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Abstract. Farms are not homogeneous. Smaller farms generally have different planted crops, yields, agricultural
inputs, and irrigation applications compared to larger farms. However, gridded farm-size-specific data that are
moreover crop specific, are currently lacking. This obscures our understanding of differences between small-
scale and large-scale farms, e.g., with respect to climate change adaptation and mitigation strategies, contribution
to (local) food security, and water consumption patterns. This study fills a significant part of the current data gap,
by developing high-resolution gridded, simultaneously farm-size-specific and crop-specific datasets of harvested
areas for 56 countries (i.e., covering about half the global cropland). Hereto, we downscaled the most complete
global direct measurements of farm size and crop type by compiling state of the art datasets, including crop
maps, cropland extent maps, and dominant field size distribution, representative for the year 2010. Using two
different crop map sources, we were able to produce two new 5 arcmin gridded datasets on simultaneously
derived farm-size-specific and crop-specific harvested areas: one for 11 farm sizes, 27 crops, and 2 farming
systems, and one for 11 farm sizes, 42 crops, and 4 farming systems. In line with previous findings, our resulting
datasets show major differences in planted crops and irrigated area (%) between farm sizes. Consistency between
our resulting datasets and (i) observations from satellite images on farm-size-specific oil palm, (ii) household
surveys on the farm-size-specific irrigated area (%), and (iii) previous studies that mapped noncrop-specific farm
sizes and support the validity of our datasets. Although at grid level some uncertainties remain to be overcome,
particularly those stemming from uncertainties in crop maps, results at country level seem robust. Source data,
code, and resulting datasets are open access and freely available at https://doi.org/10.5281/zenodo.6976249 (Su
et al., 2022).

1 Introduction

There are over 608 million farms around the world, which
highly vary in their characteristics (Lowder et al., 2016,
2021). For example, more than 80 % of the farms are smaller
than 2 ha and utilize only around 20 % of the global farm-
land area of 2.5 billion ha (Bosc et al., 2013; Lowder et al.,
2021). In contrast, the largest 1 % of the farms occupy 70 %
of global farmland area (Lowder et al., 2021). Smaller farms

typically apply less irrigation in low-income and middle-
income countries, making them more vulnerable to water
scarcity than larger farms (Ricciardi et al., 2020). In terms of
crops and mindful of national differences, smaller farms tend
to plant more fruits, pulses, roots and tubers, while larger
farms plant more vegetables, nuts, and oil crops (Herrero et
al., 2017; Ricciardi et al., 2018a, b). Furthermore, farmers
who operate smaller farms tend to increase the use of non-
fixed inputs to increase their productivity, such as fertilizers

Published by Copernicus Publications.

https://doi.org/10.5281/zenodo.6976249


4398 H. Su et al.: Gridded 5 arcmin datasets for simultaneously farm-size- and crop-specific harvested areas

and pesticides, whereas larger farms rather increase fixed in-
puts such as machinery (Ren et al., 2019). Whether smaller
farms also generate higher yields has long been debated, al-
though it appears that yields often correlate positively with
farm size (see Rudra, 1968; Savastano and Scandizzo, 2017;
Gollin, 2019; Ricciardi et al., 2021). What seems undisputed,
however, is that smaller farms on average display greater bio-
diversity than their larger counterparts (Ricciardi et al., 2021;
Noack et al., 2021).

Since characteristics vary widely between farms, many
studies set out to map the differences, particularly along
the dimension of their size to discern small-scale and large-
scale farms (Riesgo et al., 2016; Meyfroidt, 2017). At the
global level, farm size mapping was pioneered by Lowder
et al. (2016), Samberg et al. (2016), and Fritz et al. (2015).
Lowder et al. (2016) estimated the country-level distribution
of farm size based on multiple agricultural censuses. Sam-
berg et al. (2016) used the mean agricultural area (MAA) to
assign each subnational administrative unit with a farm size.
A limitation of this approach is that it may overestimate the
area of small farms, as being located in an administrative unit
dominated by small farms does not necessarily mean that
all farms within that unit are indeed small (Ricciardi et al.,
2018a, b). Fritz et al. (2015) mapped a gridded global domi-
nant field size distribution, using manually labeled field size
data on satellite images and spatial interpolation. The domi-
nant field size distribution by Fritz et al. (2015) was updated
by Lesiv et al. (2019). A consequence of interpreting fields
as farms, however, is that small farm areas may be overesti-
mated, as large farms can include small-sized fields as well.

Further developments ensued through Herrero et
al. (2017), who used the country-level farm size data
from Lowder et al. (2016) and Fritz et al. (2015) to develop
a dominant farm size map. This map, in turn, was updated
by Mehrabi et al. (2020) using the field size distribution
from Lesiv et al. (2019). However, despite its improvements,
the method employed by Mehrabi et al. (2020) still assigns
only one (i.e., a dominant) farm size to each grid cell
(5× 5 arcmin), which reduces its usefulness in estimating
the number and area distribution of different farm sizes.

Another important shortcoming in previous studies is that
current farm size maps are not crop-specific. A potential so-
lution to estimating the planted crops for different farm sizes
is to overlap the farm size map with crop maps, e.g., Samberg
et al. (2016), Herrero et al. (2017), and Mehrabi et al. (2020).
Yet still, such overlays may lead to biases in the assigning of
crop-specific areas to farm sizes, because of differences be-
tween farm size and MAA, field sizes, and dominant farm
sizes, and potentially also due to possible structural differ-
ences in crop choices between farm sizes (Ricciardi et al.,
2018a, b). In order to address these limitations, farm-size-
specific and crop-specific datasets would need to be devel-
oped simultaneously, which is what Ricciardi et al. (2018a,
b) attempted. Arguably the most complete empirical global
dataset to date, they collated data from agriculture censuses

and household surveys that directly measured crop produc-
tion or areas in combination with farm size. Their dataset
covers about half of the global cropland, including data for 56
countries1, with subnational data for 46 countries. Still, being
defined at administrative unit level the dataset by Ricciardi et
al. (2018a, b) lacks a high-resolution grid-level representa-
tion of the data. This resolution gap limits the capability to
fulfill the needs of e.g., climate, agricultural and hydrological
models, which commonly need gridded data as input, which,
in turn, obscures our understanding of differences between
small-scale and large-scale farms, e.g., with respect to cli-
mate change adaptation and mitigation strategies, contribu-
tion to local food security, and water consumption patterns.

