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Abstract
Transport accounts for 24% of global CO2 emissions from fossil fuels. Governments face challenges
in developing feasible and equitable mitigation strategies to reduce energy consumption and
manage the transition to low-carbon transport systems. To meet the local and global transport
emission reduction targets, policymakers need more realistic/sophisticated future projections of
transport demand to better understand the speed and depth of the actions required to mitigate
greenhouse gas emissions. In this paper, we argue that the lack of access to high-quality data on the
current and historical travel demand and interdisciplinary research hinders transport planning and
sustainable transitions toward low-carbon transport futures. We call for a greater interdisciplinary
collaboration agenda across open data, data science, behaviour modelling, and policy analysis.
These advancemets can reduce some of the major uncertainties and contribute to evidence-based
solutions toward improving the sustainability performance of future transport systems. The paper
also points to some needed efforts and directions to provide robust insights to policymakers. We
provide examples of how these efforts could benefit from the International Transport Energy
Modeling Open Data project and open science interdisciplinary collaborations.

1. Introduction

Transport accounts for 24% of global CO2 emissions, of which road vehicles—cars, trucks, buses and two-
and three-wheelers—account for nearly three-quarters (IEA 2020). Transport of both passengers and goods
is in many ways connected to the economy (e.g. employment and welfare), socioeconomic conditions (e.g.
access, congestion and sprawl), the environment (e.g. air pollution and noise), and health (e.g. safety, the
spread of disease) (IPCC et al 2022). Long-term transport and energy system models project travel demands
for the next 30–100 years to support decision-making toward future resource use and climate change
impacts. Prime examples of such modelling work informing decision-makers include the IPCC Assessment
Reports (IPCC et al 2022), IPCC’s special report on Global Warming of 1.5 ◦C (IPCC 2018), and the IEA’s Net
Zero by 2050 report (IEA 2021).
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The number of countries announcing pledges to achieve net-zero emissions over the coming decades has
grown to over 40, including the U.S., the European Union, China and India, covering around 70% of global
CO2 emissions and gross domestic product (GDP) (IEA 2021). In this context, robust models to estimate
future travel demand are essential for managing the transitions toward a low-carbon and sustainable
transport future. To understand whether these pledges are feasible, it becomes crucial to examine the global
mobility trends and policy options to improve transport sustainability.

Past policies that tried to drastically reduce transport emissions and energy use have largely failed, or at
least not at a pace that’s required to rapidly decarbonise the transport sector, due to the failure to understand
travel demand drivers (Schäfer et al 2009, Mattioli and Adeel 2021), consumer behaviours, and the
distributional impacts (Schwanen 2021). A greater understanding of the drivers of transport demand is
paramount to better understanding the speed and depth of the actions required to mitigate greenhouse gas
(GHG) emissions. To facilitate sustained and equitable transitions to low-carbon transport systems,
researchers and policymakers need to have a much more sophisticated understanding of how travel demand
will grow over time and respond to ongoing innovation and policies.

In this paper, we argue that the lack of access to high-quality data on the current and historical travel
demand and interdisciplinary research hinders transport planning and sustainable transitions toward
low-carbon transport futures. We first review the historical trends using data from the International
Transport Energy Modeling (iTEM) Open Data project (section 2) and compare demand projections from
several known models (section 3). We argue in section 4 that strong interdisciplinary collaboration involving
open data, data science, behavioural modelling, and policy analysis can reduce some of the major
uncertainties and contribute to evidence-based solutions toward improving the sustainability performance
of future transport systems. We summarise and draw our conclusions in section 5.

2. Transport demand trends over the last 60 years

In aggregate, onroad travel distance (in passenger distance travelled, PDT, per person) and vehicle ownership
strongly correlate with GDP development. This relationship holds pretty well over space and time (Schäfer
et al 2009, Mattioli and Adeel 2021). The size of the country, population density, and spatial distribution of
urban centres certainly play an essential role as well. Nevertheless, the (log-)linear relation of PDT to GDP
remains clear, despite country differences concerning the above factors. Data from the iTEM Open Data &
Harmonized Transport Database (Linero et al 2020)12 shows that onroad PDT vs GDP per capita for all
countries 1980–2018 (figure 1) exhibits a strong linear correlation of log-transformed panel data: log(onroad
PDT, 1000 km per person per year)= 1.07 log(GDP per capita, 1000 USD per capita per year), implying that
a 1% increase in GDP is associated with a 1.07% increase in onroad PDT. The U.S. has the highest onroad
PDT per person with 20 270 km/person/year in 2017, followed by Canada and Australia. These countries
have high GDP and car-dependent transport systems due to the spread of the population across large land
areas and predominantly low-density urban patterns.

