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Abstract: 

For China to achieve carbon emissions peak and neutrality, the structural adjustment of both its 

economy and energy system is essential. In this study, a multi-objective optimization model 

based on the Input-Output approach is built to coordinate diverse policy targets vis-à-vis GDP 

growth, carbon emissions reduction, employment, and energy-saving of China from 2020 to 

2030. The optimal structural adjustment pathways of China’s economy, reflecting a high-

resolution of available electricity generation technologies, under four policy preferences, are 

planned and the co-benefits and trade-off among multiple policy targets are detected. Our 

results reveal that while the energy-saving preference is more likely to hinder GDP growth (by 

-190 trillion yuan) and employment levels (by -60 million jobs), however, this preference is 

conducive to carbon emissions reduction (by -2.6 billion tons). Furthermore, our findings reveal 

that although the low-carbon preference does not undermine employment levels, however, it 

will restrain the GDP growth (by 109 trillion yuan). The integrated management of multiple 

policy targets would require the country’s industrial structure to increase the proportion of low-

carbon to total electricity generation to account for 71% by 2030 and the proportion of the 

services sector to the whole economy to account between 42%-51% by 2030.  

 

Keywords: Carbon emissions; Employment; Trade-offs; Multi-objective optimization; Input-

output analysis 
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1. Introduction 

In September 2020, China announced its ambitious climate commitment to achieve peak 

carbon dioxide (CO2) emissions before 2030 and carbon neutrality by 2060. To fulfill these 

commitments, Chinese policymakers are expected to focus on transforming the national 

economic system and societal values towards a future of low-carbon and sustainable growth. 

The sustainable governance of industrial and energy structures requires long-term systems 

thinking and an analytical understanding of the trade-offs between, often intertwined, policy 

objectives among socio-economic and environmental variables. Such trade-offs are of 

particular importance for developing countries, where socio-economic development and 

environmental sustainability influence future government policies. In the case of China, the 

world’s primary energy consumer and carbon emitter (BP, 2020), targeted emission reduction 

targets, while maintaining economic development and high employment levels, are equal and 

critical policy priorities (NPC&CPPCC, 2021). These often competing directions lead to trade-

offs in policy objectives., e.g., how emission targets may affect employment rates (in the short-

term) or how the broader economy’s welfare levels may be negatively influenced by the higher 

cost of carbon emissions abatement (Xue et al., 2015). 

The adjustment of industrial and energy structures is considered one of the few systematic 

and effective policy strategies to achieve energy conservation and emission reduction (Li et al., 

2020; Luan et al., 2021; Zhu et al., 2019). Incentives for investment in a large number of energy-

intensive sectors and carbon-intensive sectors conflict with China’s efforts to reduce carbon 

emissions (Bo et al., 2021; Wei et al., 2021; Zhou et al., 2021). Consequently, by appropriately 

adjusting China’s industrial structure, i.e., transforming its major industries from energy-

intensive to technology-intensive, economic development and reducing emissions can be 

concurrent. Meanwhile, shifting the electricity mix from thermal electricity, e.g., coal and oil, 

to low-carbon electricity, e.g., hydro, nuclear, wind, and solar power, has been widely regarded 

as a critical strategy to reduce carbon emissions (Reis et al., 2019; Tang et al., 2018). Although 

many studies have detected the influence of industrial or energy structure adjustment on carbon 

emissions reductions in recent years, there are few studies on how the adjustment strategy on 

industrial structure combined with the electricity mix will affect the competing economy, 

environment, and social sustainability policies and targets.  

The Input-output Analysis (IOA) model is widely applied for examining relationships 

among the economy, energy, and the environment in industrial sectors by considering 

sustainable consumption concurrent with low-carbon production. With the addition of 

optimization models to an IOA model, policy scenarios can be simulated based on industrial 

structure and emission targets (Oliveira et al., 2016). To track various conflicting goals, multi-

objective optimization is widely used to capture the nature of diverse sustainability goals (Liu 
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and Hu, 2019), which are commonly conflicting and non-commensurate across the economic 

(e.g., GDP growth), environmental (e.g., carbon emissions reduction), and social e.g., 

employment (Wang et al., 2011) dimensions. By analyzing the synergy and trade-offs of 

multiple policy targets, policymakers can better clarify future policy priorities and formulate 

relevant industrial development strategies. Existing studies, however, have paid less attention 

to how industrial structure and electricity mix adjustments would impact the co-benefits and 

trade-offs among sustainability targets. Furthermore, it should be emphasized that the 14th and 

15th Five-Year Plan (FYP) period (2020-2030) is critical for China’s economy to realize 

sustainable development. In this avenue, exploring how changes in China’s industrial structure 

and energy structure contributes to numerous sustainable development goals is of great value 

for the formulation of the 14th and 15th FYPs of country. In other words, by analyzing the 

synergy and trade-offs of multiple policy targets, policymakers can clarify the priorities of 

future policies and formulate industrial development strategies.  

To contribute to the growing literature in the above-described policy research domain, we 

developed a multi-objective optimization model for China’s structural adjustment of economic 

sectors to coordinate possible policy contradictions – caused by competing goals for GDP 

growth, carbon emissions reduction, energy conservation, and employment levels. The model 

proposed in this paper is distinct from previous models found in the literature and aims to 

contribute to the above-discussed research gaps. Specifically, the proposed model is based on 

high-resolution data of available electricity generation sectors, including both traditional 

electricity generation sectors (coal power and natural gas power) and low-carbon electricity 

sectors (hydropower, wind power, nuclear power, and solar power). From this data set and using 

IOA methods, we reveal policy preferences considering optimal GDP growth, carbon emissions, 

employment level, and energy consumption. Based on this analysis, the output structure of 

economic sectors is planned from 2020 to 2030. As coping with model uncertainty is critical 

for long-term policy planning and implementation (Lenzen et al., 2010; Su et al., 2010), in this 

paper, we examine uncertainties on estimated vital parameter values, e.g., carbon emissions 

intensity (carbon emissions per unit value-added), energy consumption intensity (energy 

consumption per unit value-added), and employment intensity (employees required per unit 

value-added). 

The rest of this paper is organized as follows: In section 2, we overview the literature on 

optimization models for structural adjustment of economic sectors. Section 3 presents the 

formulation of the proposed multi-objective optimization model and subsequently, the data 

sources and parameters are described in Section 4. The results of our study are discussed in 

Section 5. A concluding discussion on policy implications and future research avenues is found 

in Section 6. 
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2. Literature review 

Previous studies on the relationship among economy, environment, and society in China 

fall into two main streams. In the first stream, researchers have analyzed the interconnection of 

these three sustainability pillars from a single perspective by assessing the effects of one 

objective on others or from a specific sectoral perspective (Elshkaki, 2019; Guo et al., 2022; 

Song et al., 2018b; Zhou et al., 2019). The methods utilized in this type of research include 

econometric tools (Cheng et al., 2021; Wu et al., 2021), index assessment (Sheng et al., 2020; 

Zhang and Zhou, 2018), efficiency evaluation (Guo et al., 2017; Jiang et al., 2021), and 

decomposition methods (Huang and Matsumoto, 2021; Liu et al., 2021). For instance, Pan et 

al. (2019) analyzed China’s provincial energy-related carbon emissions-economy nexus by 

adopting the decoupling coefficient and assessed the relationship between China’s carbon 

emissions and economic variables by combining the static decoupling analysis and the dynamic 

vector autoregressive method. Wang et al. (2020b) explored the Water-Energy-Carbon 

Emissions nexus by assessing the embodied water and energy consumption and embodied 

carbon emissions. However, these studies either did not provide explicit solutions to meet 

divergent targets simultaneously or take the interconnection of economic sectors into account.  