This study fills a significant part of the current data gap,
by developing high-resolution gridded, simultaneously farm-
size-specific and crop-specific datasets of harvested areas for
56 countries, representative of the year 2010. The datasets,
moreover, provide additional information on farming sys-
tems. To obtain the datasets, we developed and applied a
downscaling procedure, in which we used state of the art
datasets on field size and crop type, including crop maps (Yu
et al., 2020; FAO and IIASA, 2021; Fischer et al., 2021),
cropland extent (Latham et al., 2014; Lu et al., 2020), and
dominant field size distribution (Lesiv et al., 2019), to down-
scale the most complete empirical global farm-size-specific
and crop-specific dataset by Ricciardi et al. (2018a, b) from
the administrative unit to a 5 arcmin gridded spatial resolu-
tion. Two crop maps were used to explicitly consider un-
certainties in crop distributions. We validated our resulting
datasets using empirical data and comparisons with previous
studies.

2 Methods

2.1 Overview

The gridded simultaneously farm-size-specific and crop-
specific dataset of harvested areas can be achieved by down-
scaling the administrative unit level crop-specific farm size
structure using gridded crop distribution and gridded domi-
nant field size distribution (Fig. 1). Since certain crops are
more prevalent on small farms and others on larger farms
as indicated by crop-specific farm size structure, the gridded
crop distribution primarily indicates where small and large
farms are located. Gridded dominant field size distribution
further helps specify the location of small and large farms
because, by definition, large fields only belong to large farms
and small farms can only be located in small fields. We as-
sumed the best estimation of the farm-size-specific and crop-
specific harvested area distribution is the one that maximizes

1Their paper states data are available for 55 countries, but the
associated dataset actually contains 56 (Czech Republic seems to
be added).
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Figure 1. Diagram of dataset development processors.

consistencies with the underlying administrative unit farm
size and grid cell level data.

The dataset development involved preprocessing of multi-
ple datasets, establishing optimization for downscaling, and
constraints relaxation and solving optimization problems
(Fig. 1). The preprocessing included two parts: (i) reclassify-
ing crops to accommodate differences in crop classification
used in the underlying datasets and harmonizing the dataset
by Ricciardi et al. (2018a, b) and (ii) converting the dom-
inant field size distribution into a minimum field area per
field size and 5 arcmin grid cell (Sect. 2.2). The downscal-
ing was achieved by maximizing consistencies with multiple
datasets that provide information on the location of each farm
and field size and planted crops. Specifically, we formulated
an optimization for each administrative unit (Sect. 2.3) and
solved it via constraints relaxations (Sect. 2.4). Priorities in
achieving consistency with the various underlying datasets
were considered during these processes (Sect. 2.3 and 2.4).
The spatial crop distribution affects both crop location and
farm size location during downscaling and is associated with
considerable uncertainties. To consider propagation of such
uncertainties, we used two different crop maps, i.e., GAEZv4

(FAO and IIASA, 2021; Fischer et al., 2021) and SPAM2010
(Yu et al., 2020). Doing so allowed us to develop two alter-
native versions of the final downscaled dataset separately.

2.2 Datasets and preprocessing

The main dataset by Ricciardi et al. (2018a, b) provides
the farm-size-specific and crop-specific cropping area for 56
countries at the administrative unit level (see Table S1 in the
Supplement for a list of the 56 countries included). The 11
farm sizes in this dataset are based on the classification from
the World Census of Agriculture (WCA) (FAO, 2015; Ric-
ciardi et al., 2018a, b; FAO, 2022): 0–1, 1–2, 2–5, 5–10,
10–20, 20–50, 50–100, 100–200, 200–500, 500–1000, and
> 1000 ha. The cropping area in this dataset indicates either
crop area, planted area, harvested area, or cultivated area. Be-
cause data quality varies from country to country and because
this dataset was not harmonized in time, we chose to down-
scale its crop-specific farm size structure (i.e., the percentage
of harvested area per farm size for each crop) instead of the
absolute area.
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Crop-specific harvested area is taken from two separate
crop map sources: GAEZv4 (FAO and IIASA, 2021; Fis-
cher et al., 2021) and SPAM2010 (Yu et al., 2020). These
are the most comprehensive crop maps available, contain-
ing harvested area of dozens of crops for the year 2010
at 5 arcmin spatial resolution (Kim et al., 2021). GAEZv4
and SPAM2010 have their own crop classification systems,
which are given in Tables S2 and S3. Furthermore, GAEZv4
distinguishes two farming systems, namely irrigated and
rainfed, while SPAM2010 further specifies rainfed into low-
input and high-input rainfed and subsistence rainfed (in ad-
dition to irrigated farming systems).

The dominant field size distribution (Lesiv et al., 2019)
indicates where larger farms may be located and contains
the spatial distribution for 5 field sizes: < 0.64, 0.64–2.56,
2.56–16, 16–100, and > 100 ha. For preprocessing the dom-
inant field size distribution cropland extent maps were also
included (detailed steps can be found later). All datasets used
in this study are listed in Table 1.

To preprocess the dataset by Ricciardi et al. (2018a, b), we
first reclassified their crops (which followed the FAO clas-
sification) into 27 GAEZv4 crops and 42 SPAM2010 crops,
respectively. Crop reclassification details can be found in Ta-
bles S2 and S3. We used the cropping area to obtain the
crop-specific farm size structure. In this dataset, the crop-
ping area is crop specific and includes four items: crop area,
planted area, harvested area, and cultivated area. These vari-
ables were identified by the dataset by Ricciardi et al. (2018a,
b) from the local agriculture census. There is no worldwide
standard definition for these items (FAO, 2015), meaning lo-
cal agriculture censuses can apply their own preferred defi-
nitions. In general, however, “planted area” is used for tem-
porary crops, “cultivated area” for temporary crops and per-
manent crops, “crop area” for temporary crops, permanent
crops, fallow fields, meadows, and pastures and “harvested
area” for the cultivated area excluding the area rendered un-
suitable for cultivation by natural disasters or other reasons
(FAO, 2015, 2020). In terms of data availability, at least one
or two of these items are available for most countries. If more
than one item was available, we harmonized the data by tak-
ing the item with the largest overall area (after crop reclassi-
fication) to estimate farm size structure, since a larger overall
area typically means that more farm size classes have avail-
able data. If none of the four items was available, we used
crop production data provided by the dataset of Ricciardi et
al. (2018a, b) as a proxy for the crop-specific farm size struc-
ture, assuming constant yields across farm sizes.

During preprocessing we also converted the 1×1 km dom-
inant field size distribution map into a minimum field area per
field size and 5 arcmin grid cell to align with the spatial reso-
lution of crop maps. We interpreted “dominant field size” as
fields of that size accounting for at least 50 % of cropland in
the grid cell. For each field size, we calculated the minimum
field area for each 1 km cell by using the 50 % of cropland
extent. We then summed the minimum field area from 1 km

to 5 arcmin cells and scaled the summed area to cover 50 %
of croplands in 5 arcmin cells. The minimum field area of
field size 16–100 ha is 120 ha in a 5 arcmin cell which means,
for example, farms larger than 16 ha should occupy at least
120 ha in the cell. To keep cropland extent consistent with the
crop maps during downscaling, GLC-Share was used with
the GAEZv4 crop map, while we used CAAS-IFPRI crop-
land extent map with the SPAM2010 crop map.