The largest share of onroad PDT comes from driving passenger cars, making it particularly important to
understand the determinants of passenger car activity if one aims to understand travel demand. Per-capita
driving demand is a function of vehicle ownership (a function of income), distance travelled per vehicle and
the occupancy rate (Schäfer and Yeh 2020). The Gompertz curve is the most frequently used method to
depict the relationship between vehicle ownership per capita versus GDP per capita (Dargay 2001, Dargay
et al 2007, Wu et al 2014, Lu et al 2017). The Gompertz curve implies a vehicle ownership change as a GDP
per capita. For each country, vehicle ownership grows slowly at low GDP per capita, then rises until it slows
down due to saturation effects (as shown in figure 2 top figure). However, driving distance per vehicle is not
strongly correlated to income (not shown) but a function of size, density, and spatial distribution of centres.
Therefore, in cities, the driving demand is much lower despite the concentration of wealth (Davis and
Boundy 2020, Kasraian et al 2022).

When compared against the countries’ average level of per capita income, the implied income elasticity of
vehicle ownership (the ratio of vehicle ownership growth to per capita income growth) declines with higher

12 The iTEM historical dataset is composed of 15 individual datasets collected from public data sources, including the International
Transport Forum (ITF-OECD), Eurostat, United Nations, International Organization of Motor Vehicle Manufacturers, etc as well as
our derived new variables for checking (in)consistency between different datasets. The data are harmonised to a consistent iTEM region
definition (individual countries and 17 world regions) and variables (e.g. activity, energy, emission, stock), service (freight and passenger),
mode (e.g. air, rail, road, shipping), vehicle type (e.g. cars, sport utility vehicle (SUV), bus, medium-size trucks), technology (e.g. battery
electric vehicles, fuel cell vehicles, internal combustion engine vehicles), and fuels (e.g. compressed natural gas, biofuels, gasoline, diesel).
Though all the data come fromofficial statistics as documented and downloadable publicly, they exhibitmany data quality issues. Curating
more data and addressing data quality through the open process via Github are the focus of the iTEMOpen Data project, see more in the
later section.
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Figure 1. Onroad passenger travel distance and GDP (in 2015 dollars based on purchasing power parity (PPP)) per capita by
country, 1980–2018. The colour of the countries is roughly organised by continent. Data source: Linero et al (2020).

GDP (figure 2, bottom). The saturation level of vehicle ownership can depend on population density and
urbanisation levels, as well as on income inequality and the availability of alternative mobility options (such
as walking, cycling, and public transport) to car travel. Dargay et al (2007) project, for example, a lower
saturation rate of 683 vehicles per 1000 people for India compared with 807 vehicles for China, given that
China’s population density is only one-third of India’s (dividing population by habitable land area). The
historical and geographical context and country-specific considerations greatly affect vehicle adoption rates
and saturation levels, which pose challenges for global transport demand projection models.

3. The long-term challenges

Long-term transport and energy system models project future travel demand by extrapolating historical
trends (such as total PDT and the number of vehicles in use) combined with exogenous assumptions of
future GDP and population and technology characteristics (e.g. efficiency improvement, costs of private car
travel). The models project transport mode, vehicle type, technology, and fuel choices using econometric,
market equilibrium, cost-minimisation or expert judgement (Edelenbosch et al 2017, Yeh et al 2017).
Figure 3 shows the projections from several global energy/transport systems models that contribute to the
iTEM intercomparison exercise (see appendix). Global vehicle stock is estimated to exceed 2 billion vehicles
by 2040, doubling from one billion cars in 2015 (Sperling and Gordon 2009), reaching 2.5–3.6 billion
vehicles by 2050. China’s estimated number of cars is 88–560 million (65–450 vehicles per 1000 people) in
2050 across a wide range of scenarios, changing from 160 to 180 cars per 1000 people in 2020. The
uncertainties are increasing over time, from 2020 to 2050.

