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Abstract

The production of anthropogenic reactive nitrogen (N) has grown so much in the last century that
quantifying the effect of N enrichment on plant growth has become a central question for carbon
(C) cycle research. Numerous field experiments generally found that N enrichment increased
site-scale plant biomass, although the magnitude of the response and sign varied across
experiments. We quantified the response of terrestrial natural vegetation biomass to N enrichment
in the Northern Hemisphere (>30° N) by scaling up data from 773 field observations (142 sites) of
the response of biomass to N enrichment using machine-learning algorithms. N enrichment had a
significant and nonlinear effect on aboveground biomass (AGB), but a marginal effect on
belowground biomass. The most influential variables on the AGB response were the amount of N
applied, mean biomass before the experiment, the treatment duration and soil phosphorus
availability. From the machine learning models, we found that N enrichment due to increased
atmospheric N deposition during 1993-2010 has enhanced total biomass by 1.1 £ 0.3 Pg C, in
absence of losses from harvest and disturbances. The largest effect of N enrichment on plant
growth occurred in northeastern Asia, where N deposition markedly increased. These estimates
were similar to the range of values provided by state-of-the-art C-N ecosystem process models.
This work provides data-driven insights into hemisphere-scale N enrichment effect on plant
biomass growth, which allows to constrain the terrestrial ecosystem process model used to predict
future terrestrial C storage.

1. Introduction

In the last century, humans have drastically altered
the global nitrogen (N) cycle by producing react-
ive N and spreading it over ecosystems. Reactive
N inputs come from fertilizers synthesis by the
Haber—Bosch process, N oxides produced by fossil

© 2022 The Author(s). Published by IOP Publishing Ltd

fuels and biofuels, and the cultivation of N,-fixing
crops (Vitousek et al 1997, Galloway et al 2004,
2008, Canfield et al 2010, Pefiuelas et al 2020).
Here we focus on the impact of increasing N
deposition (Dentener et al 2006, Ackerman et al
2019), on terrestrial ecosystems (Hietz et al 2011,
Fowler et al 2013). Previous studies found that most
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terrestrial ecosystems were limited by N availab-
ility, particularly in the Northern Hemisphere at
mid- and high latitudes (Elser et al 2007, LeBauer
and Treseder 2008, Pefiuelas et al 2013, Craine
et al 2018, Du et al 2020). Clarifying the effect
of atmospheric N input on the growth of ter-
restrial plants is thus critical to understand terrestrial
carbon (C) storage, i.e. how much of the cur-
rent land C sink is caused by atmospheric depos-
ition (Gruber and Galloway 2008, Reay et al 2008,
Schulte-Uebbing et al 2022).

Field N-enrichment experiments have been con-
ducted in various terrestrial ecosystems during the
last four decades (figure 1(a)). The data from such
site-scale field experiments were and continue to
be used to explore the effects of N enrichment on
ecosystem C cycling (LeBauer and Treseder 2008,
Janssens et al 2010, Song et al 2019, Du et al 2020).
For instance, meta-analyses of N-enrichment exper-
iments showed that the mean effect of N enrich-
ment on site-scale biomass was positive (LeBauer and
Treseder 2008, Yue et al 2017, Schulte-Uebbing and
de Vries 2018, Song et al 2019). However, the effect
of N enrichment on biomass varies drastically across
experiments, due to local conditions such as climate,
vegetation, background soil fertility, N-enrichment
intensity and duration, and experimental design (Xia
and Wan 2008, Stewart 2010, Greaver et al 2016).
This large variability poses a substantial challenge to
the data-driven quantification of regional- or global-
scale responses of terrestrial biomass to elevated N
deposition.

We quantified the effects of climate, soil charac-
teristics, and N-enrichment intensity on the response
of Northern Hemisphere vegetation biomass to N
enrichment using two machine-learning algorithms.
Given that there may be divergence in plant above-
and below-ground adjustment strategies under
resource stress (Freschet et al 2018, Tumber-Dévila
et al 2022), we investigated the dominant source of
variation in N enrichment effects in both above-
ground biomass (AGB) and belowground bio-
mass (BGB). The machine-learning algorithms were
trained using data from peer-reviewed N-enrichment
experimental studies (see Methods). In total, we com-
piled 597 observations of the response of AGB to N
addition from 100 sites, and 176 observations of the
response of BGB from 42 sites (table S1, supplement-
ary data). All the N-enrichment experiments were
paired with a control and a treatment at the same loc-
ation. The AGB and BGB responses cumulate effects
of N addition throughout the experimental period.