2.3 Optimization for downscaling

For each administrative unit defined in the dataset by Riccia-
rdi et al. (2018a, b), we established the following optimiza-
tion problem for our downscaling procedure. Note that the
dataset by Ricciardi et al. (2018a, b) identifies 11 farm sizes
and the dominant field size distribution (Lesiv et al., 2019)
identifies 5 field sizes.

Sets.

– c, crops

– f , farm size, labeled by the lower bound of the 11 farm
sizes

– e, field size, labeled by the lower bound of the 5 field
sizes

– s, farming system

– a, administrative unit

– g, grid cell

Parameters.

– haRc,f,a, crop-specific farm size structure, percentage
of the harvested area of farm size f that plant crop c in
the administrative unit a (from the dataset by Ricciardi
et al., 2018a, b)

– haSc,s,g, harvested area of crop c under farming system
s at grid cell g (from crop map, either SPAM2010 or
GAEZv4)

– haLe,g, minimum field area of field size e at grid cell
g (from dominant field size distribution by Lesiv et
al. (2019) and crop extent map by Latham et al. (2014)
and Lu et al. (2020)

– pf , the minimum farm area of farm size f in any grid
cell when the farm size f exists, i.e., the lower bound of
the farm size class f

– l, elastic factor

Variables.

– hac,f,s,g harvested area of crop c, farm size f , farming
system s in grid cell g (estimated by this study)
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Table 1. Datasets that were used to develop the gridded, farm-size-specific and crop-specific datasets of harvested areas.

Dataset Indicator Spatial cov-
erage and
resolution

Time Crop Note

Ricciardi et al.
(2018a, b)

Farm size structurea 56 countries;
(sub)national
administrative
unit

Varies from
2001 to 2015

154 FAO crops 11 farm sizes

GAEZv4 (FAO
and IIASA,
2021; Fischer
et al., 2021)

Harvested area (crop
map)

Global; grid-
ded, 5 arcmin
(10 km)

2010 27 GAEZv4 cropsb 2 farming systems (irri-
gated and rainfed)

SPAM2010 (Yu
et al., 2020)

Harvested area (crop
map)

Global; grid-
ded, 5 arcmin
(10 km)

2010 42 SPAM2010 crops 4 farming systems (ir-
rigated, low-input and
high-input rainfed, and
subsistence rainfed)

Dominant field
size distribu-
tion (Lesiv et
al., 2019)

Dominant field size Global; grid-
ded, 30 arcsec
(1 km)

Varies from
2000 to 2017

Not crop specific 5 field sizes

GLC-Share
(Latham et al.,
2014)

Cropland extent Global; grid-
ded, 30 arcsec
(1 km)

Around 2010 Not crop specific The base map of
GAEZv4

CAAS-IFPRI
cropland extent
map (Lu et al.,
2020)

Cropland extent Global; grid-
ded, 15 arcsec
(0.5 km)

2010 Not crop specific The base map of
SPAM2010

a Here the crop-specific percentage of harvested area per farm size within an administrative unit is meant. b The 27th crop is fruits and nuts which is not listed in the document
but available in the dataset.

Objective function.
Since we aim to downscale the dataset by Ricciardi et

al. (2018a, b), we maximized – within the constraints – con-
sistencies with the dataset by Ricciardi et al. (2018a, b):

min
∑
c,f

abs

(
haRc,f,a

∑
s,g∈a

haSc,s,g −

∑
s,g∈a

hac,f,s,g

)
. (1)

Constraints.
The first constraint is meant to ensure consistency with the

respective crop maps used and states that the total harvested
area per crop per farming system per grid cell in our datasets
must be equal to the harvested area per crop per farming sys-
tem per grid cell in the respective crop map.∑
f

hac,f,s,g = haSc,s,g, ∀csg. (2)

The second constraint requires a minimum level of consis-
tency with the dataset of Ricciardi et al. (2018a, b) and states
that the relative difference in farm size structure between
our estimation and the dataset of Ricciardi et al. (2018a,
b) cannot be more than 10 %. This constraint ensures that

even when other constraints are hard to meet, we do not
diverge too far from the dataset of Ricciardi et al. (2018a,
b). This constraint takes priority over the following con-
straints, meaning we would relax other constraints to meet
this one. The 10 % relative difference mark is an educated
guess based on time stamp differences in the dataset of Ric-
ciardi et al. (2018a, b) and overall assumed uncertainties un-
derlying each of the datasets.

90% · haRc,f,a

∑
s,g∈a

haSc,s,g ≤

∑
s,g∈a

hac,f,s,g

≤ 110% · haRc,f,a

∑
s,g∈a

haSc,s,g, ∀cf. (3)

The third constraint sets a minimum allocated area for each
farm size in each grid cell if the farm size exists in the cell.
This minimum allocated area is not necessarily required by
the definition of farm size, yet we reckoned it is still rea-
sonable to include because a 5 arcmin grid cell is mostly
much larger than a single farm. Given both the presence of
uncertainties in these constraints and inconsistencies among
datasets used, we incorporated this constraint into a hard
form and soft form during the optimization: we used the
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hard form by default, but transitioned to the more relaxed
soft form when the optimization was infeasible (see also
Sect. 2.4). Note that the soft form does not strictly require
a minimum allocation area for each farming system.

Hard form:

hac,f,s,g ≥ pf , ∀cf sg, if hac,f,s,g > 0. (4)

Soft form:∑
s

hac,f,s,g ≥ l×pf , ∀cfg, if hac,f,s,g > 0. (5)

The fourth constraint sets a minimum area for certain farm
sizes according to the spatial distribution of dominant field
size. The rationale is that a field can only belong to a farm
equal to or larger than its own size. We assumed a uniform
distribution of area within each farm size, like Ricciardi et
al. (2018a, b), to accommodate the different classifications
of size in farms and fields. For example, 40 % of the area in
the farm size 10–20 ha was assumed to be in 16–20 ha class
in Eq. (7).