The significant variations observed in the projections shown in figure 3 are driven by models calibrating
to different sources of historical data; various methods of estimating demands by mode (e.g. aggregating
demand based on the number of vehicles (bottom-up) vs disaggregating based on economy-wide energy
used (top-down), Yeh et al 2017); differences in the assumptions regarding the future elasticity of new car
sales to income (particularly with regards to China (Linn and Shen 2021)), occupancy rate (for which very
poor quality data exist), vehicle kilometres travelled per vehicle, policy scenarios and the ambition level
toward meeting the temperature targets, etc.

4. An interdisciplinary approach to improve the policy relevance of future projections

Global energy system models and integrated assessment models still face significant challenges in
representing the behavioural aspects of travel demand regarding mode choice, technology adoption and
demand response to policies (Creutzig 2016, Schwanen 2021, IPCC et al 2022). Though the existing literature
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Figure 2. Passenger car ownership per 1000 inhabitants, 1960–2018 (top); and implied income elasticity of vehicle ownership,
1993–2018 (bottom), as a function of GDP (in 2015 dollars based on purchasing power parity (PPP)). Data source: Linero et al
(2020) (25 countries, 1993–2018, N = 527, primarily European countries plus the U.S. and Canada). Not all countries have data
for all the years within this range.

has already built models connecting mobility data at various scales (ITF/OECD 2020, Muratori et al 2021),
significant advances in modelling global, long-term mobility projections require greater integration with
interdisciplinary transportation research. We lay out such a framework in figure 4 involving open data
(section 4.1), data science (section 4.2), behavioural modelling (section 4.3) and policy analysis (section 4.4)
from different disciplines. We provide concrete examples in an open data platform, novel and synthetic data,
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Figure 3. Scenarios of annual onroad passenger distance travelled, 2020–2050 (top), and onroad passenger distance travelled per
person per year in 2020 and 2050 (bottom) for 16 world regions. The box plots show the interquartile ranges between the first and
third quartile based on 11 scenarios (6 models) listed in appendix. The whiskers are drawn to the smallest/largest non-outlier.

and the mobility research informing policies during the COVID crisis to shed light on potential paths
forward.

4.1. Providing open access to high-quality data
There are several publicly available transportation data sets, but the datasets are often incomplete and
inconsistent across sources due to differences in data collection and data processing methods used. The
incompleteness and inconsistencies create difficulties for researchers to interpret and analyse the data.
Modellers typically spend a lot of time and resources to collect, clean and harmonise these data individually
and repeat this process every year. Although a few institutions provide detailed datasets, their cost is
prohibitively high for research institutions and non-governmental organisations. These data barriers pose
challenges for researchers to fully understand today’s transportation systems and create useful knowledge for
the transition to sustainable and low-carbon mobility. A direct consequence of this problem is the lack of
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Figure 4. An illustration of an open science interdisciplinary research agenda in data, methods, models, and analyses to advance
knowledge in transport demand projections. We explain each quadrant in sections 4.1–4.4.

consistent historical values in each model, adding another layer of uncertainty for making future
projections.

The recently established iTEM Open Data project (iTEM 2022a, 2022b) is a community process to
produce open transport data: high-quality, transparent, frequently updated and improved, and free to access.
As articulated in related disciplines (Hörsch et al 2018, Arnold and Bowler et al 2019, DeCarolis et al 2021),
the project implements the principles of FAIR Data (findable, accessible, interoperable, reusable) to produce
valid data using reproducible, interoperable, reusable code and builds on existing standards for handling
statistical (meta)data. The harmonised transport database aims to create transparency through two key
features:

• Open access: a comprehensive collection of publicly-available transportation data that are harmonised,
cleaned, cross-checked and cross-validated.

• Open source: all source codes used for cleaning and modifying the original datasets are publicly accessible
from GitHub and documented. All codes are available for modification and extension.

Initial iterations of the iTEM project incorporate upstream data from more than 15 sources, including
the International Transport Forum (ITF-OECD), Eurostat, United Nations bodies, the World Bank, and the
International Organisation of Motor Vehicle Manufacturers. Current poject efforts focus on harmonising,
cleaning, cross-checking and cross-validating the input data and creating graphs to visualise the data. The
code that handles these data is free, open-source, continuously tested, and developed in the open using
established reproducible and collaborative workflows and feedback from a global user community. For
instance, GitHub users have identified data errors in countries including China, US, India, Iceland and
Canada for specific variables and years. These community-led activities have improved the overall data
quality of the iTEM database and corrected the errors contained in the original datasets provided by the
international organizations or the statistical agencies of the corresponding countries.