The data on AGB and BGB responses covered
a range of vegetation types (figure 1(a) and table
S1) and intensity of N enrichment from 0.2 to
64 g N m~2 y~! at AGB sites (figure 1(b)) and from
1to 56 g N m~2y ! at BGB sites (figure 1(c)). The
atmospheric N deposition change during 1993-2010
reaches at highest 1.3 gN m~2y~! (figure 1(a)). Thus,
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N enrichment intensity in the experiments somewhat
covered the change in atmospheric N deposition,
albeit with a significant bias towards the higher end
and beyond. In this study, in addition to meta-
analyses approach, we used boosted regression trees
(BRT) (Elith et al 2008) and random forest (RF) mod-
els (Breiman 2001) to predict the responses of AGB
and BGB to the intensity of N-enrichment. The con-
clusions from the two machine-learning algorithms
were consistent, so we present the results obtained
with BRT in the main text (and the RF results in sup-
plementary information).

2. Methods

2.1. Data set of N-enrichment experiments

We collected data for AGB and BGB in N-enrichment
experiments from four meta-analyses: Song et al
(2019), Schulte-Uebbing and de Vries (2018), Yue
et al (2017), and Tian et al (2016). We obtained the
data in Song et al (2019) from the authors and the
data in the other three studies that were not included
in Song et al (2019) from references provided therein.
We used data from N-enrichment experiments in nat-
ural terrestrial ecosystems between 30-90° N. The
median experimental duration was three years (figure
S1). We collected a total of 597 records (including rep-
licates and years in each site) for the response of AGB
to N addition from 100 sites and a total of 176 records
(including replicates and years in each site) for the
response of BGB from 42 sites (table S1, figure 1(a),
supplementary data).

2.2. Meta-analysis of observed effects of N
enrichment on above- and belowground biomass
The effect of N enrichment on AGB (or BGB) likely
varies across the N-enrichment experiments due to
the spatial heterogeneity in climatic, soil, and exper-
imental characteristics. Thus, in the meta-analysis,
we used random-effects models assuming that the
effects being estimated in the different studies are not
identical, but follow some distribution representing
the between-study variability (Gurevitch et al 2018).
We conducted the meta-analysis using the ‘escalc’
and ‘rma.uni’ functions in the ‘metafor’ package of R
software (Viechtbauer 2010). Specifically, the effects
of N on AGB and BGB were measured by estimat-
ing the mean response ratio RR = In (X,/X,), where
X; and X, are mean biomasses in the N-enrichment
and control treatments, respectively (Hedges et al
1999, Lajeunesse 2011). This was performed by set-
ting the parameter ‘measure’ as ‘ROM’ in the ‘escalc’
function in the ‘metafor’ package of R software
(Viechtbauer 2010). The weighted response ratio
(RR,,) was calculated as the weighted average of RR
using the weights w; = 1/(v; + 72), where v; is
the variance of the effect size within the ith study
and 72 is the between-study estimated by a restric-
ted maximume-likelihood estimator (Viechtbauer et al
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Figure 1. Response of AGB and BGB to N enrichment in N-enrichment experiments. (a) Distribution of the N-enrichment
experimental sites with observed AGB and BGB sensitivities (Sags and Sggs) to N enrichment. Background colors show the
changes in N deposition during 1993-2010. (b) and (c) Frequency distribution of amount of N enrichment for observations of
AGB and BGB responses (Nqdaacs and Nudqpgs)- (d) and (e) Frequency distribution of the effect of N enrichment on AGB and
BGB. The percent of biomass change (%) is N enrichment-induced relative change in AGB (d) and BGB (e) over the experimental
period. The red vertical lines represent nil values. Meanyeta gives the mean and 95% confidence intervals of the effect of N
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2015). Parameter estimation was performed by set-
ting the parameter ‘method’ as ‘REML in the
‘rma.uni’ function in the ‘metafor’ package of R
software (Viechtbauer 2010). The percent changes
of AGB and BGB due to N enrichment were cal-
culated as [exp(RR,) — 1] x 100%. The effects of
N enrichment on AGB and BGB were considered
to differ significantly between the N-enrichment

and control treatments when the 95% confidence
intervals of AAGB and ABGB did not include
Zero.

2.3. Observation based sensitivities of AGB and
BGB to N enrichment

The sensitivities of AGB and BGB to N enrichment
(Sags and Spgg) were calculated as:
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AAGB
add

SAGB: X 100 (1)

where Spgp is the relative response of AGB to N
enrichment (% [g N m~2 y~!]~!), AAGB is the N
enrichment-induced relative change in AGB over the
experimental period (%), and N,qq is the amount of
N added in the treatment plots (g N m~2y~1):

ABGB

add

Spge = x 100 (2)
where Spgp is the relative response of BGB to N
enrichment (% [g N m~2 y~!]71), ABGB is the N
enrichment-induced relative change in BGB over the
experimental period (%), and N,qq is the amount of
N added in the treatment plots (g N m~—2y~1).