For field areas and farms larger than 100 ha:∑
c,s,f≥100

hac,f,s,g ≥ haL100,g, ∀g. (6)

For field areas larger than 16 ha and farms larger than
10 ha:∑
c,s,f≥20

hac,f,s,g +
20− 16
20− 10

∑
c,s

hac,10,s,g ≥ haL100,g

+ haL16,g, ∀g. (7)

For field areas larger than 2.56 ha and farms larger than
2 ha:∑
c,s,f≥5

hac,f,s,g +
5− 2.56

5− 2

∑
c,s

hac,2,s,g

≥ haL100,g + haL16,g + haL2.56,g, ∀g. (8)

For field areas larger than 0.64 ha and any farm size:∑
c,s,f≥1

hac,f,s,g +
1− 0.64

1− 0

∑
c,s

hac,0,s,g ≥ haL100,g

+ haL16,g + haL2.56,g + haL0.64,g, ∀g. (9)

Since areas should not assume negative values, we also
include non-negative area constraints:

hac,f,s,g ≥ 0, ∀cf sg. (10)

2.4 Constraints relaxation and solving procedures

When the above optimization (Eqs. 1–10) proved infeasible,
we first replaced the hard form of minimum allocated area
(i.e., the third constraint) (Eq. 4) for all farm sizes with the

soft form (Eq. 5) and applied the elastic factor with the fol-
lowing values in order: 1, 1/2, 1/4, 1/8, 1/16, 1/32, 1/64,
and 0. If optimization was still infeasible, we relaxed the
minimum area constraint required by the dominant field size
distribution (i.e., the fourth constraint) by removing the con-
straints from large to small farms until the optimization was
feasible. Relaxing the minimum area constraint did not hap-
pen often during downscaling.

Once the above optimization became feasible, we did not
necessarily strike a unique global optimum. Therefore, we
calculated up to 80 (sub)optimal solutions with the same
level of consistencies and averaged these to obtain the final
solution. Since the number and quality of solutions depend
on the searching process of the solving toolbox, this proce-
dure may still leave some bias in the final averaged solution.

Each optimization was solved by Gurobi v9.1, a fast com-
mercial optimization solver, using the dual simplex method
(Gurobi Optimization, 2021). Optimization was taken as in-
feasible by the solver’s initial evaluation or if it is computa-
tionally unsolvable (cannot be solved within 150 s). Most of
the optimal solutions were obtained within 60 s when feasi-
ble. For those administrative units that contained more than
300 grid cells of 5 arcmin, the optimization becomes highly
complex. This posed a challenge for the solver, with the num-
ber of decision variables increasing to over half a million. As
a work around, we applied a two-tiered optimization, where
we first divided all grid cells randomly into several groups.
Each group included ∼ 100 grid cells (except for Russia,
where groups were set to contain ∼ 200 grid cells to keep
the total number of groups below 300). Next, we solved the
optimization at group level, followed by solving it at the cell
level within each group. Out of 3421 administrative units,
244 units underwent this work around procedure, collectively
covering 89.4 % of grid cells in this study. The entire op-
timization was performed on a desktop computer (Intel(R)
Core(TM) i7-8700 CPU @ 3.20 GHz, RAM 16 GB) taking
9 d.

Finally, we masked the crop-specific farm size as unknown
if their crops are not covered by the dataset by Ricciardi et
al. (2018a, b). For these crops, the optimization would still
estimate their farm size structures only based on the distribu-
tion of crops and dominant field size. Since the overall farm
size structure is absent and dominant field size is not suffi-
cient to estimate all farm sizes, uncertainties of these crops
are significantly larger than those associated with the dataset
by Ricciardi et al. (2018a, b).

2.5 Validation and comparison with previous studies

Ideally, we would have validated our farm-size-specific and
crop-specific datasets with observations. However, there are
limited empirical datasets available, and if there are, most
are not farm-size specific. Given these limitations, we val-
idated our datasets using two empirical datasets. The first
is by Descals et al. (2020), who developed a global grid-
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ded farm-size-specific oil palm map using deep learning and
satellite images for the year 2019. We validated our datasets
for five countries that are covered by both our datasets and
the dataset by Descals et al. (2020) (Fig. A1). To interpret
their size classification, we adopted the definition of small
oil palm farms by Indonesia (the world’s largest palm oil pro-
ducer and exporter) mentioned by Descals et al. (2020), who
apply a 25 ha threshold to distinguish small from large farms,
i.e., between the 2 scales as included in Descals et al. (2020).
We calculated the Pearson correlation coefficient at grid cell
level (i.e., 5 arcmin) and two additional spatial scales, i.e., 15
and 25 arcmin, using a spatial moving average. We validated
our GAEZv4 and SPAM2010 crop map-based datasets, sep-
arately.

The second empirical dataset to which we compared our
datasets is that of farm-size-specific percentage of irrigated
area at the country level from the FAO RuLIS (Rural Liveli-
hoods Information System) database (FAO, 2021). RuLIS in-
cludes microlevel household survey data representative of the
year 2010. Out of 56 countries included in our study 11 are
also listed in RuLIS (see an overview in Table S4). Based on
these household surveys, we calculated the percentage of to-
tal irrigated area (irrigated area divided by cultivated area) for
each farm size (classified by crop area) where at least five sur-
vey samples are available. Once more, we calculated the cor-
relations between our estimates and those derived from the
household surveys. Although this validation considers farm-
size-specific farming systems, the data are aggregated over
crops.

To further validate our datasets, we compared our datasets
to two other studies. The first is by the FAO and has just been
published (FAO, 2022). This dataset contains structural data
obtained through agricultural censuses, including total crop
areas per farm size at country level for the years 1990, 2000,
and 2010. We compared our datasets with the structural data
of 2010 (the year our datasets are most representative of),
and complementary with data of the year 2000 as well. The
reason to include data on 2000 too is that data do not rely
so heavily on interpolation as 2010 (FAO, 2022), making
the comparison more robust although temporal representa-
tiveness is less appropriate. Another advantage of including
FAOSTAT structural data of 2000 is that it allows the com-
parison with the widely used dataset by Lowder et al. (2016)
at the same time since the dataset by Lowder et al. (2016) is
largely the same as FAOSTAT structural data of 2000 (Fig. S1
in the Supplement).

The second study to which we compared our datasets is
by Mehrabi et al. (2020), who mapped geographic distribu-
tions of farm sizes. The dataset by Mehrabi et al. (2020) uses
the same farm size distribution as the dataset by Lowder et
al. (2016) at the country level, but adds the dominant farm
size at 5 arcmin grid cell level. For our comparison, we cal-
culated – at grid cell level – the dominant farm size from our
datasets with the farm size that operates the largest total har-

vested area per grid cell, for our GAEZv4 and SPAM2010
crop map-based datasets separately.