6
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The iTEM Open Data process offers a venue for this work—and the resulting data—to be shared: instead
of regularly repeating data-searching and data-cleaning by individual teams, researchers invest their efforts in
connecting new data sets, identifying and patching erroneous data points, or improving methods for
harmonisation. The project’s data processing pipeline extends from retrieval and cleaning of input data
sources, harmonisation, and (flexible) (dis-)aggregation, to derivation of new measures, infilling, and
output/dissemination of the harmonised data set. The results include the historical data series of key
transportation measures in figures 1 and 2. In other disciplines, including climate science and high energy
physics, open data and community processes have lowered barriers for collaboration and improved the
validity of scientific results and usefulness of insights. Similar practices in transport—albeit more limited
within the full scope of open data—have also gained momentum (ADB 2022). The broader agenda we lay
out here offers advances within the transport data community and thus their usability and uptake by
decision-makers.

4.2. Data science grounded in novel data sources andmethods
Trip-based data from conventional data sources, such as travel surveys, are one of the most detailed and vital
data sources on individuals’ mobility trajectories used to study the flows of the population travelling between
different locations/regions. However, travel surveys are challenging to obtain and are often only available for
a few selected cities/countries and a few years. How can we understand the travel demand of countries, their
future growth, and the policy options to reduce transport emissions if we only have old, outdated survey data
from only a few cities? Big data has significantly advanced travel and traffic data collection and analysis. Big
data can come from cell phone Global Positioning System (GPS), bus and metro cards, social media such as
Facebook, Twitter, Instagram, or traffic sensors.

Mobility research utilising big data includes collecting and processing unprecedented amounts of data
that reflect spatial-temporal dynamics about people, their movement, and activities (Romanillos et al 2015,
Ermagun and Levinson 2018, Welch and Widita 2019). It presents new opportunities for planners, engineers,
researchers, and citizens to understand and solve our transport problems at a very detailed level. Its broad
spatial and fine temporal coverage allow us to measure large-scale human mobility flows at a lower cost.
However, their application in characterising the overall mobility is still limited because of the known issues
associated with big data, such as sampling biases (e.g. only specific subgroups of the population use the apps)
and behaviour distortions (e.g. users interact with apps only at certain hours). Additionally, unconventional
data sources do not contain socioeconomic information, which minimises the risks of violating privacy and
makes them difficult to generalise.

More research is still needed to understand the various aspects of mobility patterns, including temporal,
spatial and behavioural aspects. Rigorous testing and systematic identification of the strengths and
weaknesses of different data sources are needed. Integrating multiple data sources might address the
deficiencies identified in individual sources. Notably, such work will need to be based on a solid theoretical
foundation, showing how and why triangulating multiple specific data sources is critical to capture spatial
and behavioural aspects of mobility and to account for biases known to exist in most unconventional data
sources. New skill sets and knowledge are still needed to reliably apply these new data and modelling
techniques globally.

Data fusion and model integration have the potential to address the limitations of novel data and
broaden their uses. For example, synthetic data offers statistically accurate representations of a populations
in aggregate but not at the individual level. Synthetic data also has the advantage of addressing errors and
gaps in the empirical data and avoiding privacy issues affecting the availability of commercial-in-confidence
data. Statistical, probabilistic, machine learning, and artificial intelligence data fusion methods have been
applied broadly (Anda et al 2021, Venkatramanan et al 2021).

4.3. Modelling behavioural heterogeneity
Travel demand is the aggregate of human mobility at various spatial and temporal scales (figure 5). Human
mobility plays a central role in society, including urban planning, infrastructure investments, emergency
planning and response, social science research (e.g. social interactions and migration), energy and climate
(e.g. fuel use demand and the GHG emissions), and public health (e.g. the diseases spread).

