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Abstract: Irrigated agriculture has undergone rapid developments in China, which has greatly
increased food production but overexploited water resources as well. Spatial information on ir-
rigated cropland is critical to balance irrigation yield gains against the negative impact on water
resources. However, remote-sensing-based maps on irrigated areas with short temporal coverage
often suffer from undermined accuracy in humid areas and inconsistency with statistics, which limit
their applications in food policy and water management. The following study integrates existing
irrigation maps, observed data on irrigated cropping system, and statistics by a synergy approach
to map irrigated areas in China from 2000 to 2019. We also incorporate past information on actual
irrigation to avoid divergence between observations and statistics from its fluctuation. Afterwards,
614 reference samples across mainland China have been used to validate resultant maps, which show
that outperformance was above overall accuracy and Kappa coefficients. Moreover, our maps share
a similar spatial pattern with Irrimap-Syn maps rather than remote-sensing-based maps (CCI-LC).
Irrigated areas have grown rapidly from 55.42 Mha in 2000 to 71.33 Mha in 2019 but with different
growth trends in different regions. Simultaneous large-scale expansion and abandonment occur
in the Huang-Huai-Hai Plain and Yangtze River Basin, while the Northwest Inland Region and
the Northeast Plain are the two largest net area gains. Rainfed croplands are dominant sources of
expansion, followed by pastures, respectively, with over 70% and 20% contributions in total gains.
This not only is a shift from rainfed to irrigated systems but also indicates an intensification of
agriculture, which might contribute to agricultural drought reductions in the north and wide soil
suitability. Other efforts on agricultural sustainability also have been detected, such as geographical
shifts from vulnerable to relatively suitable areas, grain for green, cropland protection, and cropland
protection in the competition of urbanization.

Keywords: irrigated cropland dynamics; synergy mapping approach; land-use transition; China

1. Introduction

Agricultural land, covering about 37.6% of the Earth’s land surface, is withstanding
increasing food demand at an unprecedented rate with continuous population and con-
sumption growth [1–5]. Irrigation plays a significant role in feeding the growing population
by enhancing grain yields [6–14]. However, as the dominant water user, irrigated with-
drawal accounts for about 60% of available freshwater, leading to reductions in streamflow
and groundwater recession [15–18]. Thus, global food production is constrained by the
local availability of freshwater [17,19,20]. With food demand growth, long-term water
shortage, intense land competition, and climate change, future increasing tensions between
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food and water securities are expected [21–25]. As a large food demand country limited by
the uneven distribution of water resources and insufficient arable land per capita, China
relies heavily on irrigation for grain production, which has contributed three-quarters
of the total in 2019 [26–30]. The expansion of irrigated cropland is driven by large-scale
water conservancy construction, which helps mitigate grain losses caused by floods and
droughts [31,32]. Meanwhile, China’s water policies are also heavily tied to water con-
servancy projects [33]. It is critical to balance irrigation’s yield gains against the negative
impact on water resources, which is still constrained by a lack of explicit and accurate
information on where irrigated land distributes and how it develops [13,24,34–39]. There-
fore, quantifying and understanding spatial changes in irrigated cropland and its temporal
dynamics are vital foundations for monitoring food and water securities.

Mapping irrigated areas is performed either by using agricultural censuses or using
remote sensing data [40]. Statistics often provide highly suitable land-use information
with respect to long-term periods, but they are bound to administrative units, thus lacking
spatial details [38,41,42]. As an advanced tool, satellite remote sensing has been widely
used to monitor land cover and land use at high spatial resolutions but it has short temporal
coverage [35,42,43]. Many studies have made efforts to map irrigated cropland from local
to global scales, but they seldom can show the entire picture of China. These maps include
global irrigation areas (GIA) at 30 arcsec resolutions based on Global Map of Irrigation
Areas version 5 (GMIAv5) [19]; a Global Rain-Fed, Irrigated, and Paddy Cropland (GRIPC)
map circa 2005 at 500 m resolution [44]; a global irrigated and rainfed cropland extent
map at nominal 1 km circa 2010 provided by Global Food Security-Support Analysis
Data (GFSAD) [45]; Irrigated Area Map for Asia and Africa (IAAA) at 250 m resolution;
a 1 km irrigated area map in China (CIM) in 2000 [32]; and an irrigated area map for
China in 2016 with a resolution of 500 m (Xiang’s map) [46], etc. Several efforts also have
been made with respect to long-term temporal coverage, such as the Climate Change
Initiative Land Cover (CCI-LC) produced by the European Space Agency (ESA) [47], the
historical irrigated cropland distribution derived from the History Database of the Global
Environment (HYDE) [48], and a new dataset of global irrigation areas from 2001 to 2015
(NGIA) [24]. However, they often suffer from undermined accuracy in humid areas because
of similar signals between irrigated and rainfed croplands [32,49,50]. More importantly,
their estimated areas are often not consistent with statistics, which limits their applications
in food policy and water management [41,51].

Generally, each data source on its own is unable to capture the full scale of land use
dynamics due to the absence of key components, such as space and time [42]. Data synergy
approaches provide a feasible way to solve this by integrating all available remote sensing
datasets and statistics to take advantage of their complementarities [8,34,41]. For example,
Fritz et al. (2015) integrated several individual cropland maps from global to regional scale
to develop a new global cropland percentage map circa 2005 [52]. Lu et al. (2017) developed
a hybrid cropland map of China in 2010 by fusing five existing cropland products and
sub-national statistics [53]. In terms of irrigated croplands, a recent study combines remote
sensing datasets with statistics by an agreement method to map annual synergy irrigation
areas (IrriMap_Syn) from 2000 to 2019 [14]. It directly equates the current year’s remote
sensing data to statistics, but it may ignore their differences in areas, which refer to the
actual irrigated area (AAI) and area equipped irrigation (AEI) [32,34]. AAI often is lower
than AEI, when no irrigation occurs in irrigated croplands, such as land fallow and rotation
from irrigated to rainfed crops [54]. In order to reduce the gap between AEI and AAI
and spatio-temporal fluctuations caused by actual irrigation or cropping behaviors, AEI is
estimated not only by the observed area of the current year but also by incorporating past
areas of actual irrigation [54,55].