3 Results

3.1 Dataset statistics

3.1.1 Crop types and farm sizes

We identified gridded harvested areas for 56 countries, 11
farm sizes, 27 crops and 2 farming systems based on the
GAEZv4 crop map, and for 42 crops and 4 farming systems
based on the SPAM2010 crop map, both at 5 arcmin spa-
tial resolution. Figure 2 illustrates the harvested area of rain-
fed maize for two farm sizes (2–5 and 500–1000 ha) accord-
ing to our farm-size-specific and crop-specific harvested area
dataset based on the GAEZv4 crop map. Statistics of crop
type and farm size show the prevalence of certain crop groups
for certain farm sizes (see Table S2 for the crop groupings of
the 27 GAEZv4 crops). Figure 3a shows that as farm size in-
creases, oil crops and fodder crops become more prevalent,
while fruits and nuts, pulses, and roots and tubers become
less widespread. Our dataset based on the SPAM2010 crop
map shows comparable results to that based on GAEZv4 (see
Fig. A2 for crop groupings as per Table S3). These statistics
are consistent with earlier findings by Ricciardi et al. (2018a,
b) and Herrero et al. (2017).

3.1.2 Farming systems and farm size

Besides providing farm-size-specific and crop-specific har-
vested areas, we added information on farming systems in-
herited from crop maps. Statistics of farming system and
farm size derived from our dataset reveal that small farms
irrigate a larger relative share of their harvested area than
large farms (Figs. 4 and 5), which aligns well with earlier
ones by Ricciardi et al. (2020). Here, the finding is not sensi-
tive to the threshold used to set apart small from large farms,
whose possible values can range from 1 to 42 ha as suggested
by Khalil et al. (2017) and FAO (2017, 2019). Note, how-
ever, that this alignment does not hold for some countries
(see Sect. 3.2.2 for further details).

Our dataset based on the SPAM2010 crop map further di-
vides rainfed farming systems into low-input, high-input, and
subsistence rainfed systems (Fig. 4b). Associated statistics
show a clear correlation between low-input and subsistence
rainfed farming systems and smaller farm sizes. At the same
time, smaller farms do not consist exclusively of low-input
and subsistence rainfed farming systems, since these smaller
farms also operate a sizable portion of the irrigated and high-
input rainfed area (see Fig. 4b). Similarly, the predominant
farming system type of larger farms is high-input rainfed, but
high-input rainfed systems are not solely employed at larger
farms.

To further explore irrigation practices, we overlapped our
datasets with the annual average blue water scarcity map
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Figure 2. Grid cells with a harvested area of rainfed maize on farm size 2–5 ha (a) and farm size 500–1000 ha (b), according to our farm-
size-specific and crop-specific dataset based on the GAEZv4 crop map.

by Mekonnen and Hoekstra (2016), who classified water
scarcity in four categories, i.e., low, moderate, significant,
and severe water scarcity. Further irrigation analysis confirms
an earlier finding by Ricciardi et al. (2020) that even though
small farms irrigate a larger relative share of their area than
large farms on average, large farms irrigate a larger relative
share than small farms when water is scarce (Fig. 5). Figure 5
shows a relatively low irrigation share for farms > 1000 ha
which would undermine this finding. However, the total rel-
ative irrigation share of large farms is still larger than that of
small farms, because this farm size makes up less than 4.5 %
of large farms located in water scarce areas. Note, that the
main aim of Fig. 5 is to compare statistics of our datasets
with previous studies instead of drawing conclusions on irri-
gation levels for specific farm sizes, which may need further
investigation on influencing factors and uncertainties.

3.2 Validation

3.2.1 Validation with empirical data on
farm-size-specific oil palm harvested area

Table 2 shows that validation with farm-size-specific oil palm
data yields a significant positive correlation in most coun-
tries, for both small and large farms. At larger spatial scales,
the correlation becomes stronger, indicating that the subna-
tional distributions of oil palm harvested area in our datasets
are similar to those of Descals et al. (2020). Besides the
threshold of 25 ha to set apart small from large farms, we
repeated the comparison with 10 and 50 ha thresholds which
resulted in similar correlations (see Tables S5 and S6 for de-
tailed results of these comparisons). This indicates that at
least for oil palm, the relationships found are not sensitive
to the choice of threshold.

Despite strong overall correlations, we observed some dif-
ferences for certain regions, particularly Costa Rica and the
United Republic of Tanzania. Some of these differences can
be attributed to inconsistencies between harvested area ac-
cording to the crop maps we used and the validation dataset.
We compared total oil palm area according to the crop maps
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Figure 3. Harvested area of crop groups within each farm size (a) and harvested area of crop groups by farm size (b) according to our
farm-size-specific and crop-specific harvested area dataset based on the GAEZv4 crop map. The alternative version based on SPAM2010
crop map is given in Fig. A2.

Figure 4. The distribution of irrigated and rainfed farming systems per farm size according to our farm-size-specific and crop-specific
harvested area datasets based on the GAEZv4 crop map (a) and the SPAM2010 crop map (b). Note, SPAM2010 further divides rainfed
farming system into low-input, high-input, and subsistence rainfed farming systems.
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Figure 5. The percentage of irrigated area by farm size according to our farm-size-specific and crop-specific harvested area datasets based on
the GAEZv4 crop map (a) and the SPAM2010 crop map (b) under four blue water scarcity levels (WSL) by Mekonnen and Hoekstra (2016).
Low blue WSL indicates blue water consumption does not exceed blue water availability, moderate WSL indicates blue water consumption
is 100 %–150 % of blue water availability, significant WSL indicates blue water consumption is 150 %–200 % of blue water availability and
severe WSL indicates blue water consumption is larger than 200 % of blue water availability.

Table 2. Pearson correlation coefficient between the harvested area of oil palm estimated by satellite images from Descals et al. (2020) and
(i) GAEZv4 crop map based farm-size-specific and crop-specific dataset (Gb) and (ii) SPAM2010 crop map based farm-size-specific and
crop-specific dataset (Sb), respectively, for small farms (< 25 ha), large farms (≥ 25 ha), and all farms at various spatial resolutions. All farms
compared the oil palm area in GAEZv4 and SPAM2010 crop map, where the results imply the accuracy of our estimates of farm-size-specific
and crop-specific harvested area is limited by the accuracy of oil palm locations in crop maps. * p < 0.005, ** p < 0.001.