In the second stream, researchers have focused on optimizing solutions to achieve multiple 

conflicting objectives in perspective with the economy, energy, carbon emissions, and society 

(Table 1 provides a summary review of these studies). The top-down computable general 

equilibrium (CGE) models have been applied frequently to climate and energy policies to assess 

China’s emission reductions, energy use, and economic outcomes. For example, CGE models 

have been widely used to examine the economic impacts and emission reductions of carbon 

permit markets and taxes (Cao et al., 2021; Yuan et al., 2020). From a techno-economic 

perspective, the bottom-up energy system model enables users to compare the impacts of 

different technologies on energy systems and evaluate the best future alternatives for reducing 

greenhouse gas emissions (Chen et al., 2021; Zhang and Chen, 2022). However, the bottom-up 

approach fails to take into account the linkages between the energy system and macroeconomic 

sectors, thus neglecting the impact on those sectors. Combining the advantages of the top-down 

and bottom-up models, a hybrid model is applied to optimize the system’s total cost or profit 

under the constraints of the economy, environment, and society (Yang et al., 2021). 
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Table 1 The main studies on optimization of policy targets in China’s economy, energy, carbon 

emissions, and society. 

Techniques used  Policy targets Study period References 
Uncertainty 

treatments 

IOA 

GDP, pollutant emissions, 

energy consumption 
2013-2020 

Yu et al. 

(2018c) 
- 

GDP, carbon emissions, 

employment 
2013-2030 

Yu et al. 

(2018b) 
- 

GDP, carbon emissions, 

energy consumption 
2017-2035 

Yu et al. 

(2018a) 
- 

GDP, energy consumption 2017 
Xu et al. 

(2021b) 
Slack variable 

Employment, energy con-

sumption, water use, car-

bon emissions, pollutant 

emissions 

2020 
Wang et al. 

(2020a) 
- 

Levelized cost of electric-

ity, carbon emissions 
2020-2050 

Kang et al. 

(2020b) 
- 

Levelized cost of electric-

ity, carbon emissions 
2020-2050 

Kang et al. 

(2020a) 

Robust opti-

mization 

Cost of light-duty passen-

ger transport system, car-

bon emissions 

2020-2050 
Kang et al. 

(2021) 

Stochastic ro-

bust optimi-

zation 

CGE 

Energy consumption, car-

bon emissions 
2017–2030 

Cui et al. 

(2019) 

Sensitivity 

analysis 

GDP, carbon emissions, 

energy consumption 
2020-2050 

Yuan et al. 

(2020) 

Sensitivity 

analysis 

GDP, carbon emissions, air 

pollution 
2020-2030 

Xie et al. 

(2020) 

Robustness 

analysis 

Bottom-up energy 

system modelling 

Energy transition cost, car-

bon emissions 
2020-2050 

Zhang and 

Chen (2022) 

Monte Carlo 

analysis 

Energy consumption, car-

bon emissions 

2030, 3040, 

2050 

Chen et al. 

(2021) 
- 

Bottom-up and top-

down linked model 

Energy consumption, car-

bon emissions, pollutant 

emissions, GDP 

2020-2030 
Yang et al. 

(2021) 
- 

Global climate 

models 

Energy, carbon emissions, 

water 
2021-2050 

Suo et al. 

(2021) 

Interval-pa-

rameter pro-

gramming 

Non-linear multi-

agent intertemporal 

optimization model 

Carbon emissions, energy 

consumption,  
2018-2035 

Xu et al. 

(2021a) 

Monte Carlo 

analysis 

 

The IOA method is widely applied for detecting the interdependence among economic 

sectors and socioeconomic and environmental effects (Leontief, 1970; Miller and Blair, 2009). 

Although the IOA highly depends on big data sets, which usually have a time lag, i.e., are only 

released every five years, and proportional hypothesis, it is considered as a ubiquitous and 
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effective method for assessing the sectoral impacts of policy changes in the literature (Hartwig 

et al., 2017; Ogarenko and Hubacek, 2013; San Cristóbal, 2010). In the literature, many studies 

are using the input-output linear programming (IO-LP) techniques reported in China’s energy 

and emission studies. For instance, Song et al. (2018a) explore potential pathways toward GHG 

emission peak before 2030 for China; Kang et al. (2020b) and Kang et al. (2020a) optimized 

the Chinese electricity generation mix to reduce the economy-wide carbon emissions from 2020 

to 2050; Kang et al. (2021) assessed the optimal decarbonization pathways of light-duty 

passenger transport in China from 2020 to 2050. 

To track various conflicting goals, an increasing number of studies developed multi-

objective optimization models based on the IOA method to explore the optimal industrial 

production structure (Carvalho et al., 2015; de Carvalho et al., 2016; Oliveira and Antunes, 

2004; Yu et al., 2018c). For instance, Oliveira et al. (2016) reviewed the different modeling 

approaches in the literature based on coupling IOA with multi-objective models. Yu et al. 

(2018b) constructed a multi-objective optimization model of economy-carbon emissions-

employment based on the dynamic IOA model and explored the industrial structure adjustment 

plan to achieve China’s energy-related carbon. Jiang et al. (2020) proposed a multi-objective 

optimization model to maximize economic development and minimize the embodied energy 

consumption from the consumption perspective. Wang et al. (2020a) proposed a multi-objective 

optimization model based on a multi-regional IOA to integrate the management of employment, 

energy consumption, water use, carbon emissions, and pollutant emissions by determining the 

policy-dominated industrial restructuring path. These studies have explored the relationships 

among economic, energy, carbon emissions, and employment goals and revealed that industrial 

restructuring has had profound and complex impacts on relevant policy goals.  

Adjusting the energy structure is another way to promote carbon emission reduction from 

the perspective of structural adjustment (Yu et al., 2018a). Relevant studies have reaffirmed that 

the development of renewable energy generating capacity has a powerful impact on GDP 

growth, carbon emissions, and employment (Banacloche et al., 2020; Hondo and Moriizumi, 

2017). Although the bottom-up energy systems modeling can provide a very extensive analysis 

for energy and climate policy based on precise technical details, the effects of changes in the 

energy system on the economic development of various industries are rarely taken into account. 

Without analyzing the impact of the electricity mix on these goals from the whole economic 

system perspective, the constraints of inter-sectoral input-output balance and sectoral 

production capacity will not be considered, resulting in deviation in policy evaluation. Some 

researchers have overcome this obstacle by decomposing and reaggregating the sectors in the 

IO table to separate the green activities from the traditional activities, or by adding a new group 

of sectors to the existing table (Jiang et al., 2019). For instance, Lindner et al. (2012) present a 

methodology to disaggregate the electricity sector of the Chinese national IO table into the 

Jo
urn

al 
Pre-

pro
of



7 

 

transmission and distribution, and eight sub-sectors representing different types of generation 

technologies. Kang et al. (2020b) evaluated the capital-related carbon emissions of various 

generation technologies by endogenizing the fixed capital formation of electricity technologies. 

On the whole, to the best of our knowledge, few researchers have explored how industrial 

structure adjustment, including different electricity sectors, can contribute to concurrent 

sustainability policy targets on GDP, emissions, energy, and employment in China. Furthermore, 

to enhance the policy flexibility, it is essential to consider some crucial uncertainties (Doukas 

and Nikas, 2020; Engau and Sigler, 2020). There have been some efforts to handle data 

uncertainty in optimization studies based on the IOA model (Tabatabaie and Murthy, 2021; 

Temursho, 2017). For instance, Henriques and Antunes (2012) accounted for model uncertainty 

associated with a model’s coefficients by utilizing interval programming tools. More recently, 

the robust IO-LP model has been proposed for electricity capacity expansion planning (Kang 

et al., 2020b), and optimizing light-duty passenger transport (Kang et al., 2021). Although many 

achievements have been made in the field of IOA and optimization considering uncertainty, 

past research has paid less attention to the influence of the uncertainty of intensity changes on 

the multi-objective optimization of China’s economic growth, emissions reduction, energy 

conservation, and employment levels.  

