

SCIENTIFIC REPORTS

Article Open Access Published: 19 March 2020

Climatic and edaphic controls over tropical forest diversity and vegetation carbon storage

58th Meeting of the Association for Tropical Biology and Conservation (ATBC) 11 July 2022

Tropical forests provide crucial ecosystem services

Tropical forests contribute greatly to global terrestrial C sink strength and provide multiple ecosystem services:

- 50% of global carbon cycle
- 30% of global water cycle
- 25% of fossil fuel emissions
- 20% of oxygen production

Tropical forest species diversity:

- 390 billion trees
- 16,000 tree sp.
- Biomass accumulates C worldwide but decreasing sink strength (1990-2007)

~0.4-0.6 / 2.3 Pg C yr⁻¹ (~25%)

Discrepancy between estimates:

Field research

2000

Year

- **Remote sensing**
- Model simulations

Reduction of C sink strength (ground observation)

Observation based NPP estimate:

• Net biomass change **decreasing**

1985 1990 1995 2000 2005 2010

\rightarrow tree mortality rates and turnover time should be accounted for when projecting C sink strength \leq

Brienen et al., (2015) Nature doi:10.1038/nature14283; Brienen et al., (2019) Nature Comm doi:10.1038/s41467-020-17966 z

Increase of C sink strength (remote sensing)

Satellite-based NPP estimate:

• Satellite observation + 3%

• CMIP5 (CO2 + clim.) + 8%

CMIP5 (climate only) - 2%

IASA

CO2 fertilization effect (model projection)

- Earth System Models predict increase in NPP (+ 63%)
- Excluding CO₂ fertilization effect suggests reduction (- 6%)
- Large uncertainties in model representation of vegetation response to projected climate change!

Spatial scales and edaphic controls of geomorphology

Fig. 4. Basin wide distributions of soils under forest vegetation. Map based on the SOTERLAC–ISRIC soil database (version 2.0, 1:5 million scale) and the vegetation database of Saatchi et al. (2008) for South America.

Edaphic controls of geomorphology:

- Soil <u>texture and chemistry</u> affect aboveground C storage via the productivity & turnover of plant species across the Amazon basin¹
- Differences in <u>nutrient (P) availability</u> across most of Amazon rainforest¹
- <u>Nutrient availability</u> constrains on C sink strength uncertain but certain to be significant²
- <u>Phosphorus availability</u> enhances forest growth but the response to P fertilization is not consistent)³
- Some species respond to fertilization others don't (functional strategy?!)

1Quesada et al. 2010, 2012; 2Wieder et al. 2015, Yang et al. 2016; 3Wright et al. 2018, 2019

Spatial and temporal response to climate extremes

Hofhansl et al. (2014) Global Biogeochemical Cycles, 28 (12), 1437–1454. doi:10.1002/ 2014GB004934

Spatial variability in topography (and microclimate)

Hofhansl et al. (2020) Sci Rep 10, 5066. https://doi.org/10.1038/s41598-020-61868-5

Local heterogeneity in topography and edaphic properties

Local forest inventory plot network:

- Monitoring 7,752 individuals and 447 species of tropical trees, palms, lianas
- local-scale resource availability gradients affect the composition of plant species due to differences in their life-history strategy
- vegetation C stocks differ with the locally dominant plant functional group

→ increase our understanding of the mechanistic factors determining tropical ecosystem functioning

Hofhansl et al. (2020) Sci Rep 10, 5066. https://doi.org/10.1038/s41598-020-61868-5

Biodiversity and C stock differ across the landscape

IASA

Biodiversity and C stock differ across the landscar

Hofhansl et al. (2020) Sci Rep 10, 5066 (2020). https://doi.org/2020/38/s41598-020-61868-5

Ê 50

30

25

а

а

Nitrogen-fixing trees

 $F_{(2.12)} = 1.3, p = 0.32$

Multiple factors drive plant functional diversity

Hofhansl et al. (2020) Sci Rep 10, 5066 (2020). https://doi.org/10.1038/s41598-020-61868-5

Abiotic and biotic drivers of plant functional traits

Tropical tree communities & associated functional traits:

• **Spatial variation (distance)** increases with geographic distance and local environmental heterogeneity

• Environmental variation (climate) increases with topo-edaphic variation along gradients and sampling sites

• Interactive effects (biotic)

due to biotic interactions among spp., seed dispersal, and competition for limiting resources.

- → Species sorting along environmental gradient and resources (light/water/nutrients).
- → Affects the expression of plant functional traits in response to environmental cues.

For further questions please contact me via the QR code linked to my personal website: <u>https://tropicalbio.me/</u>

Florian Hofhansl, Research Scholar

Biodiversity, Ecology, and Conservation (BEC) Research Group, Biodiversity and Natural Resources (BNR) Program, International Institute for Applied Systems Analysis (IIASA), Schlossplatz 1, A-2361 Laxenburg, Austria.

58th Meeting of the Association for Tropical Biology and Conservation (ATBC) 11 July 202