Small farms Large farms All farms

5 arcmin 15 arcmin 25 arcmin 5 arcmin 15 arcmin 25 arcmin 5 arcmin 15 arcmin 25 arcmin

Colombia Gb 0.177* 0.313** 0.397** 0.112** 0.238** 0.334** 0.232** 0.374** 0.465**
Sb 0.218** 0.547** 0.684** 0.385** 0.620** 0.701** 0.409** 0.652** 0.729**

Costa Rica Gb 0.086 0.183** 0.215** −0.012 −0.074 −0.144** 0.032 0.001 −0.043
Sb 0.836** 0.944** 0.971** 0.771** 0.891** 0.925** 0.877** 0.925** 0.929**

Brazil Gb 0.245** 0.396** 0.483** 0.177** 0.258** 0.271** 0.326** 0.398** 0.423**
Sb 0.133** 0.190** 0.248** 0.087** 0.091** 0.084** 0.148** 0.154** 0.156**

United Republic of Tanzania Gb 0.01 −0.109* −0.202** −0.011 −0.039 −0.063 0.022 −0.115* −0.218**
Sb 0.024 0.025 0.069 0.022 0.014 0.065

Peru Gb 0.172** 0.350** 0.438** 0.024 0.139** 0.237** 0.111** 0.263** 0.363**
Sb 0.367** 0.389** 0.429** 0.141** 0.216** 0.240** 0.302** 0.395** 0.436**

we used and the validation dataset, and found that if the
oil palm locations in the crop maps differed from the val-
idation map (no significant positive correlation), farm-size-
specific validation was poor as well (Table 2). This implies
that the accuracy of our estimates of farm-size-specific and
crop-specific harvested area is limited by the accuracy of oil
palm locations in crop maps. The (minor) differences be-
tween validation results for the GAEZv4-based dataset and
the SPAM2010-based dataset can also largely be attributed
to the same reason.

3.2.2 Validation with empirical data on
farm-size-specific irrigation estimates

Figure 6 shows that our datasets are quite consistent with em-
pirical data on farm-size-specific irrigation estimates in terms

of country level farm-size-specific percentages of irrigated
areas. More detailed results in Table S7 further illustrate how
our datasets capture the higher percentage of irrigated ar-
eas as indicated by the household surveys in both small and
large farms in most countries. However, we also found that
our datasets systematically underestimate the percentage of
the irrigated area with respect to these same household sur-
veys, both in our GAEZv4 and SPAM2010-based datasets
of harvested areas. Figure 6c and d shows that these under-
estimations are still present if we compare the percentage of
irrigated areas for all farms from the crop maps. This system-
atic underestimation may therefore be explained by different
measurements of irrigated area and cultivated area in the val-
idation dataset compared to the crop maps.
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Figure 6. Correlations on the farm-size-specific irrigated area (% of total harvested area per farm size) between household survey data
from FAO RuLIS (Rural Livelihoods Information System) database (FAO, 2021) and our GAEZv4-based (a) and SPAM2010-based, farm-
size-specific and crop-specific datasets of harvested area (b), and correlations on the irrigated area of all farms (% of the total harvested
area) between household survey data from FAO RuLIS (Rural Livelihoods Information System) database (FAO, 2021) and GAEZv4 (c) and
SPAM2010 (d), all for 11 countries.

3.2.3 Validation through comparison with other studies

Finally, we compared our high-resolution farm-size-specific
and crop-type-specific harvested area datasets with FAO-
STAT, where the structured data contain farm size structures
of 44 overlapping countries for the years 2000 and 2010
(FAO, 2022). Results show that (non-crop-specific) farm size
structures of our datasets are similar to FAOSTAT struc-
ture data for most countries. Figures 7 and A3 show the
large similarities of farm size structures of 28 countries for
2010, while of the remaining 16 countries, farm size struc-
tures of Brazil, Czechia, Ethiopia, Germany, Greece, Poland,
and Portugal show good correspondence for 2000. The cor-
respondence for 2000 also implies these estimates are similar
to the dataset by Lowder et al. (2016).

Not all countries’ farm size structure corresponds well
between the datasets. Farm size structure according to our
datasets for Albania, for example, lies in between the FAO-
STAT data for 2000 and 2010, and our datasets farm size
structures of Costa Rica, Lithuania, and Mexico also devi-
ate slightly from the FAOSTAT structure data. One expla-
nation for such differences could come from how different
datasets harmonize collected data into a farm size classifica-

tion system. For example, if only farm sizes > 100 ha are re-
ported, areas could be classified into farm sizes 100–200 ha
or be redistributed to farm sizes 100–200, 200–500 ha, and
so on. However, the farm size structure of our datasets is in-
herited from the dataset by Ricciardi et al. (2018a, b), which
in turn was based on highly similar local agricultural census
and household surveys which FAOSTAT likewise drew from.

While decent overall correspondence between our datasets
and either FAOSTAT 2000 or 2010 data might be sufficient
grounds to validate our estimates on farm size structure, and
particularly correspondence to 2010 being the reference year
for our datasets, it should be noted that farm size structures
of several countries changed significantly between 2000 and
2010, e.g., Bulgaria and Germany, a period of just 10 years.
The FAO themselves also indicate that the robustness of their
2010 estimates is fragile, in part due to significant usage of
interpolation (FAO, 2022). Moreover, for 5 of the 44 coun-
tries analyzed (i.e., Burkina Faso, Colombia, Peru, and Rus-
sian Federation), it remains unclear what causes these differ-
ences.

Comparing our datasets with the dataset by Mehrabi et
al. (2020), Fig. 8 shows that the patterns of spatial distribu-
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Figure 7.

tions of dominant farm sizes are similar across all datasets.
For the farm-size-specific and crop-specific dataset based
on the GAEZv4 crop map, 54 % of grid cells’ dominant
farm sizes correspond to those in the dataset by Mehrabi
et al. (2020), while 28 % are larger, and 18 % are smaller.
For the SPAM2010 based counterpart, 53 % of grid cells’
dominant farm sizes are similar to the dataset by Mehrabi et
al. (2020), while 26 % are larger, and 21 % are smaller. Here,

similar means the farm size in our datasets is (almost) the
same as the farm size in the dataset by Mehrabi et al. (2020).
Table S8 provides a more detailed analysis of this compari-
son. As shown in Fig. 7, there are still differences between
our datasets and the dataset by Lowder et al. (2016) (FAO-
STAT structure data of 2000). These differences can also
be seen in the comparison with the dataset by Mehrabi et
al. (2020) since the dataset by Mehrabi et al. (2020) keeps
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Figure 7. Comparison of the percentage of total crop area operated by each farm size (non-crop-specific farm size structure) between
FAOSTAT structural data for the year 2000 and 2010 (FAO, 2022) and our farm-size-specific and crop-specific dataset based on the GAEZv4
crop map. Bold font country titles indicate that farm size structures in FAOSTAT are similar to our dataset. Note that for the year 2000, farm
size structure from FAOSTAT structural data is the same as Lowder et al. (2016) except for one country (Fig. S5). Only the countries covered
by our dataset and FAOSTAT are shown. The alternative version based on SPAM2010 crop map is given in Fig. A3. * FAOSTAT provides
(part of) the structural data by interpolating other reported data, not directly from countries’ official reports. ** FAOSTAT provides no farm
size structural data of the year 2000 or 2010 for comparison.

the same country level farm size distribution as the dataset
by Lowder et al. (2016). Note that the comparison of dom-
inant farm size may magnify the differences in farm size
structure between our datasets and the dataset by Mehrabi
et al. (2020) since the dominant farm size in the dataset by

Mehrabi et al. (2020) may be the second dominant farm size
in our datasets.
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Figure 8. Dominant farm size according to the dataset by Mehrabi et al. (2020) (a), our farm-size-specific and crop-specific dataset based
on the GAEZv4 crop map (b) and SPAM2010 crop map (c). Only cells included in both the dataset of Mehrabi et al. (2020) and our datasets
are shown.