3. Methodology 

3.1. Model assumption 

This model is based on the extended IOA model, aiming at the multi-objective problem of 

economy-environment-society to explore the optimal path of sectoral outputs adjustment. On 

this basis, the model further considers the impact of the uncertainty of energy consumption 

intensity, carbon emissions intensity, and employment intensity on the results. The model 

proposed in this study is based on the following assumptions: 

(1) The technological conditions related to production technology remain unchanged for a 

certain period. However, since the economic system in China will be possibly different from 

2020 to 2030, the inter-relationships among sectors may vary widely and lead to a bias in the 

estimates. The RAS method is a potential approach to updating the technical matrix to enhance 

the practicality of the IO table. 

(2) Energy utilization technology is exogenous. The value of energy consumption intensity 

has been estimated by the trend extrapolation models for each sector and referred to Song et al. 

(2018a). The change in energy intensity will lead to the change in energy consumption of 

sectors at the same activity level. Then the optimal sectoral outputs in the optimal solution of 

the multi-objective optimization model will change. In order to measure the impact of changes 

in energy intensity on various policy objectives and outputs of each sector, this study conducts 
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an uncertainty analysis on energy intensity, detailed in Section 5.5. 

(3) The basic assumptions for the input-output model are also valid, such as a specific 

homogeneous product in each sector and the returns to scale remain constant. These limitations 

are made for simplification. However, its advantages lie in the simplicity of the model and 

relatively limited number of hypothetical parameters, whereas more complex general 

equilibrium models usually rely on a far greater number of hypothetical parameters. 

3.2. Objective functions 

The basic equation for the distribution of sector i’s product, as given in: 

1

=  , 1, ,
N

i ij j i

j

x a x y i N
=

+ =
 (1) 

where ix is the total output of sector i; ija  denotes the direct input coefficient of sector i to 

produce one unit output of sector j, also known as an input-output technical coefficient; iy  is 

the final demand of sector i, which consists of household consumption, government 

consumption, fixed capital formation, and exports. N represents the number of sectors (N=48). 

This equation states that the total output in each economic sector equals the sum of intermediate 

demand and final demand. 

We use the multi-objective programming models and methods coupled with the IOA 

model to support the process of economy-environment-social policy decision-making. The 

economic target is maximizing economic growth, which is the sum of the added value of all 

sectors; the environmental target is minimizing carbon emissions; the social target is 

maximizing national-level employment. 

1 2 3 4: ( ) {max ,min ,max min }P G x f f f f= ，  (2) 

1

1 1 1

= (1 )
T N N

t t

j ij

t j i

f x a
= = =

−   
(3) 

2

1 =1 1

(1 )
T N N

t t t

j j ij

t j i

f ci x a
= =

= −   
(4) 

3

=1 =1 1

(1 )
T N N

t t t

j j ij

t j i

f li x a
=

= −   
(5) 

4

1 =1 1

(1 )
T N N

t t t

j j ij

t j i

f ei x a
= =

= −   
(6) 

where 1f , 2f , 3f , and 4f are scalar typed optimization objectives, representing the economic 

growth, carbon emissions, national-level employment, and energy consumption respectively. 
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For sector j in the t-th year, 
1

(1 )
N

t t

j ij

i

x a
=

−  is the sectoral value-added; 
t

jci is carbon emissions 

of per unit sectoral value-added; 
t

jli  represents workforce needed of per unit sectoral value-

added; 
t

jei is energy consumptions of per unit sectoral value-added. T represents the number of 

planning years (T=11, from 2020 to 2030). 

3.3. Constrains 

(1) IO balance constrain. For each sector, the sum of intermediate demand and final 

demand should not exceed the total output. 

1

- , 1, , ;  1, ,
N

t t t t

i ij i i

j

x a x y i N t T
=

 = =
 (7) 

(2) Sectoral production capacity constraints. Given the stability of the economic system, 

sectoral production capacity should also be considered in the process of sectoral output 

adjustment besides the IO balance constrain. Therefore, the output of each sector should be 

limited within a certain range compared with the levels in the previous year: 

1 1

1 2 , 1, , ;  1, ,t t t

i i ix x x i N t T − −  = =  
(8) 

where 2 >1> 1 . 2 and 2 are the upper and lower limits of the output growth rate for each sector, 

respectively. 

(3) The constrain of the lowest annual economic growth. On the one hand, since China’s 

economy has turned to high-quality development, we should not ignore the consequence of 

quality benefits and the ecological environment for the sake of economic growth. On the other 

hand, realizing industrialization and modernization needs moderate economic growth. As the 

largest developing country globally, development is still the foundation and key for China. Thus, 

setting the expected economic growth target can keep the economy running in a reasonable 

range, which is conducive to the realization of sustainable and healthy development. 

1

1 1 1 1

(1 ) (1 ) (1 )
N N N N

t t t t

j ij t j ij

j i j i

x a r x a−

= = = =

−  + −     

(9) 

where tr is the minimum growth rate of GDP in the t-th year. 

(4) For the t-th year, the total energy consumption of all sectors cannot be more than the 

total energy supply. The upper limit of total energy consumption is formulated as follows (Yu 

et al., 2018b).  

1 1

(1 )
N N

t t t
tj j ij

j i

E x a ES
= =

−    
(10) 

where, for sector j in the t-th year, t

jE represents energy consumption per unit value-added. 
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tES is the maximum energy supply in the t-th year. 

(5) For the t-th year, the total number of employees should be limited within the labor 

supply in the whole society. The upper limit of the total number of employees is formulated as 

follows. 

1 1

(1 )
N N

t t t
tj j ij

j i

l x a LS
= =

−    
(11) 

where tLS is the maximum labor supply for the production process in the t-th year. 

(6) Non-negativity constraint. All the decision variables in the model are non-negative 

variables. 

0, 1, , ;  1, ,t

ix i N t T = =  (12) 

3.4. Model solving algorithm 

In this study, the augmented ε-constraint method is used to model the proposed model. 

The essence of this method is a kind of a posteriori decision-making, that is, firstly, one 

objective is selected as the main objective for optimization; secondly, other objectives are taken 

as constraints, and the Pareto-optimal solution set is obtained by continuously adjusting 

constraint parameters; finally, the optimization results are sorted according to the preference of 

decision-makers. Compared with the prior decision represented by the weighted method, the ε-

constraint method is more objective in the modeling, and the model results are closer to the 

demands of decision-makers.  

In the ε-constraint method, the total added-value 1f is taken as the optimization objective, 

the total carbon emissions 2f , the number of employees 3f , and the total energy consumption 4f

are taken as the constraints. The objective function in the multi-objective model in Section 3.2 

is replaced by Eq. (13)-(16), then the multi-objective problem is transformed into a single 

objective optimization problem. The new parameters and variables of the model are described 

as follows: 

Ε Constant, the value range is usually [10-6, 10-3]. In this model, the value 

is 10-3. 

, 2,3,4ief i =
 

Constraint parameters of the i-th objective (i=2: carbon emissions; i=3: 

employment; i=4: energy consumption), and the value range is between 

the maximum and minimum of the objective, which is obtained by the 

payoff table. 

, 2,3,4isf i =
 

Slack or residual variable for i-th objective (i=2: carbon emissions; i=3: 

employment; i=4: energy consumption). 