2.4. Relative influence of climatic, soil, and
experimental characteristics on Sygp and Spgp

The spatial variations of Saygg and Spgp were
examined using BRT (Elith et al 2008) and RF mod-
els (Breiman 2001). We conducted the BRT analyses
using the ‘gbm.step’ function in the ‘gbm’ package of
R software, with the parameters of ‘tree.complexity’
as 5 and ‘learning.rate’ as 0.005. The RF analyses
were conducted using the ‘randomForest’ function
in the ‘randomForest’ package of R software, with
the parameters of ‘nodesize’ as 5 and ‘ntree’ as 500.
The BRT and RF models were trained using 16 pre-
dictor variables: climatic variables (mean annual
temperature (MAT) and mean annual precipitation
(MAP)), woodiness (woody or nonwoody), foliar N
content, soil characteristics (C:N ratio, bulk density,
pH (measured in water), cation exchange capacity
(CEC), and the contents of organic C, clay, organic
phosphorus (P), labile P, and water), and experi-
mental characteristics (AGB and BGB in the control
plots, intensity of N addition, and treatment dur-
ation). We obtained data for MAT and MAP from
the WorldClim?2 database (Fick and Hijmans 2017).
To ensure the comparability of N deposition data
between BRT and RF models and Multi-scale Syn-
thesis and Terrestrial Model Intercomparison Project
(MsTMIP) models, we systematically used the same
data set for N deposition (Wei et al 2014a, 2014b).
We extracted data for the soil C:N ratio, bulk dens-
ity, pH, CEC, and the contents of organic C and clay
from the gridded Global Soil Dataset for use in Earth
System Models (GSDE) (Shangguan et al 2014), and
from the WISE30sec database (ISRICWISE) (Batjes
2016). Data for soil-water content were extracted
from GSDE (Shangguan et al 2014). Data for the con-
tents of soil organic P and labile P were extracted from
Global Gridded Soil Phosphorus Distribution Maps
at resolutions of 0.5° (Yang et al 2014). Data for foliar
N content were extracted from global maps of the
distributions of plant traits (Butler et al 2017). Data
for woodiness (woody or nonwoody) were extracted
from the Global Mosaics of the standard Moder-
ate Resolution Imaging Spectroradiometer (MODIS)
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land-cover type data product (MCDI12Q1) in the
International ~ Geosphere-Biosphere = Programme
(IGBP) land cover type classification (Friedl et al
2010). The forests, shrublands, and woody savannas
were defined as ‘woody’ and the other vegetation
types were defined as ‘nonwoody’. We used the Sxgs
and Spgp samples with all 16 variables in the BRT and
RF analyses. The data sets for climate, woodiness, N
deposition, and soil characteristics were also used in
the spatial extrapolation of Sygg and Spgg (figure S2,
see below).

The machine learning analysis was performed 100
times to examine the relative influence of each pre-
dictor of the 16 predictors on the Sygp and Spgp.
Here, relative influence of a predictor in BRT ana-
lysis is relative contribution of the variable for a BRT
model, which was ‘contributions’ parameter output-
ted by ‘gbm.step’ function in the ‘gbm’ package of
R software. Partial-dependence plots for the vari-
ables in BRT models were produced using ‘gbm.plot’
function. Variable importance in RF analysis was
assessed using the total decrease in residual sum of
squares from splitting regression tree on the variable,
which was ‘IncNodePurity’ parameter in ‘import-
ance’ object outputted by ‘randomForest’ function
in the ‘randomForest’ package of R software. Partial-
dependence plots for the variables in RF models were
produced using ‘partialPlot’ function. The 16 predict-
ors were ranked by the value of their influence on
the Sagp and Sggp from high to low. Then, a series
of machine learning models including 2-16 predict-
ors were established to examine the performance of
simpler models. For each machine learning model,
10-fold cross-validation was used to test the propor-
tion of variance of Sxgp (or Spgp) explained by Sacs
(or Spgp) predicted by the models (R?). The cross-
validation were performed 100 times with the aver-
age results shown in the figures. The machine learning
model with highest R? was used in spatial extrapola-
tion of Sygp and Spgp in the following section.