Our research objectives are to map irrigated cropland distributions that are consistent
with statistics in mainland China from 2000 to 2019 by using the synergy of multiple
heterogeneous data streams and to further track irrigated cropland changes and their
impacts on agricultural development based on our resultant maps. To achieve these
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objectives, we firstly integrate existing irrigation maps, observed data on irrigated cropping
system, and statistics by using an agreement-scoring method to develop irrigated cropland
extents at 30 arcsec resolution (~1 km at equator) in mainland China from 2000 to 2019.
Second, we apply 614 reference samples to validate resultant maps and analyze spatial
patterns and changing trends with respect to irrigated croplands by comparing other time-
series datasets. Finally, we, using resultant maps, track spatio-temporal changes with
respect to irrigated croplands and analyze their impacts on agricultural development based
on land-use transitions. These generated maps provide explicit and accurate information
on where irrigated lands are distributed and how the distribution is developed at a national
scale for the last twenty years, which enable scientists and policymakers in better addressing
food security, water resources management, and land-use planning with respect to the
sustainable development of irrigated agriculture.

2. Data and Methods
2.1. Study Area

The study area encompassed 7 geographical units in mainland China, with a total of
31 provincial-level administrative units, such as Beijing, Tianjin, and Hebei, etc., excluding
Hong Kong, Macao, and Taiwan, as shown in Figure 1.
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Figure 1. The study area.

2.2. Input Data
2.2.1. Cropland Extent Data

The data used in this study included global- and local-gridded products on cropland
and irrigation at different spatio-temporal resolutions and provincial-level statistics for
irrigated cropland areas, as shown in Table 1. At first, all gridded data were resampled to
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30 arcsec resolution (~1 km2 at the Equator) with WGS84 datum, for which its size is close
to that of large fields or the agglomeration of smaller irrigated field [19]. However, limited
by cropland fragmentation and the small-scale economics of rural households, the field
size might be much smaller than 1 km2 in China [52]. To reduce the overestimation caused
by the difference between pixel size and actual field size, we introduced cropland coverage
within pixels. The applied cropland coverage was combined by three land cover (LC)
datasets, including HIstoric Land Dynamics Assessment+ (HILDA+) [56], Climate Change
Initiative Land Cover (CCI-LC) [47], and China’s Land-Use/cover Dataset (CLUD) [57].

Table 1. Applied satellite-based products.

No. Type Name Spatial Resolution Temporal Resolution Applied Data

1
LULC

CCI_LC 300 m, Global Annual, 1992–2019 (Irrigated) cropland
2 CLUD 1 km, China 5-year, 1980–2020 Cropland
3 HILDA+ 1 km, Global Annual, 1980–2019 Cropland

4

Existing
irrigation
maps

CIM 1 km, China Annual, 2000 Irrigated cropland
5 GIA 30 arcsec, Global Annual, 2005 Irrigated cropland
6 GRIPC 500 m, Global Annual, 2005 Irrigated cropland
7 IAAA 250 m, Asia Annual, 2000 & 2010 Irrigated cropland
8 GFSAD 1 km, Global Annual, 2010 Irrigated cropland
9 Xiang2016 500 m, China Annual, 2016 Irrigated cropland
10 GLC_FCS 30 m, China 5-year, 2015–2020 Irrigated cropland

11
Cropping
system
data

ACIA 500 m, Asia Annual, 2001–2019 Actual CI
12 APRA 500 m, Asia Annual, 2000–2019 Paddy rice
13 ChinaCropArea 1 km 1 km, China Annual, 2000–2015 Wheat
14 GAEZ 5 arcmin, global Static, 1981–2010 Potential rainfed CI

HILDA+ (HIstoric Land Dynamics Assessment + dataset) provided six well-defined
land-cover categories (cropland, urban, pasture, forest, unmanaged grass/shrubland, and
sparse) to quantify annual dynamics of global land use change from 1960 to 2019 at a
spatial resolution of 1 km [42,56]. It was more persuasive than a single dataset, since it
was built on multiple heterogeneous data streams (remote sensing, reconstructions, and
statistical data) [42], but its spatial resolution could not meet the requirement of field size.
Thus, we further introduced cropland coverage with higher spatial resolutions (300 m)
from CCI-LC, which also was the input data of HILDA+. Thus, these two datasets could
retain high spatial consistency. Moreover, CCI-LC had high accuracies in rainfed and
irrigated croplands at 0.85 and 0.88, respectively [47]. To strengthen the reliability, we
also introduced a local dataset (CLUD), which was generated by a visual interpretation of
Landsat and CBERS imagery with high overall accuracies for all class levels [57]. Among
them, HILDA+ was used as the core LC input. The upper limitations of cropland coverage
for 1 and 0.4 km2 in grids of cropland and non-cropland were set in accordance with
cropland definitions in HILDA+ [42,56]. The cropland coverage obtained from other two
datasets was introduced, and the largest and smallest coverages were obtained in cropland
pixels. In the subsequent allocation of irrigated areas, we preferentially allocated the
smallest coverage, followed by an area difference between the largest and smallest areas if
the smallest area was not enough.