4 Discussion

4.1 Potential explanations for irrigation and farm size

Our datasets confirm findings by previous studies that
smaller farms have a higher relative irrigation share com-
pared to larger farms. This seems to be the case because rel-
atively many of the small farms are located in severe water
scarce regions, which would require them to irrigate more

and more often to grow their crops (Fig. 9). However, it re-
mains unclear whether small farms adapt to water scarcity via
irrigation or that irrigation practices of small farms increase
water scarcity (Grafton et al., 2018). Another explanation
relates to the farm size structures between countries. Asian
countries are home to the majority of small farms, and previ-
ous studies have shown that, on average, the relative share of
irrigated areas on Asian small farms is indeed much higher
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Figure 9. Blue water scarcity levels (WSL) within each farm size according to our farm-size-specific and crop-specific harvested area dataset
based on the GAEZv4 crop map (a) and the SPAM2010 crop map (b) under the four blue water scarcity levels (WSL) of Mekonnen and
Hoekstra (2016). Low blue WSL indicates blue water consumption does not exceed blue water availability, moderate WSL indicates blue
water consumption is 100 %–150 % of blue water availability, significant WSL indicates blue water consumption is 150 %–200 % of blue
water availability and severe WSL indicates blue water consumption is larger than 200 % of blue water availability.

than in other countries, regardless of regional water scarcity
levels (Ricciardi et al., 2020).

The irrigation of farm sizes > 1000 ha shown by our
datasets is relatively low, which could be explained by the
regional climate and crop characteristics. Sugarcane in São
Paulo, Brazil, is one of the main contributors to the sig-
nificant and severe water scarcity in areas of farm sizes
> 1000 ha”. In these regions, water scarcity is not present all
year round. The level of water scarcity is low from January to
June, which is the tillering phase for sugarcane. Sugarcane is
preferably harvested during the dry season, during which the
moisture in sugarcane is relatively low and the sugar is highly
concentrated (Kavats et al., 2020). This may help to explain
why the large farms in this area are rainfed even though under
a certain level of water scarcity.

4.2 Uncertainties

We hypothesized that uncertainties in crop maps might prop-
agate and influence uncertainties in our gridded datasets.
Therefore, we developed two gridded datasets based on two
different crop maps, i.e., GAEZv4 and SPAM2010. From
the results and validation we observed some differences in
crop distribution, especially at the grid cell level. These dif-
ferences reflect uncertainties in farmland location and af-
fected the spatial validations on both farm-size-specific oil
palm and dominant farm size distributions. At the same time,
these uncertainties at the grid cell level have a limited impact
on country level statistics and validation, as can be seen in
Figs. 3, 5, 6, and A2.

Differences, and therefore uncertainties related to farming
systems are more pronounced between the two crop maps,
also at a country level. Figure 6 and Table S7 show that
our SPAM2010-based dataset yields lower irrigation ratios
than that based on GAEZv4. This is likely the consequence

of SPAM2010 defining irrigation as the area actually irri-
gated, whereas GAEZv4 defines irrigation by the area that
is equipped with fully irrigation facilities. Despite these dif-
ferences, however, findings of the overall relative irrigation
share being higher for smaller farms and higher absolute irri-
gation of larger farms under elevated levels of water scarcity
are supported by our datasets based on both crop maps.

The uncertainties in the crop maps also affect how we
downscaled the dataset by Ricciardi et al. (2018a, b), the
core source of our datasets. It occurred that crops could be
found in the dataset by Ricciardi et al. (2018a, b) for a given
administrative unit but not in the crop maps, or vice versa.
The consequence of these inconsistencies was that 23.3 %
and 21.6 %, respectively, of the crop areas in the dataset by
Ricciardi et al. (2018a, b) could not be downscaled because
the GAEZv4 or the SPAM2010 crop map indicated no crops
were grown in those locations. Vice versa, 17.8 % and 12.4 %
of the harvested area in the GAEZv4 and SPAM2010 crop
maps, respectively, could not directly be assigned a farm size
due to absent records in the dataset by Ricciardi et al. (2018a,
b). Although these are substantial percentages of crop areas,
our validation did not detect any peculiarities in outcomes at-
tributable to these inconsistencies. Developing more accurate
crop maps should reduce a substantial number of the above-
mentioned uncertainties in the future.

Beside uncertainties propagated from input data, new un-
certainties are introduced through our preprocessing proce-
dures. In estimating crop-specific farm size structures using
the dataset by Ricciardi et al. (2018a, b), ∼ 12 % of our final
estimates were based on crop production instead of crop area.
According to Ricciardi et al. (2018a, b), the introduced un-
certainties are limited when using crop production. In addi-
tion, the year of the source data of Ricciardi et al. (2018a, b)
ranges from 2001 to 2015 with the median year being 2013,
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the transient nature of farm sizes, particularly in developing
countries, may not be captured when used for the year 2010.

The way we defined and applied constraints during the op-
timization process also introduced new uncertainties. Using
GAEZv4 and SPAM2010 as crop map for downscaling, we
performed 7381 and 6017 optimizations, respectively. Dif-
ferences in the total number of optimizations can be ex-
plained by differences in the cropland extent underlying both
crop maps. Of the total number of optimizations, 4378 and
3671 needed to be relaxed using an elastic factor of 0.125 or
smaller (Eq. 5), for the respective crop maps, while 239 and
203 needed to be further relaxed by removing some of the
minimum area constraints (Eqs. 6–9). The latter relaxation
of minimum area constraints introduced inconsistencies with
the source dominant field size distribution, which further
adds uncertainties to our datasets. This affected∼ 3 % of our
total calculations.

In the optimization process, it further occurred that the
crop area needed to be allocated to a farm size that was not
included in the dataset by Ricciardi et al. (2018a, b). This
happened in cases where both the crop and part of the 11 farm
sizes were included in the dataset by Ricciardi et al. (2018a,
b), yet meeting the minimum area constraints required intro-
ducing an additional farm size for the crop at hand. In such
cases, we still ensured the 10 % maximum relative difference
with the dataset by Ricciardi et al. (2018a, b) to ensure the
overall farm size structures. This uncertainty was introduced
for ∼ 0.1 % and 5.0 % of harvested areas for the GAEZv4
and SPAM2010 based farm-size-specific and crop-specific
datasets, respectively.