2.5. Spatial extrapolation of Sygp and Sggp

We calculated the spatial distributions of Sagp and
Spcp at mid- and high latitudes (30-90° N) of the
Northern Hemisphere using both the BRT and RF
models trained by site data and of the gridded cli-
matic and soil variables, with the treatment dura-
tion set as 17 years from 1993 to 2010, the intensity
of N enrichment as the average change in N enrich-
ment during 1993-2010 relative to 1993, and AGB
and BGB in 1993. In the spatial extrapolation ana-
lysis, the first year of the treatment duration was set
as 1993, because 1993 was the first year of the dataset
for global AGB (Liu et al 2015) used in this study. The
last year of the treatment duration was set as 2010,
because 2010 was the last year of the duration of the
MSsTMIP models’ simulations (Wei et al 2014a) used
in this study. BGB was calculated as AGB multiplied
by the BGB:AGB ratio (Rppa) (Liu et al 2015), with
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the source noted as ‘Liu’ in the figures. We also used
Rpa and total biomass reported by Carvalhais et al
(2014) to calculate global AGB and BGB, with the
source noted as ‘Carvalhais’ in the figures. The GEO-
CARBON global forest AGB (Santoro et al 2015, Avit-
abile et al 2016) was also used for the spatial extrapol-
ation of Sygp and Spgg, with BGB calculated as AGB
multiplied by Rg,4, with the source noted as ‘GEO-
CARBON in the figures. The relative changes in ter-
restrial AGB and BGB caused by N deposition dur-
ing 1993-2010 (AAGB and ABGB) were calculated
as Sagp and Spgp multiplied by the average change in
annual N deposition during 1993-2010 using driver
data (N deposition) of MSTMIP (Wei et al 2014b).

2.6. Total change in terrestrial biomass due to
enhanced atmospheric N deposition during
1993-2010 for each grid point

BRT- and RF-based change in total biomass (ATB)
were calculated for each grid point using AAGB and
ABGB with AGB and BGB as weights:

ATB — AAGB x AGB1993 + ABGB x BGB1993
AGBj993 + BGBj993
x 100% (3)

where ATB is the percent change in total biomass
due to N enrichment during 19932010, AAGB is the
percent change in AGB due to N enrichment dur-
ing 1993-2010, ABGB is the percent change in BGB
due to N enrichment during 1993-2010, AGB1993 is
AGB in 1993 (g C m~2), and BGB) 993 is BGB in 1993
(gCm™2).

2.7. ATB in Northern Hemisphere
ATB in Northern Hemisphere (30-90° N) was
calculated as:

Z?:l (ATB, X TB19937,‘ X Areai)

TB199snH

ATB = x 100%.

(4)

where ATB is the percent change in total biomass
due to N enrichment during 1993-2010, i indicates
grid cell i (0.5° x 0.5°), n indicates the number of
grid cells, ATB; is the percent change in total bio-
mass due to N enrichment during 1993-2010 at grid
cell i, TBgo3; is total biomass in 1993 at grid cell
i (g C m™2), Area; is the area of grid i (m?), and
TBig9sny s total biomass in 1993 (g C), calculated as

N
TBigosnt = » (TBigosi X Area;).

i=1

2.8. Terrestrial ecosystem process model
simulations

We used total biomass from six terrestrial ecosys-
tem process models with C-N interactions: CLM4,
CLMA4VIC, DLEM, ISAM, TEMS6, and TRIPLEX-
GHG from MsTMIP (Huntzinger et al 2013, Wei et al

5
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2014a). The model CLASS-CTEM-N results indic-
ated that elevated N deposition reduced terrestrial
biomass and was not used in this study. We used
model outputs for the SG3 and BGI scenarios. (a)
Under scenario SG3, the models were forced by time-
varying climate, land-use and land-cover change
(LULCC), and CO, concentration. (b) Under scen-
ario BG1, the models were forced by time-varying cli-
mate, LULCC, CO, concentration, and N deposition.
Total biomass induced by N deposition was calculated
as the difference between the total biomasses under
the BG1 and SG3 scenarios.

ATB for each grid point in the MsSTMIP models
was calculated as:

TB2010 — TB1993
TBj993

ATB = x 100% (5)
where ATB is the percent change in total biomass due
to N enrichment during 1993-2010, TB1g9; is total
biomass in 1993 (g C m~2) induced by N deposition,
and TByy is total biomass in 2010 (g C m~2) induced
by N deposition.

The relative change in Northern Hemisphere
plant biomass due to N enrichment the MsTMIP
models was calculated using equation (4) as the
change in total biomass induced by N deposition dur-
ing 1993-2010.