Ng The number of grid points. In this model, the value is 10. 
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max , 2,3,4if i =
 

Maximum value of the i-th objective (i=2: carbon emissions; i=3: 

employment; i=4: energy consumption). 

min , 2,3,4if i =
 

Minimum value of the i-th objective (i=2: carbon emissions; i=3: 

employment; i=4: energy consumption). 

, 2,3,4irg i =  The range of the i-th objective (i=2: carbon emissions; i=3: employment; 

i=4: energy consumption). 

, 2,3,4ig i =
 

Increment of the i-th objective (i=2: carbon emissions; i=3: employment; 

i=4: energy consumption). 

 

1 2 3 4max ( )f sf sf sf+  − + −
 

(13) 

2 2 2f sf ef+ =  (14) 

3 3 3-f sf ef=  (15) 

4 4 4f sf ef+ =  (16) 

To avoid too many weak Pareto-optimal solutions, we can replace 2sf , 3sf , and 4sf in 

Eq. (13) with 2 2/sf rg , and 4 4/sf rg to get the objective function of the augmented ε-constraint 

method, formulated by Eq. (17). 2rg  , and 4rg  represent the range of the carbon emissions, 

employment, and energy consumption, respectively (as calculated from the payoff table), 

formulated by Eq. (18). ief  represents the constraint parameters of the i-th objective, 

calculated by Eq. (19)-(21). 

1 2 2 3 3 4 4max ( / / / )f sf rg sf rg sf rg+  − + −
 

(17) 

max min , 2,3,4i i irg f f i= − =
 

(18) 

min 2
2 2 2=

( 1)

rg
ef f g

ng
+ 

−  

(19) 

max 3
3 3 3=

( 1)

rg
ef f g

ng
− 

−  

(20) 

min 4
4 4 4=

( 1)

rg
ef f g

ng
+ 

−  

(21) 

The main procedures of the augmented ε-constraint are as follows: a) Calculate the payoff 

table of economic output, carbon emissions, employment, and energy consumption objectives 

by simply calculating the individual optima of the objective functions, as shown in Table 1. b) 

based on the payoff table, irg is calculated by Eq. (18), and the constant ε and the number of 

grids is set. c) The parameters 2ef , 3ef , and 4ef are updated by iterating parameters 2g , 3g , 
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and 4g through Eqs. (19)-(21), and the optimization is carried out to maximize the total added 

value. If we find an effective solution, the efficient solutions are included in the Pareto solution 

set; therefore, the Pareto solution set including all the efficient solutions is obtained. 

3.5. The final solutions screening method 

Under the constraint conditions, each point of the Pareto optimal frontier is a compromise 

non-inferior solution satisfying the three objectives. To facilitate decision-making and further 

analyze the change of industrial structure when achieving economic growth, carbon emissions 

mitigation, and social employment growth, several representative solutions from the Pareto-

optimal front need to be selected according to the decision-making preferences of the three 

objectives. Towards this end, we applied the Technique for Order Preference by Similarity to 

Ideal Solution method (TOPSIS) to select the solutions of the Pareto optimal frontier (Opricovic 

and Tzeng, 2004). It is a sequence selection technique of ideal goal similarity and a very 

effective method in multi-objective decision analysis (Boran et al., 2009). TOPSIS method is 

generally divided into three steps as follows: 

(1) The formation of the decision matrix. The evaluation criterion of a multi-index 

decision-making problem is set as 1 2( , , , )nC C C C=  the solution set is 

1 2( , , , )mM M M M=  , the value of the criteria jC  for the solution iM  is 

( 1,2, , , 1,2, , )ijz i m j n= = , and the multi-criteria decision matrix can be formulated as 

follows:  

1 2

1 11 12 1

2 21 22 2

1 2

0 n

n

n

m m m mn

C C C

M z z z

R M z z z

M z z z

 
 
 
 =
 
 
  

 

(22) 

(2) To eliminate the influence of different dimensions of each index on the calculation, the 

data should be normalized to construct a standardized decision matrix ( )ij m nR r = : 

2

1

ij

ij
m

iji

z
r

z
=

=


 

(23) 

(3) Constructing a weighted decision matrix. The dimensionless matrix is multiplied by 

the weight of each index to construct the weighted decision matrix ( )ij mnV v= : 

ij j ijv w r=   (24) 

in which the Wj is the weighting matrix. 
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(4) Determine the ideal solution and negative ideal solution. It is defined that the solution 

obtained by taking the maximum value of each criterion is the optimal solution, the solution 

obtained by taking the minimum value represents the worst solution, and the positive and 

negative ideal solutions are represented by v+
 and v−

 respectively, formulated as follows: 

1 2{max | 1,2, , } { , , , }ij nv v i m v v v+ + + += = =  (25) 

1 2{min | 1,2, , } { , , , }ij nv v i m v v v− − − −= = =  (26) 

where nv+
 is the positive ideal solution of the n-th criterion, and nv−

 is the negative ideal 

solution of the n-th criterion. 

(5) Distance calculation. The distance from the evaluation criteria of each solution to the 

positive and negative ideal solution is measured based on the Euclidean distance: 

1
( )

m

i ij jj
d v v+ +

=
= −  

(27) 

1
( )

m

i ij jj
d v v− −

=
= −  

(28) 

where id +
 is the distance between the i-th solution and the positive ideal solution, and id −

 is 

the distance between the i-th solution and the negative ideal solution. 

(6) Calculating the proximity between each solution and the ideal solution. 

i
i

i i

d
h

d d

−

− +
=

+
 

(29) 

where the greater ih  , the closer the solution iM   is to the ideal solution, and the better the 

solution is. 

4. Data acquisition and processing 

The Chinese non-competitive IO table in 2017 with 42 sectors, published by the National 

Bureau of Statistics (NBSC, 2017), was used to derive the input-output technical coefficient. 

As we suppose the technological conditions related to production technology remain unchanged 

for a certain period, the input-output technical coefficients during 2020-2030 remain the same 

as these in 2017. The Production and Supply of Electric Power sector in the IO table was 

disaggregated into electricity transmission and distribution sector and six electricity generation 

sectors, including coal power, hydropower, wind power, gas power, nuclear power, and solar 

power. Detailed information about the disaggregation of the electricity sector can be found in 

Appendix A. The final 48 economic sectors in the proposed model can be found in Table A1. 

The exogenous parameters of the planning period (2020-2030) are as follows: 

(1) For the final demand data, firstly, we collect the competitive IO tables from 2002 to 

2015 and the non-competitive IO table of 2017 from the National Bureau of Statistics and then 
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transform these competitive IO tables into the non-competitive IO tables by removing the 

imports from the intermediate use and final demand following the study by Weber et al. (2008). 

However, we find that total final demand varies so widely between 2002 and 2017 for different 

sectors that it is difficult to capture clear trends. Subsequently, we try to replace the changing 

trend of the final demand of each sector with the changing trend of the total final demand of all 

sectors, but this strong constraint condition is difficult to realize in the model. Therefore, we 

use the data of sectoral final demands in 2017, which means that we require that the model 

should always meet the sectoral final demands level in 2017 during the study period. 

(2) The carbon emissions intensity and energy consumption intensity (listed in Table A2-

A3). Most of the values of sectoral carbon emissions and energy consumption coefficients 

during 2020-2030 have been estimated according to the historical data and also referred to Song 

et al. (2018a). The carbon emissions coefficients of sub-divided electricity sectors are 

calculated by the proportion of carbon emissions from thermal power units. The energy 

consumption coefficients are obtained by the proportion of standard coal consumption for 

electricity generation.  

