr(C = c|x1, . . . , xn) =
∏n

u=1 θucxu pc

∑K
k=1 ∏n

u=1 θukxu pk
. (7)

Here, θuck is the probability that the user u will classify an item from class c as k. If xuck
is the number of images of class c identified as k by user u in the first stage, this probability
can be estimated as

θ̂uck =
ωuck + xuck

∑k ωuck + xuck
, (8)

where ωuck encodes our prior information about user accuracy. In the absence of more-
detailed knowledge, one may choose ωuck = a for c = k and ωuck = b/(K− 1) for c! = k.
Then, the prior probability of identifying any class correctly is a

a+b , similar to the binomial
set-up.

2.3. Data from the Geo-Wiki Field Size Campaign

To provide an illustration of the above methods, we use data collected from a Geo-Wiki
campaign on agricultural field sizes [18]. For the purpose of the campaign, fields were
defined as agricultural areas that are used for the growing of annual and perennial crops,
which are separated by roads, permanent paths, trees or shrub shelter belts or the presence
of different crop types. However, this can also include pastures, hay and fallow because of
the difficulties in differentiating between these different types from visual interpretation
of satellite imagery. We defined five field categories as follows (more details are provided
in [18]):
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• Very large fields: >100 ha;
• Large fields: 16 to 100 ha;
• Medium fields: 2.56 to 16 ha;
• Small fields: 0.64 to 2.56; and
• Very small fields: <0.64 ha.

To create the sample for classification, we first produced a layer of maximum agricul-
tural extent by combining different land cover maps and cropland layers, e.g., GlobeLand30
and the European Space Agency’s CCI land cover map, through a union overlay operation.
From this, we generated a randomly stratified sample of 130 K locations globally.

The Geo-Wiki application is comprised of ’branches’, where a new branch was created
for this campaign. The application uses satellite imagery from Google Maps and Microsoft
Bing Maps for visual interpretation, with a link to Google Earth so that users can view his-
torical satellite imagery. The Geo-Wiki branch was customized for field size data collection
and is shown in Figure 6.

Figure 6. The Geo-Wiki interface for the identification of agricultural field size showing the questions
that volunteers need to answer, the area measuring tool and guidance on how to estimate field sizes
using the grid squares. Source of imagery: Google.

During the campaign, the participants were shown a random location and were then
asked to identify what field size categories were present in the red box, which is a 16 ha
area divided into 25 grid cells. If more than one field size was selected, the participants
were then asked to indicate which one was dominant. The grid squares were intended to
help participants identify field sizes as follows:

• Very small: fields smaller than the 1 grid square;
• Small: fields between 1 and 4 grid squares cells (2.56 ha);
• Medium: fields smaller than the red box (16 ha) and larger than 4 grid squares;
• Large: fields smaller than the blue box (100 ha) and larger than the red box; and
• Very large: fields larger than the blue box.

An area measuring tool was provided (Figure 6) for delineating fields manually in
order to help with calculating their sizes.

As part of the campaign design, it was decided that each location would be visited by
at least three different volunteers so that this information could be used for quality control.
Other techniques used in the campaign that are related to quality control and gamification
are outlined in [18].

The campaign ran for 4 weeks in June 2017, where a total of 130 users classified 119,596
images. Of these, 2085 were ground truth control points, resulting in a total of 355,013 field
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size classifications, of which 44,495 were classifications of the control points. Hence, it is
possible to use this data set in this paper to demonstrate how a model with K classes can be
applied retrospectively in a two-stage approach to simulate how the crowdsourced data
collection could have been optimized. Other information about the campaign includes: the
number of responses per user varied from 1 to 5655, with a median of 14 and a mean of
342.3; and the number of responses per image varied from 1 to 153, with a median of 22
and a mean of 21.34.

3. Results

Using the classifications of the expert control points (or ground truth data) by the Geo-
Wiki volunteers obtained during the field size campaign, we can retrospectively undertake
step 1 and calculate a confusion matrix, shown in Table 1. It shows the relative frequencies
of the five classes (where 1 is very large and 5 is very small) among the control points, as
well as the observed identification accuracy below this. One can see, for example, that class
5 (very small fields) was the easiest to identify θ55 = 0.878, while class 4 (small fields) was
the hardest to identify with θ44 = 0.546.