3. Results

Meta-analyses of our dataset revealed that N enrich-
ment on average increased both AGB and BGB in
field experiments. AGB was higher by 3033% (mean
and 95% confidence interval) (figure 1(d)) and BGB
by 111*% (figure 1(e)) as compared to each con-
trol experiment. The dominant factors influencing
the sensitivities of AGB and BGB to N enrich-
ment (Sagp and Spgg, the percent of biomass change
over the experimental period due to N enrich-
ment, in % [gNm~2y~!]7!) were deduced from
the machine-learning algorithms. 16 predictor vari-
ables were considered (see Methods). Based on these
predictors, the BRT models were able to explain
56%—57% of the variance in Sygg and ~20% of the
variance in Spgp based on our leave-one-out cross-
validation (figure 2). The lower performance for BGB
was probably due to the lower amount of data avail-
able for this variable. The ranges of climatic condi-
tions and soil properties at the experimental sites of
N addition covered those observed in terrestrial eco-
systems at Northern Hemisphere mid- and high lat-
itudes, indicating the representativeness of the cli-
matic and soil conditions at the experimental sites
(table S2).

The intensity of N enrichment had the largest
influence on Spgg based on the BRT mod-
els (figures 2(a) and (b)). Sagp decreased with
N enrichment (figures 3(a), (b), S3 and S4)
from ~15% [gNm 2y !']7!) at a N input of
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Figure 2. Relative influences of climatic, soil, and experimental characteristics on Sags and Sggs. (a) and (b) Relative influence on
Sacs using BRT, with soil characteristics from the GSDE and ISRICWISE databases, respectively. The relative influence is shown
as the mean of the output from 100 BRT analyses. R? represents the proportion of variance of Sags (or Sggs) explained by Sags
(or Spgp) predicted by BRT based on 2-16 predictors. For each BRT model, the cross-validation were performed 100 times with
the averaged R? shown in the subfigure. The red vertical line shows the BRT model with the largest value of R2. (c), (d) Same as
(a) and (b), but for Spgp.

0.2 g Nm~2y !, to a value close to zero at a very (figure S5(c)). Spgp nonlinearly decreased as a func-
high N input of 64 ¢ N m~2 y~!. This was consist- tion of background BGB (figures 3(c), (d), S5(d),
ent with the results of a regression analysis, which ~ S10, and S11). This result was also evident in the raw
further revealed that Sygs remains close to zero bey-  observation data (figure S6). The results of the BRT
ond a critical N enrichment intensity of approxim- models were generally consistent with those obtained
ately 10 g N m~2 y~! (figures S5 and S6). N enrich- with the RF models results (figures S5, S7, S12
ment intensity was also identified as the largest most  and S13).
influential factor on Spgg by the RF models (figures In addition to the analysis using all 16 variables,
S7-S9). However, the second most influential factor we also performed the analysis with fewer (2-15)
differed between the two approaches: AGB in the variables to establish simpler machine-learning mod-
control plot in BRT (figures 2(a), (b), S3 and S4) and els. BRT models still explained the highest pro-
soil labile P content (or soil organic P content) in RFs  portion of Sagp variance when using seven most
(figures S7-S9). influential variables including soil data from GSDE
Unlike Spcp, the dominant source of variation data set (figure 2(a)) or 13 most influential vari-
in Spgs was BGB in the control plot (figures 2(c) ables including soil data from ISRICWISE data set
and (d)), while the intensity of N enrichment was (figure 2(b)), and explained Spgg with only four
ranked second and also had a strong impact on Sggg  influential variables (figures 2(c) and (d)). This was
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Figure 3. Partial-dependence plots of the predicted Sxgs and Sggp with independent predictor variables. (a) and (b) Sags
response to climatic, soil, and experimental variables variation using BRT with soil characteristics from the GSDE and
ISRICWISE databases, respectively. The range of predictor variables was normalized to 0-1. (c), (d) Same as a and b, but for Sgs.
Figures S3, S4, S10 and S11 show the partial-dependence plots with independent predictor variables expressed as absolute value.

generally consistent with the performance of the RF
models (figure S7). Those parsimonious machine-
learning models were applied to extrapolate the
spatial distributions of Sygs and Spgp across the
Northern Hemisphere (>30° N, see Methods). In
the extrapolation, the intensity of N enrichment was
given by gridded N deposition data during 1993—
2010 (Wei et al 2014a, 2014b) (figure 1(a)), and the
upscaling was calculated for a period of 17 years
(1993-2010). The contribution of N enrichment to
terrestrial AGB and BGB change (AAGB and ABGB)
were then calculated as Sygp and Spgp multiplied by
the average change in annual N deposition during
1993-2010.