2.2.2. Statistical Area of Irrigated Cropland

According to the definition of cropland in HILDA+, we collected the statistical irriga-
tion area of cultivated land and orchard at the provincial level from the China Agriculture Sta-
tistical Report (1949–2019) and China Water Statistical Yearbooks from 2000 to 2019. These statis-
tics can be accessed from the Statistical Database of Economic and Social Development by
the National Knowledge Infrastructure of China (https://data.cnki.net/HomeNew/Index,
last access: 20 July 2022).

https://data.cnki.net/HomeNew/Index
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2.2.3. Existing Irrigation Maps

Existing irrigation maps were obtained from two sources: irrigated cropland from LC
data and independent irrigation maps. GLC_FCS also provided irrigated cropland data in
2015 and 2020, which were developed by local trained random forest models with time-
series Landsat imageries [58]. Several global and regional irrigation maps were also applied
as inputs, including CIM, IAAA, GRIPC, GMIA-m, GFSAD (global food security-support
analysis data), and Xiang2016. CIM is a 1 km irrigated cropland map around year 2000 by
using a potential irrigation index to downscale census data [32]. IAAA, obtained from the
International Water Management Institute (IWMI), was available at 250 m resolution for
2000 and 2010 to map irrigated and rainfed croplands in Asian and African regions [59].
GRIPC is a 500 m Global Rain-Fed, Irrigated, and Paddy Cropland map circa 2005, which
was generated by supervised classifications with remote sensing, climate, and agricultural
inventory data [44]. GMIA-m is a downscaled GMIAv5 map at 30 arcsec resolution [19].
GFSAD is generated by NASA and USGS to provide global cropland data for global
food security [45]. Xiang 2016 is an irrigated area map for mainland China in 2016 at
500 m resolution by comparing the land surface water index with a normalized difference
vegetation index [46].

2.2.4. Remote Sensing Data on Irrigated Cropping Systems

With the exception of existing irrigation maps, the distribution of irrigated fields can
also be obtained from cropping systems. The difference between irrigated and rainfed
cropping systems is explicit, which can provide accurate information on irrigated fields
with high confidence. Two irrigated crop (rice and wheat) distributions were used as
alternatives to irrigation extent. Rice is a dominate grain crop and is widely cultivated in
south and northeast of China [60,61]. It is cultivated in paddy fields that are unsuitable for
dryland crops and is considered as part of irrigated croplands with high confidence [36,60].
In its cultivation, irrigation is used not only to relieve crop drought stress but also to control
water levels and suppress weed growth [54]. A 500 m annual paddy rice dataset (APRA)
was applied in this study, providing a 500 m-grid of paddy rice maps of monsoon Asia
(some countries) from 2000 to 2020 with an overall accuracy of 75% [62,63]. Wheat is also
another main grain crop in China and is mainly produced in north with less precipitation
during the growth period; thus, irrigation is required [64]. We obtained wheat distributions
with 1 km resolution from a dataset of annual harvesting areas (ChinaCropArea1 km),
which provided a 1 km-grid crop harvesting area dataset for three main crops of China
from 2000 to 2015 [65]. Wheat classification had a high accuracy with R2 values that were
consistent around 0.85, under the county-level statistical data comparison [66].

Evidence was obtained from cropping intensities in distinguishing irrigated and
rainfed fields, since there might be more crop cycles in irrigated conditions with the
lifting of water-supply restrictions [67,68]. The potential cropping intensity gap between
irrigated and rainfed scenarios in China increased due to increasing rainfed water-supply
limitations from climate change since 1960s [67]. Thus, the difference between actual
intensity and potential rainfed cropping intensity was used to determine whether irrigation
was performed or not. Actual data were obtained from a 500 m annual cropping intensity
dataset (ACIA), which provided annual maps covering monsoon Asia (some countries)
from 2001 to 2020 [69]. The potential rainfed cropping intensity comprised static data from
1980 to 2010, which was taken from the GAEZv4 dataset [70].

2.3. Methods
2.3.1. Synergy Irrigation Mapping

The basic idea of the synergistic approach used in this study was to extract likely irri-
gated areas based on spatial agreements of multiple heterogeneous high spatial-resolution
data and then to sum them within a specific administrative boundary to match statistical
areas [36,41]. Three main components were involved in the synergy process, including all



Land 2022, 11, 1686 6 of 27

possible irrigated pixel extraction within a specific temporal duration, agreement-ranking
establishment, and statistical area allocation, as shown in Figure 2.
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Not all irrigated croplands can be detected by remote sensing during the year of
inventory, because some irrigation infrastructures might not be in use, such as land fallow
and crop rotation [54], resulting in a lower number of areas estimated from satellite-based
datasets than area-equipped irrigation reported in the census dataset [54]. Therefore, we
could not infer the location of all irrigated cropland from irrigation pixels of the current
year alone derived from satellite-based data. In addition to irrigated areas during the year
of inventory, a common method based on satellite-based data also incorporates areas where
irrigation occurs during ≥2 of 4 years before the inventory [54,55]. Following this method,
we collected all irrigation pixels, which met requirements for the past four years and the
current year from time-series remote-sensing-based data (CCI-LC and cropping system
data) to map the potential distribution of irrigated cropland during the year of statistics.

Integrating input data was performed by ranking rather than unequal weighting [52].
A suitable weight order of inputs was crucial for synergistic mappings because inputted
accuracy assessments affected synergistic confidence [36,52,53]. Fritz et al. (2015) com-
pared input products with crowdsourced data from Geo-Wiki to rank individual cropland
products [52]. Lu et al. (2017) ranked existing cropland datasets using accuracy assessment
based on sampling data [53]. Lu et al. (2020) also used the difference between the area
derived from inputs and statistical area to assess their accuracy [41]. In addition, Zhang
et al. (2022) used accuracy provided by input products themselves and expert-judgment-
fused methods to rank the weight order [36]. Here, we set the weight order according to
the following rules. At first, we took time-series datasets as the priority since they had
higher time sensitivities in irrigated land distributions. Then, we used 614 validation
samples described in Section 2.2 to assess the overall accuracies of input data. Datasets with
outperformed accuracy assessments were ranked higher in the weight order. With respect
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to slight differences in the overall accuracy, we further compared the differences between
inputs and statistics and placed the data with smaller gaps in a higher order. Moreover,
we grouped all input datasets into five groups for each year and labelled them A, B, C,
D, and E from high to low rankings, as shown in Table 2. Due to the significant regional
characteristics of cropping system distributions, which prevented them from covering
most areas, we combined the data on wheat and irrigated cropping intensities with similar
spatial patterns into group B, while rice was separately listed as group C.

Table 2. Input data applied for each year.