(3) The employment intensity represents the sectoral workforce needed per unit of added 

value. We first calculate the historical employment intensity from 2010 to 2019 based on the 

historical value-added and employment by sector data found in the China Statistical Yearbook. 

We then estimate the employment intensity by sector from 2020 to 2030 using trend 

extrapolation models. 

(4) The upper and lower limits of the output growth rate for each sector. According to the 

setting of Dong (2009), the output of each sector in the year is greater than 80% of that in the 

previous year and no more than 120% of that in the previous year.  

(5) The minimum growth rate of GDP. To achieve steady economic growth, the minimum 

growth rates of GDP are set to 5% from 2020 to 2030 (Yu et al., 2018b).  

(6) The maximum energy consumption and labor force. According to the policy of the 

Revolution Strategy for Energy Production and Consumption (2016-2030) (NDRCC, 2016) and 

sectoral energy consumption calculated based on the IO table in 2012 (NBSC, 2012), the 

maximum energy consumption in 2020 and 2030 is set to 5.2 and 6.3 billion tons of standard 

coal. The data for maximum energy supply in other years is calculated by the equal growth rate 

of limited energy consumption. The number of sectoral employees from 2020 to 2030 is 

forecast by trend extrapolation based on the latest historical data on the number of sectoral 

employees, which is derived from “Employment in the Sub-sectors” in the China Statistical 

Yearbook over the years 2010 to 2019. 
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5. Results and Discussion 

5.1. Payoff matrix 

The initial payoff table is reported in Table 2. The first row displays various objective 

values, while the last three rows list policy targets of multiple objectives. According to the 

solutions of a single-objective optimization model, the achievement of economic objectives is 

accompanied by the maximization of employment, indicating co-benefit effects between the 

economic and employment objectives. While achieving the maximum economic outputs brings 

more carbon emissions and energy consumption. Another notable result reveals a trade-off 

between the realization of the emissions reduction target and energy-saving targets. 

Table 2 Payoff table 

Objectives 

Units 

Economy 

Trillion yuan 

Carbon 

emissions 

Billion ton 

Employment 

Billion people 

Energy 

consumption 

Billion tce 

Maximizing economy 1710.3 105.9 7.2 61.5 

Minimizing carbon 

emissions 

1435.8 101.5 7.2 58.3 

Maximizing 

employment 

1435.6 102.0 7.2 57.4 

Minimizing energy 

consumption 

1436.0 102.0 7.1 57.4 

5.2. Pareto-optimal front and selected final solution  

A set of Pareto solutions with 1239 solutions is obtained by solving the model, and each 

solution corresponds to a set of decision variables and multi-objective optimization results. Fig. 

1 illustrates the Pareto solution set, where the three-dimensional coordinate axis represents the 

total added value, total carbon emissions, and total employment respectively, the color gradient 

of these points indicates the amount of energy consumption, and the points represent the set of 

Pareto solutions.  

Each Pareto-optimal front is a trade-off non-inferior solution to satisfy the three objectives 

under certain constraints. In contrast to one optimal solution of a single optimization problem, 

these solutions do not dominate each other. Facing numerous Pareto-optimal solutions, it is 

challenging for decision-makers to decide quickly. The TOPSIS method is applied to select 

several representative solutions from the Pareto-optimal front to facilitate decision-making. 

According to the four objectives of the model, we set up preference criteria set [ 1f , 2f , 3f , 4f ] 

and four preferences, namely the economy, low-carbon, employment, and energy-saving 

preferences. Then the preference information provided by the decision-maker is transformed 

into the weights of the criteria. Under the economy, low-carbon, employment, and energy-

saving preferences, the weights set are [0.55 0.15 0.15 0.15], [0.15 0.55 0.15 0.15], [0.15 0.15 
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0.55 0.15], and [0.15 0.15 0.15 0.55] respectively. The results are shown in Table 3. 

 

Fig. 1 Pareto front of EES multi-objective optimization model during 2020-2030 

Table 3 The solution set under different decision preferences 

Objectives 

Units 

Economy 

Trillion yuan 

Carbon 

emissions 

Billion ton 

Employment 

Billion 

people 

Energy 

consumption 

Billion tce 

Economy preference 1705.7 105.4 7.2 61.5 

Low-carbon preference 1596.5 103.3 7.2 59.9 

Employment preference 1696.6 105.4 7.2 61.1 

Energy-saving preference 1515.6 102.8 7.1 58.2 

5.3. The realization path of each objective 

Based on the TOPSIS method, the annual optimal economic growth, carbon emissions, 

employment, and energy consumption under four preferences can be obtained, as depicted in 

Fig. 2. Regarding the economic objective, the total economic output realizes a steady growth 

during 2020-2030 under four preferences. Overall, the annual economic outputs under the 

economy preference and employment preferences are higher than those under other preferences. 

It is higher under the low-carbon preference than that under the energy-saving preference, 

indicating that policy preference dominated by energy conservation is more likely to hinder 

economic development. 

As for the carbon emissions, the amount increases by 10% under the economy and 

employment preferences from 2020 to 2030. The carbon emissions will achieve the lowest 

growth rate under the energy-saving preference, which indicates that the energy-saving 

preference is beneficial to carbon emission reduction. Regarding to energy consumption, the 

policy preference dominated by full employment has the same promoting effect on energy 

consumption as economy preference. The energy consumption under the low-carbon preference 

is higher than that under the energy-saving preference, although lower than other preferences, 

which implies that with the strategy of low carbon driven development, energy consumption is 
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still growing, but energy intensity is further reduced. It is worth mentioning that the optimal 

solutions under the four scenarios meet some targets released by the 14th national FYP (2020-

2025), i.e., the energy consumption per unit of GDP will be reduced by 13.5%, and carbon 

emissions per unit of GDP will be reduced by 18% during the period (2020-2025). Our results 

indicate that energy intensity and carbon emissions intensity will respectively decrease by 23%-

27% and 24%-30% for different preference scenarios in 2020-2025 –we also find a similar 

reduction in 2025-2030. This indicates that if the efficiency of energy consumption and the 

reduction of carbon emission in all sectors follow current trends and improve in the future, the 

national intensity targets will be more than fulfilled. However, we should also pay attention to 

some unexpected events that hinder the progress of energy efficiency improvements and 

emission reductions. For example, in reaction to epidemics, economic downturns, and 

unemployment pressures, some regional policymakers may impulsively embark on energy-

intensive and or high emission projects. However, while unexpected events may pressure 

policymakers to make hasty decisions, achievements that have been made in energy efficiency 

improvements and carbon emission reductions should not be easily discarded. 

In our study, carbon emissions will gradually rise to 9.6-10.1 billion tons in 2030, close to 

the peak point of carbon emissions proposed by several studies that cover a longer period (Li 

et al., 2017; Xu et al., 2020). For instance, the obtained results of carbon emissions under the 

low-carbon and economy preferences are also quite consistent with the time series of carbon 

emissions in the business-as-usual scenario and the deep mitigation scenario projected by Kang 

et al. (2020b). Moreover, for the energy consumption, the results are similar to findings in 

existing studies addressing net-zero emission issues in China. For example, one study (Mao et 

al., 2021) projects the aggregate energy consumption to increase by 21.96%, from 4.9 billion 

tce in 2015 to 6.0 billion tce in 2030. He et al. (2022) finds that China’s primary energy 

consumption in 2030 is projected to reach 5.8 billion tce under the energy-target scenarios. 