The extrapolation analysis shows that AGB gen-
erally increased from atmospheric N deposition
across the Northern Hemisphere during 1993-2010
(figures 4(a) and S14(a)—(f)), as constrained by
observations from the N-enrichment experiments
(figure 1(d)). N enrichment had minimal impacts on
BGB, but a strong positive effect on AGB changes,
that is AAGB (figures 4(a), (b) and S14(a)-(1)).
This is likely because N enrichment intensity was
the most influential factor of the variation of Sxgg,
but not of Spgp, in the machine-learning models
used for upscaling extrapolation. We further analyzed

the spatial distribution of the effect of increased N
deposition on the change in total biomass (ATB)
during 1993-2010 by combining the responses of
AAGB and ABGB (Methods). Total biomass was gen-
erally enhanced by changes in N deposition across
Northern Hemisphere, reflecting the changes in AGB
(figures 4(c) and S14(m)—(r)). Biomass increased the
most in northeastern Asia, where the largest enhance-
ment of atmospheric N deposition occurred during
1993-2010. The spatial patterns of AAGB, ABGB,
and ATB were consistent between the BRT and RF
models (figures S14 and S15).

We further investigated ATB caused by N enrich-
ment during 1993-2010 using six terrestrial eco-
system process models that include C-N interac-
tions: CLM4, CLM4VIC, DLEM, ISAM, TEM6, and
TRIPLEX-GHG from the MsTMIP (Mao et al 2015,
Huntzinger et al 2013, Wei et al 2014a). All these
models outputted the response of total biomass to
N enrichment but did not distinguish between AGB
and BGB. None of the models produced the same
spatial patterns of ATB as those from the machine-
learning approaches (figures 4(d) and S16), although
the MsTMIP models and the BRT and RF models
were all driven by the same N-deposition data set (see
methods). The spatial pattern of ATB varied greatly
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Figure 4. Spatial pattern of relative change in terrestrial biomass due to N enrichment in the Northern Hemisphere during
1993-2010. (a) Mean change in AGB based on BRT. (b), Mean change in BGB based on BRT. (c¢) Mean change in total biomass
based on BRT. The mean spatial patterns in (a)—(c) are the spatial patterns based on BRT using multiple data sources (see figure
S14). (d), (e) Multimodel mean, and standard deviation of change in total biomass across the MsTMIP models.

across the six MsTMIP models (figure S16). N enrich-
ment generally had a minimal effect on total bio-
mass in ISAM. Total biomass in the other five models
responded positively to N enrichment, albeit to differ-
ent degrees. The multimodel mean indicated that N
enrichment increased total biomass in eastern North
America, Europe, and eastern Asia (figures 4(d) and
(e)), but with large spread across the terrestrial eco-
system process models (figure S16).

Scaling up spatial values to the entire Northern
Hemisphere at mid- and high latitudes, N enrich-
ment during 1993-2010 enhanced total biomass by
0.9 £ 0.3% (1.1 £ 0.3 Pg C) as the average results

of the BRT (RF) approach (figures 5 and S17).
This increase was dominated by changes in AGB
(1.4 £ 0.5%, 1.2 £ 0.3 Pg C, figures S18 and S19)
rather than BGB (—0.1 £ 0.1%, —0.04 &+ 0.05 Pg C,
figures 520 and S21). Relative to the machine learn-
ing approaches, ATB was underestimated by ISAM
(0.0%, 0.0 Pg C) and TRIPLEX-GHG (0.4%, 0.5 Pg C)
and was overestimated by CLM4 (1.2%, 1.5 Pg C),
CLMA4VIC (1.6%, 1.6 Pg C), and DLEM (1.5%,
1.7 Pg C) (figures 5, S17 and table S3). Average
ATB across the MsTMIP models was 0.9 £ 0.6%
(1.2 £ 0.7 Pg C), indicating good agreement between
the multi-model mean and our data-driven estimates
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‘Carvalhais’ indicate that the BRT and RF analyses used biomass data from Liu et al (2015) and Carvalhais et al (2014),

respectively.

but also considerable divergence across the state-of-
the-art C-N ecosystem models.