Year A B C D E

2000 CCI-LC Wheat APRA CIM IAAA2000
2001 CCI-LC Wheat & ACIA APRA CIM IAAA2000
2002 CCI-LC Wheat & ACIA APRA CIM IAAA2000
2003 CCI-LC Wheat & ACIA APRA GRIPC GMIA-m
2004 CCI-LC Wheat & ACIA APRA GRIPC GMIA-m
2005 CCI-LC Wheat & ACIA APRA GRIPC GMIA-m
2006 CCI-LC Wheat & ACIA APRA GRIPC GMIA-m
2007 CCI-LC Wheat & ACIA APRA GRIPC GMIA-m
2008 CCI-LC Wheat & ACIA APRA GFSAD IAAA2010
2009 CCI-LC Wheat & ACIA APRA GFSAD IAAA2010
2010 CCI-LC Wheat & ACIA APRA GFSAD IAAA2010
2011 CCI-LC Wheat & ACIA APRA GFSAD IAAA2010
2012 CCI-LC Wheat & ACIA APRA GFSAD IAAA2010
2013 CCI-LC Wheat & ACIA APRA Xiang 2016 GLC_FCS2015
2014 CCI-LC Wheat & ACIA APRA Xiang 2016 GLC_FCS2015
2015 CCI-LC Wheat & ACIA APRA Xiang 2016 GLC_FCS2015
2016 CCI-LC ACIA APRA Xiang 2016 GLC_FCS2015
2017 CCI-LC ACIA APRA Xiang 2016 GLC_FCS2015
2018 CCI-LC ACIA APRA Xiang 2016 GLC_FCS2020
2019 CCI-LC ACIA APRA Xiang 2016 GLC_FCS2020

CCI-LC: irrigated cropland distribution derived from Climate Change Initiative Land Cover; Wheat: wheat
harvest distribution derived from China Crop Area1 km dataset; ACIA: a 500 m annual cropping intensity dataset;
APRA: a 500 m annual paddy rice dataset; CIM: a 1 km irrigated area map in mainland China in 2000; GRIPC:
a Global Rain-Fed, Irrigated, and Paddy Croplands map circa 2005; GFSAD: a global irrigated cropland extent
map circa 2010 derived from global food security-support analysis data; Xiang2016: an irrigated area map for
mainland China in 2016; IAAA 2000 and 2010: Irrigated Area Map for Asia and Africa (IAAA) at 250 m resolution
circa 2000 and 2010; GMIA-m: a downscaled GMIAv5 map at 30 arcsec resolution derived from global irrigated
areas dataset; GLC_FCS2015 and 2020: irrigated cropland distribution derived from global land-cover products
with a fine classification system at 30 m in 2015 and 2020.

On this basis, an agreement ranking was built to reflect weight orders and agreement
scores of the used inputs, as shown in Table 3. Agreement levels represented the spatial
consensus among input layers as the number of input layers identifying a pixel as irrigated
cropland. According to their spatial consensus and weight orders, the scores ranging from
0 to 31 represented the likelihood of irrigated cropland in pixels. Thus, the scoring table
was used to transform heterogeneous input layers into an agreement-ranking map [41].
According to Tables 2 and 3, we used the year 2010 as the benchmark to present distributions
of agreement levels and scores in Figure 3.

Table 3. The ranking scoring table for five groups of input data.

Agreement Level Score A B C D E

5 31 1 1 1 1 1

4 30 1 1 1 1 0
29 1 1 1 0 1
28 1 1 0 1 1
27 1 0 1 1 1
26 0 1 1 1 1
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Table 3. Cont.

Agreement Level Score A B C D E

3 25 1 1 1 0 0
24 1 1 0 1 0
23 1 0 1 1 0
22 1 1 0 0 1
21 1 0 1 0 1
20 0 1 1 1 0
19 0 1 1 0 1
18 1 0 0 1 1
17 0 1 0 1 1
16 0 0 1 1 1

2 15 1 1 0 0 0
14 1 0 1 0 0
13 1 0 0 1 0
12 0 1 1 0 0
11 1 0 0 0 1
10 0 1 0 1 0
9 0 1 0 0 1
8 0 0 1 1 0
7 0 0 1 0 1
6 0 0 0 1 1

1 5 1 0 0 0 0
4 0 1 0 0 0
3 0 0 1 0 0
2 0 0 0 1 0
1 0 0 0 0 1

0 0 0 0 0 0 0
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Then, we allocated irrigated areas to the pixels in the order of largest to smallest scores
until the cumulative gridded area within all specific administrative boundaries was close
to the statistics. Thus, the irrigated area in each sub-national unit was allocated as follows:

Areai,s = ∑s = 31 pi,s × am,y, (1)

where Areai,s denotes the cumulative irrigated area from score 31 to s in sub-national unit i,
and pi,s denotes the pixel labeled as the cropland with agreement score s. am,y represents
the allocating cropland area in this pixel. The minimum cropland area of pixels was first
allocated. If the minimum area was not sufficient for the requirement, we further allocated
the differential area between the minimum and maximum areas.

To match statistical areas the statistical area (Areai,Stat) was larger than Areai,s−1 but
smaller than Areai,s, pixels with score s were further sorted according to agricultural
drought. Because it was assumed that areas with more agricultural drought would be given
priority for irrigation, agricultural drought was defined as the lack of soil to fulfil crop
demands, which could be described by the evapotranspiration deficit index (ETDI) [71,72].
Due to the lack of monthly data on actual evaporation, we applied a simple crop water
stress index (WS [0,1]) based on the annual evapotranspiration deficit, which was calculated
by using potential and actual evaporation, as shown in Equation (2):

WS =
PET − AET

PET
, (2)

where PET and AET represent the reference potential evaporation and actual evaporation
covering a long-term period from 1981 to 2010, which were obtained from the GAEZv4
dataset [70]. A smaller WS represented a higher likelihood of irrigation due to long-term
droughts in the area.

According to the WS index, we sorted pixels with agreement score s. Then, cropland
areas of these pixels were allocated in order until statistical areas were matched, as shown
in Equation (3):

Areai,Stat ≈ Areai,s−1 + ∑ws pws
i,s × am,y, (3)

where Areai,Stat denotes the statistical area, which is larger than Areai,s−1 but smaller than
Areai,s; pws

i,s denotes the pixel with agreement score s and water stress index. In the end,
annual synergic maps were generated from the resultant allocation.