  

(a) GDP (billion yuan) (b) Carbon emissions (billion ton) 
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(c) Employees (billion people) (d) Energy consumption (billion tce) 

Fig. 2 The achievement path of Pareto-optimal solutions under four preferences during 2020-

2030 

In addition to the goals of economic growth, energy conservation, and carbon emission 

reduction, China’s economic development goals also include full employment. “The 14th FYP 

for national economic and social development of China and the outline of long-term goals for 

2035” (NDRCC, 2021) highlights the realization of fuller and higher quality employment and 

sets the goal of creating more than 50 million new jobs during the 14th FYP period. The results 

show that the number of employees will increase slowly under four preferences from 0.60 

billion people in 2020 to 0.67 billion people in 2030. This is because the total labor supply 

mainly constrains the growth of the number of employed people in the future. Under the low-

carbon, economic development, and employment policy preferences, the number of employed 

people in society can almost reach the maximum limit of the total labor supply. It is worth 

noting that before 2025, the number of employees under the energy-saving preference is 

significantly less than that under other preferences, but after 2025 it reaches the same as those 

under other preferences. The total employment under the energy-saving preference is -3%, -3%, 

-2%, and -1% lower than the average of the other three preferences in respectively, 2021, 2022, 

2023, and 2024. The main reason for the difference in the growth of employees between the 

energy-saving preference and other preferences during the 2020-2025 period is found in the 

employment levels of the sectors. Specifically, in comparison to other scenarios, the 

employment levels of the Construction, Comm. Eq., Agriculture, Special Mach., Elec. & 

Telecomms. Eq., and Repair Services sectors are significantly lower in the energy-saving 

scenario, i.e., respectively, -31%, -28%, -26%, -24%, -19%, and -14% lower than the average 

of the other three scenarios. Moreover, since the employment level is determined by the sectoral 

employment coefficient and the output level of each sector in this study, i.e., a lower level of 

sector activity leads to a lower level of overall employment, the difference in employment level 

under different scenario preferences is caused by the difference in the sectoral output level. To 

avoid trade-offs between energy-saving and full employment, our findings suggest that these 

sectors should reduce energy consumption intensity by improving energy efficiency in their 

future development. 
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5.4. Optimal sectoral total output 

5.4.1. All economic sectors 

In the proposed optimization model, the variables to be solved are the sectoral outputs. 

The optimal output structure of sectors under economy, low-carbon, employment, and energy-

saving preferences during 2020-2030 are presented in Fig. 3. The final 48 economic sectors in 

the proposed model can be found in Table A1 of Appendix B. To clearly demonstrate the 

sectoral output structure, 48 sectors are merged into six sectors according to the sector 

categories, including agriculture, mining, manufacturing, electricity-heat-water, construction, 

and services. In general, under four preferences, the manufacturing and services sectors account 

for the largest proportion of output value, followed by the construction and agriculture sectors. 

The output proportion of the manufacturing sector has a slight decline, while the output 

proportion of the electricity-heat-water sector will increase gradually from 2020 to 2030.  

Specifically, under the economy preference, the proportion of the manufacturing sector 

continues to decline, from 41% in 2020 to 33% in 2030, while the output proportion of the 

services sector will gradually increase since 2025. The output proportion of the construction 

sector is on the rise from 2020 to 2025 and then in decline after 2025. There is an increase in 

the output proportion of agriculture and electricity-heat-water sectors. By 2030, the output 

proportion of agriculture, electricity-heat-water, and construction sectors will be the same. It is 

worth noting that the patterns under the employment preference are similar to those under the 

economy preference. A remarkable difference is that the proportion of the services sector is 

higher under the employment preference than under the economy preference, which is contrary 

in the construction sector. The results indicate that the contribution rate of the services sector 

to GDP shows an accelerating upward trend, and its ability to absorb the labor force continues 

to increase. At the same time, the promoting effect of the construction sector on economic 

growth and employment is rising first and then decreasing. 

When under the low-carbon preference, the output proportion of the services sector has 

some slight fluctuations around 38%-40% before 2025 and then increases from 36% in 2025 to 

44% in 2030. There is a gradual decline in the output proportion of the manufacturing sector 

during 2020-2030, while the output proportion of the construction sector rises from 11% in 

2020 to 26% in 2027 and then drops to 22% in 2030. According to the data from “China 

Building Energy Consumption Research Report (2020)”, the total carbon emission of the whole 

process of construction in 2018 was 4.93 billion tons, accounting for 51.3% of the national 

carbon emission, which indicates that the low carbon transformation of the construction sector 

has become the key to achieve the goal of carbon peak and carbon neutrality in China. Although 

carbon emissions in the construction sector show an overall growth trend, the growth of its 

energy consumption and carbon emissions has slowed down significantly (Zhang et al., 2019).  
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The patterns under the energy-saving preference are considerably variable from other 

preferences. First, the services sector’s output accounts for the largest proportion with a 

gradually increasing trend, and the proportion of that is 51% in 2030. Second, the output share 

of the construction sector under this preference is smaller than other preferences, with an 

average proportion of 9%. Third, in line with the economic preference and low-carbon 

preference, the manufacturing sector’s output will gradually shrink, while that of the electricity-

heat-water sector will increase slightly. With the rapid release of energy-saving and emission 

reduction potential of primary and secondary industries and the increasingly apparent marginal 

diminishing effect of energy saving and emission reduction achievements, the service industry 

will become a new field of energy-saving and emission reduction in China. The results indicate 

that the energy-saving effect of developing the modern service industry is pronounced, while 

the energy efficiency of the construction sector needs to be continuously improved through the 

development of ultra-low energy consumption buildings and near-zero energy consumption 

buildings. 

  

(a) Economy preference  (b) Low-carbon preference 

  

(c) Employment preference (d) Energy-saving preference  

 

Fig. 3 The composition of six sectors’ outputs under four preferences 

Fig. 4 demonstrates the top ten sectors of economic output under various preferences. 

Regarding the economy preference, the primary sectors with high outputs are Construction, 

Finance, Real estate, Comm. Eq., and Agriculture sectors. The patterns under the employment 

preference are quite similar to those under the economy preference. The main difference is that 

Agriculture Mining Manufacturing Electricity-heat-water Construction Services
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outputs of the Construction, and Comm. Eq. sectors are smaller under the employment 

preference than under the economy preference. The main reason may be that with the rapid 

development of big data, artificial intelligence, and other technologies, the capacities of the 

Construction sector to absorb the labor force will be weakened in the future. 

  

(a) Economy preference  (b) Low-carbon preference  

  

(c) Employment preference (d) Energy-saving preference 

Fig. 4 The sectoral total outputs of main sectors under four preferences (the outputs of the 

major sectors in 2030 are labeled, as well as the larger output by sector before 2030) 

Some differences can be observed under the low-carbon preference. Firstly, the 

Construction sector will also account for a larger proportion of the total sectoral output under 

this preference. Second, outputs in Comm. Eq., Agriculture, and Metals Smelting sectors are 

much smaller under low-carbon preference than economy and employment preferences, which 

can be explained by the high carbon emissions intensity in these sectors. When under the 

energy-saving preference, the Real estate sector has the highest outputs, followed by the 

Construction, Finance, Chem. Prod., Whole. & Retail, and Elec. Trans. sectors and all their 

outputs are on the rise. Another notable result is that only the Real estate sector has the same 

output as under other preferences when under the energy-saving preference. In contrast, the 

outputs of other primary sectors, for example, the Construction, Finance, and Comm. Eq. 

sectors, are lower than other preferences. The findings indicate that the energy intensity of the 

Construction, Finance, and Comm. Eq. sectors needs to be further reduced. 
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5.4.2. Electricity sectors 

Fig. 5 demonstrates the development path of electricity sectors. The output patterns of 

each electricity sector have no difference in the four preferences because the outputs of coal-

fired and gas-fired electricity sectors have almost no change. In contrast, the outputs growth of 

low carbon generation sectors will reach the maximum constrained by the model. The Coal 

power sector will be of significant importance for outputs of the electricity sector in 2020, 

accounting for 65% of the total outputs of all electricity sectors, and the share of the production 

in this sector is getting smaller, only 26% by 2030. On the other hand, the outputs of the 