Finally, despite the uncertainties at the grid cell level, the
used datasets and our datasets were found to be more reli-
able at the country level. For example, the two crop maps
were developed by downscaling the agriculture census at the
(sub)national level. Collected agriculture census and socioe-
cological factors considered during downscaling may lead to
some differences at the grid cell level in the two crop maps,
while they were all adjusted to the country level data from
FAOSTAT. The dominant field size distribution is also un-
certain at the grid cell level, which was estimated by spatial
interpolation of training samples. The uncertainty will de-
crease when the focus is on the regional level (Lesiv et al.,
2019). Validations also show good consistency with country
level observations. Using GAEZv4 based and SPAM2010-
based datasets at the same time helps to reduce uncertainties
at the grid cell level.

4.3 Limitations

With the ambition to simultaneously map farm-size-specific
and crop-specific harvested areas, we were able to cover 56
countries based on state of the art recent datasets (e.g., Ric-
ciardi et al., 2018a, b; Lesiv et al., 2019; Kim et al., 2021).
Although these countries reflect about half of the global crop-
land, the remaining countries could not be included due to

the lack of data availability. Particularly farm-size-specific
data are scarce or not publicly available for most of the ex-
cluded countries, but across the board data availability is the
main obstacle in creating a dataset with global coverage. Ap-
proaches based on deep learning and remote sensing, simi-
lar to what Descals et al. (2020) did to obtain their oil palm
dataset with which we validated some of our findings, may
prove promising alternatives to mapping the global farm-
size-specific and crop-specific harvested. However, the lack
of farm size training samples and the enormous computa-
tional requirements are still challenges for such approaches
(Descals et al., 2020).

Our estimations are based on planted crop and harvested
areas that are representative of the year 2010. Farmers’
choice of crop will change along with climate, market de-
mands, and many other factors. While our gridded datasets
provide a robust baseline, it would be insightful to de-
scribe developments over time. However, capturing dynam-
ics of harvested areas under changing conditions and en-
vironments, particularly dynamics in developing countries
(Giller et al., 2021), requires even more additional data. Still,
our datasets may be updated in the future for additional years,
since many of the underlying datasets, including GAEZ,
SPAM, and the cropland extent map by Latham et al. (2014)
and Lu et al. (2020) are planned to be regularly updated. The
dominant field size distribution by Lesiv et al. (2019) has al-
ready been updated since its first publication and announced
more updates in the future. Ricciardi et al. (2018a, b) did not
share plans to update their dataset (yet), but it could be done
particularly using data from the World Programme for the
Census of Agriculture (FAO, 2015) and EUROSTAT (EU-
ROSTAT, 2021). We developed our model and code such that
any updates and extensions of in the future are relatively eas-
ily incorporated.

4.4 Suggestions on developing farm-size-specific and
crop-specific production dataset

Crop production of small farms is one of the main con-
cerns of the target 2.3 (double the agricultural productivity
and the incomes of small-scale food producers) of SDG 2
(Zero hunger) (UNSD, 2022). It would therefore be a major
achievement if we could develop farm-size-specific agricul-
tural production dataset in support of this target. However,
compared to harvested areas, an empirical farm-size-specific
dataset on production or yield is even more scarce. Thus,
developing a farm-size-specific and crop-specific production
dataset requires additional modeling and our datasets could
readily be used as input for such development.

Developing a farm-size-specific and crop-specific produc-
tion dataset requires unpacking the various factors that im-
pact yield and are known or expected to correlate with
farm size as recent studies show that the relationship be-
tween farm size and crop production is indirect and com-
plex (cf. Muyanga and Jayne 2019 and Iizumi et al. 2021).
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Some factors could be unpacked directly for farm sizes with
our datasets. For example, one could overlap our datasets
with the soil and climate datasets to estimate soil and cli-
mate production conditions for each farm size. Other factors
could be unpacked indirectly via agricultural production sys-
tem, e.g., agricultural management and input factors. Spec-
ifying agricultural management and input factors according
to farming systems could help to first evaluate crop yields for
different farming systems, and then allocate the yields back
to farm sizes according to farm size structure in each farm-
ing system. With unpacked factors, one could estimate the
farm-size-specific and crop-specific production with our har-
vested area as input using crop models as well as GAEZv4
and SPAM2010.

5 Code and data availability

The code, source data, and resulting farm-size-specific and
crop-specific harvested area datasets are freely available
via a Creative Commons Attribution 4.0 International li-
cense at https://doi.org/10.5281/zenodo.6976249 (Su et al.,
2022). The resulting datasets are available in *.csv and *.nc
(netCDF) for each crop and farming system. For each crop,
farming system, and farm size, we provide gridded harvested
area in the coordinate systems of EPSG:4326 – WGS 84.
Gridded summaries over crops and farming systems are also
available.

6 Conclusions

This study presents 5 arcmin gridded simultaneous farm-
size-specific and crop-specific datasets of harvested areas
for 56 countries. The datasets are based on various state of
the art and recent datasets on farm-size-specific and/or crop-
specific land use, cropland extent, and dominant field size
distribution. The resulting datasets show strong consistency
along multiple variables validated against multiple empiri-
cal and published sources. While our high-resolution dataset
fills a part of the data gap, a lack of data availability is still
hampering the development of dynamic datasets with full
global coverage. Nevertheless, we are confident that our cur-
rent datasets will prove to be a useful tool for improving our
understanding of differences between small-scale and large-
scale farms, e.g., in terms of climate change adaptation and
mitigation strategies, water consumption patterns, and con-
tribution to (local) food security and SDG 2.
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Appendix A

Figure A1. The global distribution of oil palm according to Descals et al. (2020). The five countries for which we validated our datasets are
circled in red.

Figure A2. Harvested area of crop groups within each farm size (a) and harvested area of crop groups by farm size (b) according to our
farm-size-specific and crop-specific harvested area datasets based on the SPAM2010 crop map. The alternative version based on GAEZv4
crop map is given in Fig. 3.
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Figure A3.
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Figure A3. Comparison of the percentage of total crop area operated by each farm size (non-crop-specific farm size structure) between FAO-
STAT structural data for the year 2000 and 2010 (FAO, 2022) and our farm-size-specific and crop-specific dataset based on the SPAM2010
crop map. Bold font country titles indicate that farm size structures in FAOSTAT are similar to our dataset. Note that for the year 2000, farm
size structure from FAOSTAT structural data is the same as Lowder et al. (2016) except for one country (Fig. S5). Only the countries covered
by our dataset and FAOSTAT are shown. The alternative version based on the GAEZv4 crop map is given in Fig. 7. * FAOSTAT provides
(part of) the structural data by interpolating other reported data, not directly from countries’ official reports. ** FAOSTAT provides no farm
size structural data of the year 2000 or 2010 for comparison.
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