Using these relative class frequencies and user accuracies, we can calculate the number
of classifications needed at each location for different desired overall accuracies, which is
shown in Figure 7. For example, to achieve an overall classification accuracy of 95% with
the minimal possible cost, each user should be assigned m = 3 tasks during the first stage,
and each image should be identified by n = 8 users during the second stage.
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Figure 7. The overall classification accuracy α for BF2 as a function of m and n, the first stage and
second stage sizes. The solid lines are the iso-accuracy lines, corresponding to combinations of m and
n, resulting in the same accuracy. The dashed lines are the iso-cost lines for the K = 5 class case study
based on the Geo-Wiki data. The tangent points correspond to optimal resource allocation.
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Table 1. Observed accuracy (absolute and θkj) of identifying field sizes. GT is the expert control
points or ground truth, and ’Classified as’ refers to the user classifications. The numbers 1 to 5 are the
field size classes ranging from very large to very small.

Classified as

GT 1 2 3 4 5 Total (pk)

1 3582 849 41 13 16 4501
0.796 0.189 0.009 0.003 0.004 0.101

2 934 9867 1233 128 118 12,280
0.076 0.804 0.100 0.010 0.010 0.276

3 72 1356 6155 1108 269 8960
0.008 0.151 0.687 0.124 0.030 0.201

4 13 106 868 3172 1653 5812
0.002 0.018 0.149 0.546 0.284 0.131

5 19 124 318 1112 11369 12,942
0.001 0.010 0.025 0.086 0.878 0.291

4. Discussion

Citizen science often employs volunteers in various classification tasks, including
those of relevance to land use and land cover [6]. One of the most common approaches
used to ensure data quality is to provide the same task to multiple users, e.g., classification
of the same image by many, and to then combine the classifications into a single result
using SM, e.g., [32]. However, SM has been shown to have a number of drawbacks in terms
of accuracy but also in terms of knowing how many classifications are needed to achieve a
certain accuracy [33]. The latter is also related to minimizing the number of tasks given to
the crowd so as not to waste their efforts. A recent paper also applied a Bayesian approach
to this problem in the context of image classification for land cover but was limited to two
classes, and it did not implement a two-stage approach [34]. Hence, a large number of
potential classifications were needed for each image to reach a high level of confidence.
In contrast, the approach taken here reduces the overall efforts required of the crowd to
achieve the same overall accuracies.

Moreover, we have mostly concentrated on the overall accuracy rather than class-
specific accuracy. Given the class-specific prevalences p1, . . . , pK and the class-specific
accuracies α1, . . . , αK, the overall accuracy will be a weighted sum:

∑
k

pkαk. (9)

Therefore, in order to achieve better accuracy overall, one would want to focus on
accurately classifying the dominant, more prevalent classes rather than the rare ones.
However, a different objective can be achieved by replacing prevalences with importance
weights, which sum up to one, in the overall accuracy:

∑
k

wkαk. (10)

and optimizing this weighted accuracy function instead. A class-specific accuracy for class
k is obtained by setting wk = 1 and the rest of the weights to 0.

Our approach assumes some prior knowledge of user accuracy (expressed via pa-
rameters a and b for the binary example). The importance of priors when there is little or
no data is a well-known fact in Bayesian statistics [35]. Arguably, in many cases, similar
previous experiments should give a good idea of the user accuracy. However, when no
such knowledge is available, one could perform a sensitivity analysis to see how the prior
settings affect the inference or simply have a more protracted testing stage with greater m.
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The more classes there are, the more data will be needed to inform user-specific
matrices. It may thus make more sense to represent user-specific accuracies with fewer
parameters. However, a common K×K user accuracy matrix may be a step too far. Dividing
users into either self-declared or estimated clusters (e.g., experts vs. amateurs) might be
a better choice. Further studies are needed to clarify this issue, but there are approaches
that use information such as education level and motivation to undertake citizen science to
cluster the participants before the application of Bayesian approaches [27].

The two-stage approach assumes that every user is asked the same number of ques-
tions m to determine their accuracy, and then every image is classified the same number of
times n to classify it with sufficient accuracy. However, in practice, some users’ accuracies
may be narrowed down satisfactorily faster than others, and some images may be unequiv-
ocally classified much faster than others. While these aspects would make the presentation
of our idea overly complicated, they are certainly worth considering.