Hydropower, Wind power, Nuclear power, Solar power sectors will increase sharply, showing 

an increase of more than 5 times. Among all low-carbon electricity sectors, the Hydropower 

sector has the most extensive economic output, followed by Wind power, Solar power, and 

Nuclear power sectors. According to the National Energy Administration of China, the installed 

capacity of renewable energy power generation reaches 934 million kilowatts by the end of 

2020, including 370 million kilowatts of hydropower, 281 million kilowatts of wind power, 253 

million kilowatts of photovoltaic power generation, and 29.52 million kilowatts of biomass 

power generation. Furthermore, the outputs of low-carbon electricity sectors will exceed that 

of traditional electricity sectors by 2025, and the output proportion of low-carbon electricity 

sectors will account for as much as 71% by 2030. With the proposal of China’s carbon peak 

and carbon neutrality targets, the proportion of new energy in primary energy consumption is 

increasing, accelerating the replacement of fossil energy. The installed capacity of China’s 

renewable energy power will maintain steady and rapid growth, showing a trend of dominating 

by wind power, solar power, and hydropower. 

The patterns of electricity generation mix obtained by our study are much closer to that 

under the deep emission reduction scenario projected by other studies using a long-term model 

(Chen et al., 2021; Kang et al., 2020b; Zhang and Chen, 2022) – for example, the ratio of coal 

power is expected to decrease and its generation to remain stable from 2020 to 2030. While, 

unlike other models, the output of the hydropower sector in this study is higher than that of 

other renewable power sectors, such as wind power and solar power. The main reasons for these 

results are the following. Firstly, the present paper explores the carbon emission peak from the 

perspective of industrial structure optimization, while other long-term studies focus on 

minimizing the total cost of energy technology or other systems. Secondly, while other studies 

have considered only one objective, we consider four objectives simultaneously in this paper. 

Finally, this paper’s electricity sector output differs from the generation capacity in other studies. 

This is important, as in addition to the generation capacity, the output takes into account the 

electricity price of different electricity generation types. 
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Fig. 5 The growth path of outputs and the composition of electricity sectors 

5.5. Uncertainty analysis 

In this optimization model, energy consumption intensity, carbon emissions intensity, and 

employment intensity are vital parameters. However, they have strong uncertainty as they are 

predicted according to historical data and by referring to the literature. Therefore, in this section, 

we explore the influence of these three factors on the optimal solutions of the proposed multi-

objective optimization model. A discussion on the optimal solution set and the fluctuations of 

decision variables under four preferences when energy consumption intensity, carbon emissions 

intensity, and employment intensity fluctuate ±10%, ±20%, and ±30% of the predicted value, 

respectively, will be conducted. The value of fluctuation degree is defined as the ratio of the 

maximum fluctuation difference to the mean value. 

5.5.1. Optimal solutions under uncertainty 

The objective values of economic growth, carbon emissions, employment, and energy 

consumption under four preferences considering the uncertainty of energy consumption intensity, 

carbon emissions intensity, and employment intensity can be obtained, as depicted in Fig. 6. The 

results generally reveal that the changes in intensities only have a relatively large impact on the 

corresponding objectives, but little impact on other objectives; this is because the impact on 

output in different sectors presents two counteracting effects, i.e., promoting or inhibiting. For 

example, the uncertainty of carbon emissions intensity leads to greater fluctuation of emissions 

but has little impact on the achievement of other objectives. The uncertainty of employment 

intensity also leads to greater fluctuation of social employment and slightly affects the 

achievement of economic growth objectives. In contrast, the influence of energy consumption 

intensity on total energy consumption is smaller, and it also has a slight impact on the 

achievement of economic growth objectives. Our results suggest that the goal of energy-saving 

and emission reduction should be achieved by improving energy use efficiency and promoting 

the transformation of energy use structure to reduce energy consumption intensity and carbon 
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emission intensity during the 14th and 15th FYP period. 

Specifically, if the energy consumption intensity changes from 70% to 130%, the total 

energy consumption will fluctuate by 60% under four preferences. The range of total energy 

consumption is from 40.8 billion tce to 75.7 billion tce under the energy-saving preference, 

which is slightly less than that under other preferences. The fluctuation of energy consumption 

intensity will also lead to the fluctuation of 2% - 3% of economic output objectives under the 

economy and employment preferences. The objectives of carbon emissions and employment 

are insensitive to fluctuations in energy consumption intensity. Second, if the carbon emissions 

intensity changes from 70% to 130%, the total carbon emissions will fluctuate by 86% under 

four preferences. The range of total carbon emissions is from 72.3 billion tons to 134.2 billion 

tons under the low-carbon preference. Third, if the employment intensity changes from 70% to 

130%, the total employment will fluctuate by 83% under the low carbon and employment 

preferences, slightly higher than that under the economy (78%) and energy-saving preferences 

(82%). As the energy consumption intensity and employment intensity increase, the constraints 

of total energy consumption and employment may no longer be satisfied, so the constraints are 

removed when the energy consumption intensity and employment intensity rise more than 10%, 

respectively. 

 
Fig. 6 Optimal solutions under four preferences considering the uncertainties of energy 

consumption intensity, carbon emissions intensity, and employment intensity (f1, f2, f3, and 

f4 represent the economic growth, carbon emissions, employment, and energy consumptions, 

respectively) 

5.5.2. Optimal sectoral total output under uncertainty 

In this part, we analyze how the outputs of all sectors change with the uncertainty of energy 

consumption intensity, carbon emissions intensity, and employment intensity, as depicted in Fig. 7. 

First, the fluctuation of energy consumption intensity has a greater impact on the sectoral 

outputs under the economy preference. The most affected sectors are manufacturing sectors; 

for instance, the Fiber Prod., Special Mach., Elec.& Telecomms. Eq., Ord. Mach., Trsp. Eq., 
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Oth. Mfg. sectors. It is worthwhile to note that the Instrum. & App. sector is more vulnerable to 

the uncertainty of energy consumption intensity under the low-carbon preference, followed by 

Comm. Eq., Agriculture, and Special Mach. sectors. Moreover, the outputs of several sectors 

are also affected to varying degrees under the employment preference, such as the Education, 

Construction, Special Mach., and Defence sectors. The uncertainty of the energy consumption 

intensity has little impact on the sectoral outputs under the energy-saving preference, as our 

model assumes that the change in energy intensity of each sector is a whole change, not a 

relative change. 

Second, the uncertainty of carbon emissions intensity only affects several sectors’ outputs 

under the low-carbon preference, such as Environ. & Pub., Culture, Repair Services, and Oth. 

Mfg. sectors, which indicates that the overall change of sectoral carbon emissions intensity will 

not significantly impact the structure of sectoral outputs. Third, the uncertainty of employment 

intensity affects the outputs of services and several manufacturing sectors. Specifically, the 

outputs of the Whole. & Retail, Finance, Scientific Res., Resident Serv., and Culture sectors are 

more vulnerable to the uncertainty of employment intensity under the four preferences. Under 

the economy preference, the Whole. & Retail sector has the greatest fluctuation degree, 

followed by Culture, Agriculture, Resident Serv., and Defence sectors. When under the 

employment preference, the uncertainty of employment intensity has the greatest impact on the 

outputs of the Accomm. & Cater., Whole. & Retail, and Agriculture sectors. The patterns of 

fluctuation of sectoral outputs under the low-carbon preference are similar to that under the 

employment preference, despite that the Agriculture, Comm. Eq., Special Mach., and several 

services sectors are not as sensitive as under the employment preference. It is worthwhile to 

note that under the energy-saving preference, the sectors whose outputs are affected by the 

uncertainty of employment intensity are almost the service sectors, except that the output of 

Instrum. & App. sector fluctuates 29.6%. Among the most affected service sectors, the Whole. 