In the broader transport literature, methods of projecting human mobility vary across different temporal
scales, spatial coverage, the level of aggregation, and the research questions at hand. For example, gravity-,
radiation- or activity-based models have been applied to study and compare the mobility patterns at the level
of individuals (Yang et al 2014), within cities (Noulas et al 2012), and in countries (Hawelka et al 2014).
These studies offer insights into human mobility in various topics, including physics, social networks, urban
development, migration, complex systems and infectious disease (Barbosa et al 2018). Given the rich insights
from mobility research of different scales, these mobility models are more suited to model mechanisms

7



Prog. Energy 4 (2022) 043002 S Yeh et al

Figure 5. Illustrative framework for the types of personal travel activity estimates (data and models), the phenomena studied
(headings), and the nested nature of how these different activity levels interact across different temporal and spatial scales, as
illustrated in yellow and blue boxes. PDT: personal distance travelled. While the data and models on the bottom row (time
resolution of hours, days, or years) tend to be descriptive, the models on the top row (time resolution years to decades) can be
descriptive or normative. Blue boxes highlight the scales relevant to normative energy transition scenarios aimed at influencing
long-term changes.

driving mobility and better understand and test hypotheses of how individuals react and adapt to
socioeconomic, demographic, technology, and policy changes.

Similarly, agent-based modelling (ABM) with Big Data analytics and large-scale optimisation techniques
has gained popularity in studying the transformative changes in mobility (González et al 2008). ABMs often
rely on synthetic population data that is a statistically accurate representation of a population in aggregate
but not at the individual level. The individuals are synthesised so that (a) they do not violate any individual’s
privacy and (b) they can be modified to create alternative scenarios (Barrett et al 2018, Waldrop 2018). The
latter feature makes synthetic populations an ideal technique for analysis and planning for future scenarios
involving drastic behavioural changes (Martinez et al 2015).

Finally, accessibility modelling measures potentials and attractions that influence human mobility. These
models are ideal for studying migration, urban growth and population change (Volpati and Barthelemy
2020). Land use–transport interaction models, well known in transport studies, are advanced models used to
predict land-use change and urban growth in the long term (decades) (Badoe and Miller 2000). Similarly,
cellular automata, simpler in terms of data input and based on naïve mechanisms, have been widely used for
simulating long-term future scenarios of urbanisation and population change (Batty 2007).

Making informed travel demand projections requires a deep understanding of the decision-making at
appropriate levels, which is influenced by the nature of travel (such as the trip’s purpose, duration and
locations), as well as the characteristics and preferences of individuals (such as the value of time, Schäfer
2012). For example, the most critical factors influencing mode-choice decisions (e.g. biking vs walking, or
driving vs taking public transit) are the characteristics of the individual and the trip; the land use and
infrastructure conditions at the origin, destination and along the route; travel costs; and finally, the respective
travel time and trip distances of individual trips by mode (Salonen and Toivonen 2013, Moeckel et al 2015,
Hagenauer and Helbich 2017, Ton et al 2019, Liao et al 2020). Other considerations, such as the reliability
and timing of trips, especially multimodal trips, safety, comfort, and convenience, also impact modal choice
decisions.

Looking into the future, short-distance trips today carried out by walking, two- and three-wheelers, and
buses are the most relevant trips affected by new mobility services (Kamargianni et al 2016), such as
e-scooters, bike-sharing, or first- and last-mile autonomous vehicle services (Chee et al 2020). Trips shorter
than 10–15 km constitute a large share of the total trips but only a tiny share of the total annual travel
distance due to the long-tail distribution of mobility (Barabasi 2005, González et al 2008, Song et al 2010,
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Alessandretti et al 2020, Alessandretti and Lehmann 2021, Schläpfer et al 2021). The larger the land area of a
region, the more skewed this distribution.

New low-emission vehicles such as electric vehicles (EVs) can present different challenges due to costs,
range, and infrastructure availability. Early adoptions were influenced by visited locations, distributions of
trip lengths and residency location (rural vs urban) (Björnsson and Karlsson 2015, Jakobsson et al 2016,
Ramea et al 2018, Karlsson 2020), consumer preference, and vehicle costs (Münzel et al 2019). Infrequent
long-distance trips could significantly impact EV purchase decisions, creating a sustained challenge against
EV adoption that highlights the importance of charging infrastructure outside of homes (Hardman et al
2018). A significant challenge is incorporating these human mobility factors as a fundamental driver for
model mode choice changes for projecting long-term travel demand.