4, Discussion and conclusion

Our study based on machine-learning algorithms
indicated that the AGB increase responded nonlin-
early to the intensity of N addition, consistent with
previous meta-analyses (Arens et al 2008, Bradford
et al 2008, Ochoa-Hueso 2016, Tian et al 2016,
Prager et al 2017, Xu et al 2018). However, the N
enrichment applied in field experiments was typic-
ally much higher than the background atmospheric N
deposition (figures 1(a)—(c) and S22). Therefore, the
overall mean N response estimated by meta-analyses
may not accurately represent the larger-scale mean
effect of increased N deposition when the strongly
nonlinear responses to N addition are not accoun-
ted for. In contrast to the meta-analyses, our integ-
rated analyses based on machine-learning approaches
did consider the stronger effect of N-enrichment
at low doses. The intensity of N enrichment was
the dominant cause of terrestrial Sygg variations,
when this sensitivity was derived from observations
in N-enrichment experiments (figures 2 and S7),
with Sacp decreasing from 15% [gNm™2y~!']~!
to nearly 0% [gNm~2y~']~! as N enrichment
increased from 0.2 to 64 g N m™? y~!, (figures S3
and S4). The apparent difference in Sygp between our
study and previous meta-analyses therefore indicates

that considering realistic N enrichment intensity is
recommended in future field experiments and meta-
analyses studies focusing on N effect on terrestrial C
cycling.

Previous meta-analyses have generally suggested
positive effects of N addition on AGB (Yue et al
2016, You et al 2017, Schulte-Uebbing and de Vries
2018) and BGB (Li et al 2015, Yue et al 2016) in
N-enrichment experiments. However, when setting
N addition as a change in N deposition during the
same duration of 1993-2010 and the identical experi-
mental duration in machine-learning approaches, we
found that N enrichment only had a minor effect on
Northern Hemisphere terrestrial BGB (figure 4(b)),
indicating that N enrichment generally decreased the
BGB:AGB ratio in Northern Hemisphere terrestrial
ecosystems. This finding is consistent with changes
in C allocation due to N enrichment in N-limited
terrestrial ecosystems, favoring the allocation of C to
AGB instead of roots (Chapin 1980, Miiller et al 2000,
Makela et al 2008, Cambui et al 2011, Yue et al 2021,
Peng et al 2022). The positive effect of N enrichment
on total biomass was dominated by the response of
AGB rather than BGB in the Northern Hemisphere
terrestrial ecosystems, due to the different responses
of AGB and BGB to N enrichment (figures 4(a)—(c)).

N enrichment-induced decrease of the BGB:AGB
ratio maybe related to plant adaptation strategies in
changing nutrient conditions. Plant biomass alloc-
ation changes due to N enrichment were usually
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assessed using the two classic mechanisms based on
the optimal partitioning hypothesis and the isometric
allocation hypothesis, respectively. Under the optimal
partitioning hypothesis, biomass is preferentially
allocated to the organs that could acquire the most
limited resource for plant growth (Bloom et al 1985,
Kobe et al 2010). For instance, plants preferentially
allocate more biomass to root under N starvation but
allocate more biomass to shoot under N enrichment
(Mardanov et al 1998, Kobe et al 2010, Chen et al
2013). Under the isometric allocation hypothesis, the
biomass allocation is allometric among plant organs
but is isometric across various environmental condi-
tions, plant species or vegetation types (Niklas 2004,
2005). Plants allocate biomass to each organ follow-
ing scaling exponents based on individual plant size
(Cheng and Niklas 2007). The integrated analysis of
N enrichment experiments observations showed that
N enrichment decreased plant root:shoot ratio but
did not apparently change the allometric relation-
ships among plant organs when the whole set of data
from various ecosystems were considered (Peng and
Yang 2016, Yue et al 2021, Peng et al 2022). Never-
theless, as shown in figure 5 of Peng et al (2022),
there was large uncertainty in the allometric scal-
ing exponents among plant organs with 95% con-
fidence interval ranging from ~0 to ~2 under both
control and N enrichment conditions. Stronger evid-
ence is still needed to clarify whether the allomet-
ric relationships are independent of nutrient con-
ditions and vegetation types. Particularly, a higher
number of paired data for AGB and BGB response
to N enrichment in each vegetation type is warranted
for identifying the mechanism that can most accur-
ately explain the BGB:AGB ratio decrease caused by N
enrichment.