& Retail, Finance, Culture, Resident Serv., and Accomm. & Cater. sectors, of which the outputs 

fluctuate more than 70%.  
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Fig. 7 The sectoral total outputs under four preferences considering the uncertainties of 

energy consumption intensity, carbon emissions intensity, and employment intensity 

6. Conclusion 

The Chinese government has set several development goals to achieve a balanced 

development of the economy, environment, and society. However, with the target year of 2030 

fast approaching, China faces a crucial period to reach peak carbon emissions. Therefore, 

adjusting the industrial and energy structures to balance the conflicting national targets is in 

urgent need of solutions. This study adopts a multi-objective optimization model based on the 

IOA model to design an industrial structure adjustment pathway for the Chinese economy, 

considering the refined electricity mix and policy preferences. The main conclusions of our 

study are as follows: 

First, the co-benefits and trade-off effects among economic growth, employment, carbon 

emissions, and energy consumption are revealed in this study. On the one hand, realizing GDP 

growth goals and increasing employment have a co-benefits effect, as expanding production 

capacity will provide more jobs. On the other hand, realizing carbon emission reduction targets 

will restrain the GDP growth and lead to the shrinkage of social employment to a certain extent. 

There is also a trade-off effect between energy conservation and carbon emission reduction; in 

other words, targets of emission reduction and energy saving may not be achieved 

simultaneously. Moreover, the results show that the number of employees under the energy-

saving preference is significantly less than that under other preferences during the 14th FYP 

period, revealing that the energy-saving preference is more likely to hinder economic 

development, thereby influencing the employment level. On the other hand, carbon emissions 

will achieve the lowest growth rate under the energy-saving preference, indicating that this 

preference is more conducive to promoting carbon emission reduction. However, the energy-
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saving effect of low-carbon preference is not apparent, and the impact on GDP growth and 

employment is relatively small. 

Second, this study provides the path of industrial structure adjustment to achieve the 

multiple policy objectives of GDP growth, emission reduction, employment level, and energy-

saving under different policy preferences. The services sector will occupy an increasingly 

important position in the national economy when the policy goal is dominated by energy 

conservation and carbon emissions reduction. The policy preference of developing economy 

and ensuring employment is more conducive to the boom of manufacturing sectors. The output 

of the Construction sector accounts for a larger proportion under the low-carbon preference, 

while its development is restrained under the energy-saving preference, which indicates that the 

energy consumption intensity of the Construction industry needs to be further reduced. 

Vigorously developing low-carbon electricity generation technologies, such as hydropower, 

wind power, and solar power, will become an effective measure to achieve multiple goals of 

GDP growth, carbon emissions reduction, employment, and energy saving.  

Third, under four policy preferences, economic outputs mainly come from services and 

manufacturing, such as the Construction, Finance, Real Estate, Chem. Prod., Whole. & Retail, 

Comm. Eq., Elec. Trans., Metals Smelting, and Trsp. & Telecomm Serv. sectors. This indicates 

that these sectors will keep a strong development momentum in the next decade. Special 

attention should be paid to the Instrum. & App. sector when the policy preference is dominated 

by carbon emissions reduction, as it can not achieve the same high-growth development as 

under other preferences. Thus, continuous technology upgrading should be implemented in this 

sector to reduce its carbon emissions intensity. Moreover, the Comm. Eq. and Agriculture 

sectors, whose development is restrained under the low-carbon and energy-saving preferences, 

need further attention. Due to the older technology and equipment and unreasonable industrial 

structure resulting in considerable energy consumption and environmental pollution, it is 

necessary to improve the awareness of energy conservation and emission reduction and 

formulate relevant strategies in the Comm. Eq. sector. Regarding electricity sectors, the outputs 

of low-carbon electricity sectors will exceed that of traditional electricity sectors by 2025, and 

the output proportion of low-carbon electricity sectors will account for as much as 71% by 2030. 

Considering that the transformation of the electricity sector from high-carbon generation 

technologies to low-carbon generation technologies will lead to changes in infrastructure, 

production, consumption, and employment patterns, future policies on the development of low-

carbon generation technologies should also focus on more economic and social impacts. 

Fourth, this study explores how the uncertainty of energy consumption intensity, carbon 

emissions intensity, and employment intensity will affect the realization of GDP growth, carbon 

emissions reduction, employment, and energy-saving and the outputs of various economic 

sectors considering policy partiality. Results show that it will be more effective to reduce carbon 
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emissions by reducing carbon emissions intensity rather than to by saving energy by curbing 

the energy consumption intensity. From the perspective of economic sectors, the industrial 

structure is more likely to change due to the uncertainty of energy consumption intensity. The 

uncertainty of energy consumption intensity will lead to a significant change in the outputs of 

some manufacturing and services sectors under different preferences. Moreover, the change in 

employment intensity slightly impacts on GDP growth, total carbon emissions, and total energy 

consumption and only makes the output of some sectors change to meet the constraints of the 

overall employee population. 

Based on the above conclusions, we summarize the following policy implications on 

China's development in the recent 14th and 15th FYPs. First, to promote higher-quality 

development, not only emissions reduction and energy conservation but also securing stable 

employment levels should be considered. To compensate for temporary job losses due to energy 

conservation and emissions reduction, governments should stabilize and expand employment 

levels by encouraging companies to invest in R&D and innovation, increasing subsidies for 

R&D projects, and strengthening vocational skills training. Second, China’s high-quality 

economic growth requires GDP growth to be decoupled from energy and electricity demand 

growth – here, the success of “decoupling” lies in placing energy- and carbon-intensive 

industries as the focus of structural adjustment. Therefore, it is necessary to increase the 

proportion of the tertiary industry in the GDP while curbing the secondary industry’s scale of 

energy and electricity consumption, especially among the energy-intensive industries. Third, 

the coordinated realization of policy objectives of economic development, stable employment, 

energy conservation, and carbon reduction requires the electricity sector to accelerate the 

transition from coal-fired to zero-carbon power during the 14th and 15th FYPs. 

There are some limitations to this study, and further efforts can be made in the future. First, 

due to the lack of recent official statistical information, China’s IO table in 2017 was utilized, 

and the technical coefficient matrix is regarded as constant over time. The RAS method is a 

potential approach to updating the technical matrix to reduce estimation bias due to changes in 

China’s economic system. Second, the current model only takes into account the uncertainties 

of carbon emissions intensity, energy consumption intensity, and employment intensity. 

However, some constant values set in the model, such as the upper/lower limits of sectoral 

output growth rate, are also uncertain in long-term planning. Those uncertainties can be further 

tackled in future works. Third, capital is not endogenized in the current methodology of the 

IOA model, which might neglect the capital-related carbon emissions from the renewable 

energy sectors and thus affect the results of our study. Kang et al.’s research (Kang et al., 2020b) 

may be a promising way to solve this problem in the future. Moreover, due to the limitations of 

the IOA model and the constraints and objective functions in the system optimization model, 

there will be a certain gap between the results of the optimization and the 14th FYP targets. 
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Highlights 

⚫ A multi-objective optimization model based on the Input-Output model is proposed 

⚫ The structural adjustment of economic sectors with fine-resolution power sectors 

is examined 

⚫ Coordinate contradictions caused by policy targets on economy-environment-

employment 

⚫ Sectors that enable sustainability governance more balanced in reflecting three 

pillars are identified 
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