4.4. Interdisciplinary approaches provide more robust policy insights and support
The recent COVID-19 pandemic has resulted in an unprecedented global crisis across health, economic,
social, and political dimensions (Lambert et al 2020). The pandemic drives researchers, policymakers,
governments, private companies, and non-governmental organisations to collaborate to provide solutions at
a speed and scale that we had never experienced before. At the centre of all these efforts is the need to
understand mobility patterns: how and how fast the disease spreads through human movements and
interactions; what are the viable policy options to slow down the transmissions; and the potential
consequences of lockdowns resulting in reduced mobility to different societal groups especially the socially
disadvantaged minorities (Bonaccorsi et al 2020, Chang et al 2021). Fantastic progress has been made in
mobility research over the past two years due to the COVID-19 crisis. Companies such as Google (2022) and
Apple released weekly global mobility reports with detailed information regarding the change in mobility at
regional spatial resolution without sacrificing privacy. This information has led to a new wave of open
science, generating tremendous value and leading researchers to develop better models that more accurately
track the spread of the disease and the short-term policy options to slow down the spread locally, regionally,
and globally in a timely fashion (Candido et al 2020, Wang et al 2020, Kogan et al 2021). Other data sources,
such as mobile phone data and Twitter (which require more pre-processing due to privacy concerns), have
also been applied to enhance existing or build new models to inform policies (Wang et al 2020, Ma and
Lipsitch 2021). There has also been voluminous research exploring the impacts of lockdown: on reduced
mobility, especially to the socially disadvantaged minorities; by mode of transportation, including the effects
of ridership on public transport; regional concerns, such as in the global South, where restrictions may be
largely ineffective in emerging economies with high population densities, poor transportation infrastructure
and large informal economies (Saha et al 2020, Kim 2021, Pereira et al 2021); and last but not least the
impacts on climate and energy systems (IEA 2020, Le Quéré et al 2020, Liu et al 2020).

The long-term impacts of the COVID-19 pandemic can include future urban planning, freight
transportation, logistics or food supply chains (Lambert et al 2020). We are at the right time to build on this
momentum of interdisciplinary collaboration and expand it by continuing these open science efforts and to
continue tracking, monitoring, and developing mitigation strategies to minimise the long-term impacts of
the COVID-19 pandemic. We can apply the knowledge from the past two years to a greater challenge:
transitions to equitable and sustainable net-zero emissions mobility systems in the coming decades.

By leveraging open science and interdisciplinary research, we can significantly improve access to
high-quality data and advance our understanding of the behavioural aspects of human mobility and policy
options to improve the sustainability impacts of future transport sector developments. These advancements
allow policymakers to consider location-specific characteristics such as urban development and density
patterns and local policy targets (e.g. on air pollution) when adopting measures to improve the sustainability
performance at the local, city, national and global levels. These advancements could significantly enhance the
analyses done by national governments, stakeholders, and local governments to affect the speed and depth of
mitigating GHG emissions from the transport sector globally and the potential configurations of a
carbon-neutral society in the long term. These advancements can also improve the theoretical and applied
scientific modelling in other disciplines, including urban planning, transport management, epidemiology,
ecology, human geography, data science, and machine learning.

5. Conclusions

The long-term trends of travel demand are affected by the interaction of various factors, including, but not
limited to, socio-economic growth (i.e. population and GDP), urbanisation, migration, infrastructure,
technology, policies, attitudes, and behaviours. Many of these factors are changing rapidly, including
demographics (particularly in developing countries), social attitudes, urban forms, emerging new
technologies (such as electric cars and automated vehicles), and the costs of transport vehicles, fuels, and
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services. Projecting how much and how people will travel in the coming decades and to the end of the
century is extremely challenging. The future of transport is likely to look very different from the past four
decades, given the changes in human behaviour combined with rapid technological transformation in
digitalisation, electrification, new mobility services, and automation (Fulton 2018). To generate realistic
future projections of transport demand and provide robust insights to policymakers, it is crucial to have a
deep understanding of individuals’ decision-making in mobility choices and the aggregate impacts.