2.3.2. Validation of Resultant Maps

To evaluate the overall accuracy of the resulting maps, 262 irrigated and 352 non-
irrigated validation samples in mainland China were collected from Xiufang et al. (2014) [32],
as shown in Figure 4. These samples were obtained from two sources, China Meteorological
Data Sharing Service System (CMDSSS) and China Irrigation and Drainage Development
Center (CIDDC). The former provided 352 non-irrigated and 156 irrigated samples but
a lack of irrigated samples in the southeast, so another 106 irrigated samples were se-
lected from 443 large irrigation districts provided by the latter (CIDDC). However, unlike
CMDSSS, CIDDC provided general locations rather than geographical coordinates. Thus,
these 106 samples were relocated by Google Earth, and farmlands near water sources were
labelled as irrigated sites. More importantly, samples obtained from CMDSSS and CIDDC
were suitable for validation because of large-scale spatio-temporal coverage. More detailed
information of these samples can be observed in Xiufang et al. (2014) [32].
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3. Results
3.1. Accuracy Assessment of the Rebuilt Dataset

We, using 614 validation samples (Figure 4), estimated the overall accuracy and Kappa
coefficient of resultant maps and made comparisons with two time series (Irrimap-Syn and
CCI-LC) and eight annual maps (group D and E of inputs) at the same spatial resolution
(30 arcsec), as illustrated in Table 4. During 2000–2019, our average accuracy reached
69.54%, with the lowest and highest accuracies being 65.96% in 2000 and 71.66% in 2017
(Table 4), and accuracies in other years all fluctuated slightly around the average except
for year 2000. The lowest accuracy is more of an anomaly due to insufficient input data in
2000, and it demonstrated that adequate input data could improve the accuracy of synthetic
irrigation map. Interestingly, the increase in irrigated area did not necessarily lead to
an improvement in overall accuracy. The accuracy circa 2005 should reach around 70%,
but it decreased to less than 69% circa 2010 (Table 4). This phenomenon also occurred in
Irrimap-Syn where the dropping accuracy lasted from 2000 to 2013. Here, it might share
a close relation to input data accuracy, as far as the accuracy of input data (GRIPC and
GMIA-m) in 2005 was higher than that (GFSAD and IAAA2010) in 2010 (Table 4). Although
the accuracy of input data (Xiang’s map and GLC_FCS) in 2015 was still lower (Table 4),
the increase in irrigated area may compensate for the classification gap of input data.

Overall, the accuracy of the reconstructed dataset was improved from using input
data, the outperforming time series (CCI-LC), and annual (group D) datasets at an average
of 3.58% and 4.48% higher. In comparison with the third-party data (Irrimap-Syn), it still
maintained a 1.62% advantage in average accuracy. These accuracy estimates were also
credible since accuracies of CIM and Xiang’s map were similar to the results of Xiang et al.
(2016) [46]. The Kappa coefficient further supported the accuracy of our classification, and
its values were higher than others in different years and average levels.
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Table 4. The accuracy assessment of this study and comparison with other datasets.

Time-Series Dataset Annual Dataset
This Study Irrimap-Syn CCI-LC Group D Group E

2000
Correctly classified pixels 405 423 395 390 321
Overall accuracy 65.96% 68.89% 64.33% 63.52% 52.28%
Kappa coefficient 0.28 0.34 0.26 0.23 0.11

2005
Correctly classified pixels 433 415 401 416 404
Overall accuracy 70.52% 67.59% 65.31% 67.75% 65.80%
Kappa coefficient 0.37 0.31 0.28 0.34 0.24

2010
Correctly classified pixels 423 413 410 386 315
Overall accuracy 68.89% 67.26% 66.78% 62.87% 51.30%
Kappa coefficient 0.34 0.3 0.31 0.19 0.08

2015
Correctly classified pixels 425 424 407 384 298
Overall accuracy 69.22% 69.06% 66.29% 62.54% 48.53%
Kappa coefficient 0.34 0.34 0.3 0.19 0.08

Mean
Correctly classified pixels 427 417 405

\ \Overall accuracy 69.54% 67.92% 65.96%
Kappa coefficient 0.35 0.32 0.29

3.2. Spatial Pattern Comparison among the Rebuilt Dataset with Other Existing Datasets

The irrigated cropland area in mainland China grew from 55.42 to 71.33 Mha over
the last two decades (Figure 5a), which has profoundly changed the spatial pattern of
irrigation distributions. However, not all existing irrigation datasets have realized the
substantial change. Figure 5a highlighted differences in the gross irrigated area and the
overall trend derived from statistics and gridded irrigation datasets, including most input
datasets (except for some overestimated or underestimated data such as GFSAD and IAAA)
and another three time-series datasets (Irrimap-Syn, HYDE, and NGIA). Our rebuilt time-
series irrigation extent was obviously consistent with respect to the magnitude and overall
trend of reported national irrigated areas (Figure 5a), while the other four time-series
datasets showed significant discrepancies with statistics in the magnitude or overall trend
(Figure 5a).

At first, NGIA predicted the subsequent irrigation distribution based on existing
irrigation distribution in the past but ignored the subsequent irrigation expansion, so its
estimated gross area would not exceed the maximum value in the past. Secondly, HYDE
was a mapping of AAI, so it was acceptable that AAI was smaller than AEI. The divergence
was not limited to differences between AEI and AAI. As directly evidenced, irrigated
areas in some regions, such as Shandong Province, Henan Province, and Jiangsu Province,
were illogically greater than AEI derived from statistics (Table A1). Thirdly, the irrigation
distribution of CCI-LC was generated by a remote-sensing-based approach. However, its
classification was often limited by many factors, such as humid environment, fertilizer use,
plant protection, soil properties, and the change in crop-rotation system, etc. [32,49,50,73].
Similarly, annual maps such as GRIPC, IAAA, Xiang’s Map and GLC_FCS, also showed
great differences in classification accuracy and variances in area estimation (Table 4 and
Figure 5a). Although CCI-LC had a relative advantage in classification accuracy, there was
still a huge gap between the estimated area and the statistical one. Another reasonable
guess was that it used a fixed set of ground samples in a specific period for a relatively
stable area estimation.