Finally, we should point out that this method is about using a Bayesian approach
to help optimize the number of times a given location needs to be classified by multiple
people during a crowdsourcing campaign. However, Bayesian approaches can also be used
for improving crowdsourced data quality after a campaign has run, i.e., in post-processing
of the data. For example, Foody et al. [36] used a latent class analysis to infer the relative
quality of visually interpreted land cover from different volunteers, allowing for class-
specific variations from each volunteer to be captured. This information can then be used
to improve the quality of the crowdsourced data when used in subsequent analyses.

5. Conclusions

In this paper, we have presented a two-stage experimental set-up for the crowdsourced
classification of land use and land cover data, and we have explained how to achieve the
optimal distribution of resources between these two stages. In the first stage, the user
accuracy is estimated. In the second stage, this knowledge is applied to classify the images
according to the BF. This two-stage method is a valuable addition to the research on using
Bayesian inference to aggregate user classification in citizen science as it provides an
intuitive and straightforward method to reliably estimate user accuracy and efficiently
aggregate user classifications. We have demonstrated the procedure for simulated data
with K = 2 classes as well as for a case study based on an actual Geo-Wiki crowdsourcing
campaign with K = 5. We have outlined a simulation procedure that can be applied to
any specific classification set-up. Based on the results of this study, we found that BF
performs better than SM by better identifying a dominant class at the cost of misidentifying
a minority class. For the case study provided here, we found that one would need at least
nine classifications per item to achieve an accuracy of at least 0.95. We provide scripts
in Appendix A so that readers can do their own calculations, depending on the desired
classification accuracy, the number of classifications per task and the expected accuracies of
the participants.

Although the methodology presented here can be applied to any type of classification
task with discrete classes, it was specifically developed for future Geo-Wiki campaigns
that are focused on visual interpretation of very high-resolution satellite imagery for land
cover and land use applications. The next campaign that will be run with Geo-Wiki
will employ this type of two-stage approach to see how such a method can be used to
improve the running of future campaigns. Hence, any type of land use and land cover
reference data collection exercise can benefit from this process. This applies to, for example,
developers of land cover and land use products, who might wish to use crowdsourcing to
collect training and/or validation data or for researchers interested in using crowdsourcing
to independently assess the accuracy of existing land use and land cover products or
evaluate their fitness-for-purpose for specific applications. Other potential avenues for
future research include adding more information about the users into the model, e.g.,
their background, expertise and sociodemographics, which might provide even further
optimization in the effective use of the crowd.
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Appendix A. R Code for Evaluating Accuracy.

The code below reproduces the numbers for Figure 2.

# Evaluating accuracy as a function of (n)
# for the 1-stage power analysis

acc.num <- function(t.est,n,THETA,p1){
# p1 is the probability of occurrence for the majority class
# THETA is the true user accuracy
# t.est is the estimated user accuracy
# n is the number of ratings per item

# returns the expected overall classification accuracy

p0 <- 1-p1
k.div <- n/2-1/2*log(p1/(1-p1))/log(t.est/(1-t.est))
acc <- pbinom(k.div,n,1-THETA)*p0+(1-pbinom(k.div,n,THETA))*p1
return(acc)
}

Consider an example of binary classification, where there are two classes of images,
and the dominant one appears 90% of the time (p1 = 0.90). The two classes may, for
example, be ‘aerial photos with over 50% of land in agricultural use’ or ‘aerial photos
with less than 50% of land in agricultural use’. During the preliminary, first-stage analysis,
the users were, on average, 70% accurate for both classes (θ̂ = 0.70). Assuming that
this correctly reflects the true user accuracy(θ = 0.70), we can estimate the number of
identifications per item n needed to reach at least 95% overall accuracy (α = 0.95) using the
following code:

# To produce a range of accuracy values
# for identifications ranging from 1 to n.max,
# one can use the following script:

n.max <- 50;
my.acc <- numeric(n.max+1)

for(i in 1:(n.max+1)){
my.acc[i] <- acc.num(t.est = 0.7, n = i-0,THETA = 0.7, p1 = 0.9)
}

http://pure.iiasa.ac.at/id/eprint/15526/
http://pure.iiasa.ac.at/id/eprint/15526/
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# to produce a quick plot:
plot(0:n.max,my.acc, xlab = expression(n), ylab = expression(alpha), ty = ‘o’, pch = 16)
abline(h = 1, lty = 3, col = ’gray60’)

# to find the minimal number of identifications per item
# necessary to reach at least 95\% accuracy:
(n.opt <- which(my.acc >= 0.95)~\cite{bonney2014next})
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