The Northern Hemisphere terrestrial ATB caused
by N enrichment during 1993-2010 varied among the
process-based models simulating terrestrial C cycles
with C-N interactions (figure 5). ATB was under- or
overestimated by most models relative to the estim-
ates from the machine-learning approaches. Differ-
ent representations of the framework of N cycles
in C-N models likely leads to great uncertainty in
modeling C cycles (Niu et al 2016, Du et al 2018).
Several key mechanisms of C-N cycles remain to
be improved in state-of-the-art terrestrial ecosystem
process models, such as community composition,
contents of labile C and N, allocation and turnover
of C and N pools, biological N fixation, and losses of
N from the ecosystem via leaching or gaseous emis-
sions (Thomas et al 2015). Our study found that
the mismatch between C-N model simulations and
observations was widely distributed across North-
ern Hemisphere terrestrial ecosystems, unlike previ-
ous site-scale evaluations of the performance of C-N
models (Zaehle et al 2014, Dybzinski et al 2019).
Modeling the effect of N enrichment on Northern
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Hemisphere terrestrial C cycles in state-of-the-art
C-N models should therefore be carefully considered.
To more clearly evaluate C-N models’ performance, it
is essential to conduct in-depth comparative research
of observations and model simulations that focuses
on N enrichment effect on plant C turnover pro-
cesses such as growth and mortality of leaf, stem and
root. The variables reflecting the characteristics of C
turnover across plant organs, therefore, are recom-
mended to be included in the standard output vari-
ables of model intercomparison projects.

In summary, our study provided new insights
into the quantification of N enrichment impact on
Northern Hemisphere plant biomass. N enrichment
intensity was the main cause of the Sygp spatial pat-
tern in Northern Hemisphere. N enrichment had
a minor effect on Northern Hemisphere terrestrial
BGB, indicating that the BGB:AGB ratio decreased
as N increased, unlike Sagp. It is worth noting that
the machine-learning models do not explain BGB
response well (figures 2 and S7), likely due to the
lower amount of observational data to constrain
the BGB response to N enrichment. This may lead
to considerable uncertainty in the ATB extrapol-
ation in Northern Hemisphere. Thus, more effort
on observing belowground C-N cycling is recom-
mended in future N-enrichment experiments. Given
that there is apparent spatial pattern of N limita-
tion of plant growth across global natural terrestrial
ecosystems (Du et al 2020), the effect of N enrich-
ment on plant growth likely varies across differ-
ent vegetation types. To accurately quantify the dif-
ference in N enrichment effect on AGB and BGB
across various ecosystems, it will be useful to con-
duct more N-enrichment experiments in the ecosys-
tems for which few data are available, such as shrub-
lands, wetland and tundra (table S1). Particularly,
long-term N-enrichment experiments are still insuffi-
cient (figure S1) but worth carrying out to explore the
responses of plant C turnover processes such as mor-
tality (Pregitzer et al 2008). Moreover, the compon-
ents of atmospheric N deposition changed in recent
years by increasing reduced N in the United States
(Li et al 2016) and oxidized N in China (Yu et al
2019). The impact on biomass of such changes in the
ammonium:nitrate ratio of N deposition remains to
be studied in future field experiments.

Data availability statement

The collected records for the response of above-
ground and belowground biomass to N enrichment
in field experiments were provided as supple-
mentary data in the supplementary informa-
tion. The gridded Global Soil Dataset for use
in Earth System Models (GSDE) was obtained
from http://globalchange.bnu.edu.cn/research/soilw
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(Shangguan et al 2014). WISE30sec database (ISRIC-
WISE) data was obtained from http://data.isric.
org/geonetwork/srv/eng/catalog.search#/metadata/d
c7b283a-8f19-45e1-aaed-e9bd515119bc (Batjes
2016). Global Gridded Soil Phosphorus Distribu-
tion Maps data was obtained from https://doi.org/
10.3334/ORNLDAAC/1223 (Yang et al 2014). The
data of global maps of plant traits distribution was
obtained from https://github.com/abhirupdatta/glob
al_maps_of_plant_traits (Butler et al 2017). Global
Mosaics of the standard MODIS land-cover type data
product (MCD12Q1) was obtained from https://Ipd
aac.usgs.gov (Friedl et al 2010). Total biomass repor-
ted by Carvalhais et al (2014) was obtained from
www.bgc-jena.mpg.de/geodb/BGI/tau.php. The
GEOCARBON global forest AGB was obtained from
www.wur.nl/en/Research-Results/Chair-groups/Envi
ronmental-Sciences/Laboratory-of-Geo-information
-Science-and-Remote-Sensing/Research/Integrated-1
and-monitoring/Forest_Biomass.htm (Santoro et al
2015, Avitabile et al 2016). MsTMIP data products
were downloaded from https://doi.org/10.3334/OR
NLDAAC/1225 (Huntzinger et al 2018). Driver data
(N deposition) of MsTMIP were downloaded from
https://doi.org/10.3334/ORNLDAAC/1220 (Wei et al
2014b).

All data that support the findings of this study are
included within the article (and any supplementary
files).
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