Irrimap-Syn, as a dataset generated by statistics, showed a similar increasing overall
trend, but it surprisingly had a magnitude gap with statistics, which increased from
2.95 Mha in 2000 to 5.85 Mha in 2019 (Figure 5a). As a reference, CIM and GMIA-m also
showed gaps in statistics in the gross area, which could be explained by the exclusion of
the irrigated orchard area (1.60 Mha) and the inclusion of irrigated areas in other land
covers (5.01 Mha), respectively. However, this explanation did not apply to Irrimap-Syn,
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because the average difference was still around 2 Mha, even excluding the irrigated area
of the orchard. One possible reason for this discrepancy was that some statistical data
at municipal and county levels were not available [36]. Such underestimation not only
affected spatial pattern of irrigated cropland but also might have led to a difference in
growth amplitude or trend (Figure 5b and Table A1). Overall, our resultant maps were more
consistent with statistics than Irrimap-Syn, which avoided spatio-temporal discrepancies
caused by gaps in statistics.
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To present hot spots of irrigation coverage extents and changing trends, we resampled
the rebuilt time-series irrigation map and two other datasets (Irrimap-Syn and CCI-LC)
from high into coarse spatial resolutions (5 arcmin) and used the annual average irrigation
coverage and Sen’s slope estimator to compare those three time-series maps with respect to
spatial patterns and temporal changes, respectively (Figure 6). Sen’s slope estimator, which
had strong robustness and error resistance [74], was used to calculate time-series trends
in gridded irrigated area. Moreover, the significance of the trend was estimated by the
Mann–Kendall significance test [75]. In terms of spatial patterns, the irrigation coverage
suggested that both Irrimap-Syn and our rebuilt map shared similarities (Figure 6a,c). It
confirmed that the rebuilt irrigation distribution with coarse spatial resolution statistics also
retained spatial consistency with Irrimap-Syn dataset with prefecture-level/county-level
statistics as input data, and its spatial divergences were mainly reflected in coverage extents
as a rebuilt map with higher gridded irrigation coverage in three hot zones, including
south Xinjiang Province, Huang-Huai-Hai Plain, and the alluvial plains of Yangtze River
Basin. An important reason of these differences was the gap between Irrimap-Syn and
statistics (Table A1). In those three hot zones, irrigated areas derived from Irrimap-Syn
underestimated about 3.27 Mha in annual average, occupying approximately 70% of the
total gap (Table A1). In comparison between CCI-LC and the rebuilt map, divergences
were observed in CCI-LC’s inadequate coverage of the north and southwest regions, and
higher irrigation coverage was observed in Xinjiang, Huai River Basin, and the lower
reaches of the Yangtze River Basin (Figure 6a,e). Inadequate coverage led to irrigated area
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underestimation. The average underestimated area contributed over 10.68 and 3.21 Mha
in northern and southwest provinces, respectively (Table A1). However, total irrigated
areas in the provinces of the Huai River Basin and the lower reaches of Yangtze River Basin,
including Henan Province, Anhui Province, and Jiangsu Province, etc., were overestimated
by about 13.31 Mha in annual average (Table A1). The most overestimated irrigated area
was Xinjiang, which had an average of over 6.65 Mha in overestimation, and it is shown as
widely high irrigation coverages in Figure 6e.
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In terms of temporal change, Irrimap-Syn and the rebuilt map performed more sim-
ilarity (Figure 6b,d). Generally, Xinjiang and Heilongjiang showed a significant growth
trend, while other hot spots were mainly characterized by a mixture of significant negative
growth and non-significant change (Figure 6b,d). In Irrimap-Syn, Guizhou Province and
Guangdong Province showed growth in a large spatial extent and decreases at local levels,
respectively, due to growth area misestimations (Figure 6d, Table A1). At the center of
Huang-Huai-Hai Plain, covering Hebei Province, Shandong Province, and north of Henan
Province, irrigated areas had a significant decreasing trend in both the rebuilt and CCI-LC
maps, which was different from that in Irrimap-Syn (Figure 6b–f). The area decrease might
be caused by water-saving policies in recent years, which required a change from irrigated
to rainfed lands in order to relieve serious groundwater depletions [76–80].

3.3. Tracking Irrigated Cropland Changes in China

There were heterogeneous development trends of irrigated cropland in different re-
gions of China, as described in Figure 6. They could be divided into five large areas:
Northwest Inland Region (NIR), Northeast Plain (NEP), Huang-Huai-Hai Plain (NHHP,
including Haihe River Basin (HARB), the lower reaches of Yellow River Basin, and Huaihe
River Basin (HURB)), Yangtze River Basin (YARB), and South China Region (SCR), av-
eraging 14.77%, 14.81%, 34.63%, 24.26%, and 11.53% of the total national irrigated area
in two decades, respectively (Figure 7). NIR, covering the Continental Basin (CNB) and
middle and upper reaches of the Yellow River Basin (YERB), contributed 3 Mha irrigated
area growth in last 20 years, leading to its share increase from 13.33% to 15.17% (Figure 7).
The largest area growth occurred in NEP, which increased by over 5.39 Mha in total over
two decades, almost by a 5% share increase (Figure 7). In NEP, Heilongjiang Province con-
tributed around three-quarters to growth. The expansion of rice cultivation was the most
obvious change resulting from an increase in irrigated area [61,81]. As the most important
grain-producing areas in China, HHHP and YARB held the highest irrigation coverage
(Figure 6a). Although each achieved an area increase of over 2 Mha, their combined share
fell from 62.49% to 56.23% (Figure 7). SCR, covering the Southeast Basin (SEB), Pearl River
Basin (PRB), and Southwest Basin (SWB), contributed the smallest area increase (1.60 Mha)
and maintained its share at around 11.5% in a 20-year period.