Broad, interdisciplinary collaboration can help improve the estimates of past, present and future travel
demand and its potential for transformative change at a global scale towards achieving net-zero emissions
targets in the post-COVID world. This broad collaboration can be done by (a) enhancing the collection,
harmonisation and assessment of new data sources for describing human mobility with complete
transparency and open access; (b) capturing behavioural heterogeneity, such as using data fusion and models
to create ‘synthesised’ and coherent mobility data; and (c) developing practical and implementable
modelling frameworks to improve the existing approaches of estimating future regional, national and global
travel demand. These efforts should be publicly accessible, reproducible, and set up to be continuously
expanded by any research teams or individuals.

Our call for collaboration is an ambitious plan to combine innovative mobility research using big data
with large-scale global transport and energy system models. It is a promising new direction closely related to
the advanced, cutting-edge research initiatives in the other disciplines. New data, skill sets, and knowledge
are still needed to apply these applications reliably across temporal and spatial scales. Big data and artificial
intelligence will become increasingly valuable for updating the baseline activity and infrastructures
such as trip distance, travel time, and accessibility; and reducing the uncertainty range for historical
values.

These recommendations will improve the representation of critical drivers of technical, behavioural, and
socioeconomic change and the associated implications for meeting sustainable development goals, including
decarbonising the transport sector, improving accessibility, and enhancing socio-economic development.
This work should be shared in an open data platform that is replicable and can be continuously improved
and expanded by any research team or individuals beyond the lifetime of a particular project. In turn, these
advancements will significantly improve the analysis of the speed and depth of mitigating GHG emissions
from the transport sector and the assessment of potential configurations of a carbon-neutral economic and
transport system and society in the long term.
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Appendix. International Transport EnergyModeling (iTEM) intercomparison

The shared goal of iTEM https://transportenergy.org/ is to understand better the methods and data that are
employed to study this system—especially models with international or global scope—and through dialogue
to improve knowledge of the system, its ongoing evolution, and the policy and technology options for
guiding its changes.

Participants
Models that contribute to the iTEM intercomparison include groups that approach transport and energy
from broadly different directions, with different immediate objectives. The participants include academic
groups at universities and independent research organisations, departments within national governments,
international government organisations, non-governmental organisations, energy firms, and consultancies.
See the complete list of participants here https://transportenergy.org/participants/. The models and scenarios
contributing to the figures in this article are listed below.
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(a) Global Change Assessment Model
1. Organization: Joint Global Change Research Institute—Pacific Northwest National Laboratory, U.S.

Department of Energy & University of Maryland.
2. Model website: www.globalchange.umd.edu/gcam/
3. Scenarios: HiBio Ctax, HiElec Ctax
4. Data collected: 1 July 2019

(b) Global Transportation Roadmap
1. Organisation: International Council on Clean Transportation
2. Model website: https://theicct.github.io/roadmap-doc/
3. Scenarios: ICE Policy Potential, With Currently Adopted Policies
4. Data collected: 15 January 2021

(c) International Transport Forum, ITF
1. Organisation: ITF, Organization for Economic Co-operation and Development
2. Model website: www.itf-oecd.org/itf-transport-outlook-project
3. Scenarios: R1, R3
4. Data collected: 8 February 2021

(d) International Transportation Energy Demand Determinants
1. Organization: Energy Information Administration, U.S. Department of Energy. Part of the World

Energy Projection System (WEPS+) framework
2. Model documentation: www.eia.gov/reports/index.cfm/T1601
3. Scenarios: Reference
4. Data collected: 1 July 2019

(e) Mobility Model (MoMo)
1. Organisation: International Energy Agency
2. Model website: www.iea.org/topics/energy-technology-perspectives
3. Scenarios: EV30@30, NPS
4. Data collected: 1 July 2019

(f) PROMETHEUS energy system model
1. Organisation: E3Modelling S.A.
2. Model website: https://e3modelling.com/modelling-tools/prometheus/
3. Scenarios: Baseline, Baseline COVID
4. Data collected: 12 March 2021

Definitions of regions
As described in the iTEM documentation (Linero et al 2020), all the ITEM regions are listed in the file at
https://github.com/transportenergy/metadata/blob/master/model/regions.yaml. The ISO code of each
country is in the library PyCountry. However, in some datasets, certain countries do not have the exact
names as those appearing in the library; therefore, a section called Country and ISO Code in each dataset
indicates what name is used for the countries not found in PyCountry.
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