To further obtain the change rule, we summarized irrigated cropland on time infor-
mation, including start year, end year, and duration period, as described in Figure 8. As a
traditional grain-producing zone, HHHP contributed to around half of the total national
cereal production [27,82,83]. Its agricultural development was inseparable from irriga-
tion system supports [84]. To increase food production without expanding cropland, the
cropping system changed from single to a wheat-maize double cropping rotation with
increased irrigation since 1980s [85–87]. As illustrated in Figure 8, it not only held the
largest range of irrigated cropland but also maintained it for a long period of time, which
helped sustain crop yields and resilience to climate risks but nevertheless led to serious
groundwater depletions [77]. Therefore, the expansion of irrigated cropland has gradually
slowed (Figure 8c).
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YARB and SCR were early to realize the development of irrigated agriculture
(Figure 8a). Due to the limitation of hilly terrain, their irrigated cropland was mainly
distributed in alluvial plains, such as Chengdu Plain, Lianghu Plain, Poyang plain, Yangtze
River Delta, and Pearl River Delta. It was found that the irrigation expansion was relatively
stable in those irrigated agricultural areas (Figure 8c). Likely due to the rapid urban devel-
opment in recent years, both withdrawals of irrigated cropland showed a slight increasing
trend (Figure 8c). As emerging irrigated agricultural areas, both NIR and NEP started with
a low proportion of irrigated cropland but presented different expansion paths (Figure 8c).
The Irrigation expansion in NIR slowed down by years, and this specifically manifested as
the proportion of new cultivated lands that decreased, while the irrigated cropland in NEP
experienced an explosive growth in several years around 2010 (Figure 8c). New irrigated
croplands were mainly distributed in Xinjiang Province and Heilongjiang Province, with
around 2.15 Mha and 4.15 Mha increases in 20 years, respectively (Figure 8a and Table A1).
Their irrigation expansion promoted the increase in cotton and paddy rice planting areas,
respectively [61,81,88–90].
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Figure 8. The summary of irrigated cropland changes on time information in China during 2000–2019:
(a) the start year distribution of irrigated cropland at 30 arcsec resolution, (b) period duration
distribution of irrigated cropland at 30 arcsec resolution, and (c) start and end years’ proportion in
five large regions.

Both the expansion and abandonment of agricultural irrigation profoundly changed
the land-use pattern, as illustrated in Figure 9 and summarized in Table 5 in terms of
area gains and losses. In the last 20 years, rainfed cropland was the dominant source of
irrigated cropland expansion, followed by pastures, contributing to over 70% and 20%
of total area gains, as described in Table 5. The results illustrated that one purpose of
large-scale irrigation system constructions in China might be to enhance the intensifica-
tion of existing agricultural land, since the establishment of irrigated cropping system
normally led to high inputs, such as modern varieties, pesticides, and fertilizers, as well
as advanced management, such as the conservation of soil and water conservation [1].
Moreover, agricultural land-use intensification was necessary because yield increases were
important methods for meeting rapidly increasing demands with limited arable land in
China. The irrigated rainfed land-use transition occurred in traditional grain-producing
areas, including HHHP and the alluvial plains in YERB and YARB, as well as new irrigated
areas such as Heilongjiang and Xinjiang (Figure 9b–h). However, for CNB and SCR two
regions, other land uses, including woodland, built-up, and others, also provided consider-
able irrigated area gains (Table 5). In CNB, expansion occurred not only in existing rainfed
cropland and pasture but also in unmanaged grazing land (Table 5, Figure 9b–h). These
land-use transitions indicated agriculture production from crop-livestock systems changed
into intensified cropping systems, which could lift arid climate constraints on agricultural
development, thus improving agricultural productivity and local livelihood in CNB. The
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hilly terrain shaped the scarcity of land resources in SCR, which was further strained by
the Grain for Green policy and urbanization. Therefore, maintaining irrigated agricultural
development required the full use of a wider range of land-use transitions (Table 5).

Land 2022, 11, x FOR PEER REVIEW 18 of 29 
 

 Figure 9. Spatial distributions of land-use transitions caused by irrigated cropland changes during
2000–2019: land-use transitions led by irrigated cropland abandonment (a–g) and expansion (b–h) in
5-year periods.



Land 2022, 11, 1686 18 of 27

Table 5. Land-use transition patterns caused by irrigated cropland changes in China during 2000–2019.

Total Area Rain Land (%) Pasture (%) Woodland (%) Built-Up (%) Others (%)
Gain Loss Gain Loss Gain Loss Gain Loss Gain Loss Gain Loss

NIR
CNB 4.19 1.54 60 74 16 21 0 0 1 4 23 1
YERB 1.44 0.65 70 60 18 27 0 3 9 10 2 0
Total 5.63 2.19 62 70 17 23 0 1 3 6 18 1

NEP \ 6.19 0.79 85 71 12 23 1 1 2 6 1 0

HHHP

HARB 2.51 2.37 87 65 3 13 0 2 8 20 1 0
YERB 0.24 0.46 89 74 5 12 0 1 6 14 0 0
HURB 5.93 3.06 92 87 2 2 0 0 5 11 0 0
Total 8.68 5.90 91 77 3 7 0 1 6 15 0 0

YARB \ 7.81 5.12 64 50 21 21 5 8 9 20 1 1

SCR

SEB 0.51 0.34 15 14 17 11 44 25 21 49 2 2
PRB 2.24 1.26 30 26 35 32 16 22 18 20 1 1
SWB 0.60 0.14 23 27 43 45 27 19 5 9 2 1
Total 3.34 1.74 26 23 34 29 22 23 16 25 1 1

Area unit: Mha.

Here, we took rainfed cropping systems with low-level inputs and traditional man-
agement as references and investigated irrigation expansions with high-level inputs and
advanced management that led to potential positive changes in terms of agricultural
drought reduction and soil suitability improvement, as described in Figure 10. Under
uneven precipitation distribution, there was a significant spatial difference in the effect
of irrigation on water deficit alleviation, a gradual decrease from northwest to southeast,
as show in Figure 10a [27]. The north benefited more from massive irrigation expansions
induced by yield constraints that overcame rainfall shortages during cultivation. Hot
zones of irrigation expansion in HHHP and NEP were, respectively, in the south and east,
which are considerably low water-stress areas at the local level (Figures 9b–h and 10a).
It suggested that the irrigation expansion in the north, except NIR, avoided hot spots of
water shortage and made a trade-off between water security and food security. During the
irrigation expansion process, soil suitability could be widely upgraded into high suitability
by improving input and management, especially in key grain-producing areas, such as
HHHP, alluvial plains in YARB, Xinjiang in NIR, and Heilongjiang in NEP (Figure 10b).
It indicated that irrigation expansion with high inputs and advanced management also
could promote crop yield growth by improvements in enhanced soil suitability. Therefore,
irrigated cropland expansion in the last two decades could be regarded as an agricultural
land-use intensification process, along with the construction of farmland water conservancy
infrastructure, production input’s increase, and improved management practices.

In terms of irrigated cropland abandonment, irrigated-rainfed land-use transitions
contributed to the largest loss (9.59 Mha), about 60% of the total loss during 2000–2019
(Table 5). Moreover, the area loss in developed irrigated areas, HHHP and YARB, was
significantly larger than that in NEP and NIR, which are newly developing irrigated
regions (Table 4). Thus, such transitions in HHHP and YARB might be related with local
water scarcity or land degradation caused by long-term irrigation [77]. As shown in
Figure 9, abandonment was mainly distributed in central HHHP and YARB’s alluvial
plains. Moreover, it might be concerned with unfunctional irrigation due to aging facilities
or management neglect [91]. China began renewing supporting facilities and upgrading
water-saving facilities in large irrigation districts to improve water-use efficiency and
irrigated area recovery [92]. Therefore, after long-term expansions, large-scale irrigated
cropland maintenance, water saving, and the conservation of water and soil might be the
next priorities.
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As illustrated in Table 5, the Grain for Green policy and urbanization were two other
drivers for land abandonment. The Grain for Green policy, as a large-scale political incentive
program started in 1999, achieved considerable success in the conservation of water and
soil [93–95]. However, the effect on irrigated land outputs was weak, since only unsuitable
arable lands, such as sloping, desertification, and heavily polluted land, were involved [96].
As a result, the Grain for Green policy contributed to around 3.55 Mha irrigated area
abandonment in the entire period, resulting in cropland–pasture or cropland–woodland
transitions (Table 5). YARB and SCR contributed nearly 60% of cropland–pasture and over
90% of cropland–woodland transitions, accounting for two-thirds of total losses from the
program (Table 5). Different from the spatial aggregation of other land-use transitions,
cropland–pasture and cropland–woodland transitions were scattered in the south between
2000 and 2019 (Figure 9a–g). In the north, the policy effect was pasture or grassland
increase due to cropland withdrawals, which was also captured in this study and described
in Table 5 [97]. Interestingly, the cropland–pasture transition in NEP and HHHP mainly
occurred in the surroundings of irrigated zones, while that in NIR was generally consistent
with the expansion distribution (Figure 9), which might be related to the fragile ecological
environment caused by severe water stress and soil erosion in the northwest.

The rapid development of industrialization and urbanization in China significantly
changed urban–rural land-use patterns and human–land relationships [98], and it caused
a direct loss in irrigated land at around 2.52 Mha, occupying about 16% of the total, in
the past 20 years (Table 5). Moreover, farmland was indirectly abandoned due to the
rural labor shortage from urbanization migration [99]. Compared with marginal land
abandonment from the Grain for Green policy, urbanization was more likely to occupy
fertile land in the plains, which led to a considerable loss in grain production [99–101]. The
rural–urban land-use transition was mainly distributed in the most economically active
urban agglomerations of China, including the Jing-Jin-Ji Region, Yangtze River Delta, Pearl
River Delta, Weihe (Guanzhong) Plain, central Shanxi Province, northern Henan Province,
and the middle reaches of Yangtze River (Figure 9a–g). On the other hand, as a source, it
also provided about 2.08 Mha in gains between 2000 and 2019, which reduced the negative
impact of urbanization on irrigated agriculture to a certain degree (Table 5). It indicated that
Requisition–Compensation Balance of Arable Land policy played a positive role in cropland
losses, and the policy required that occupied cropland for non-agricultural use should be
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compensated with an equal quality and quantity of arable land within the local scope [98].
Therefore, this form of land replacement was mainly distributed in the surrounding areas
of abandoned land from urbanization (Figure 9b–h). For example, abandonment and
expansion caused by changes in construction land occurred in the southern and northern
areas of Jiangsu, respectively.

4. Discussion

Irrigated agriculture was irreplaceable in terms of food security and resilience against
agro-meteorological disasters in China. However, the long-term extensive irrigation led
to the overexploitation of water resources. Yet the lack of explicit information on where
irrigated land distributed and how irrigated cropland changed throughout time limited
trade-off decision making on agricultural sustainable developments in China. Thus, we
tracked the dynamics of irrigated cropland in the last two decades by combining multiple
data streams (land cover maps, remote-sensing products on irrigation information, and
statistics) to reconstruct time-series consistent irrigated cropland maps at 30 arcsec spatial
resolution. Our reconstructed map outperformed existing irrigation maps in terms of
overall accuracy and consistency with statistics, and the advantage was rebuilt on several
factors. At first, a data synergy approach used in the study took full use of multi-sourced
heterogeneous datasets to attenuate errors inherited in a single irrigation map [42]. More-
over, the approach can take advantage of complementarities between remote-sensing data
and statistics to overcome spatial discrepancies between them [41]. Then, we used more
specific observational information on irrigation, such as data on irrigated crops and irri-
gated cropping system, to reduce uncertainties in traditional irrigation remote-sensing
data caused by climate, soil, and crop rotation factors. Finally, considering the influence of
drought, rotation, and fallow on the distribution of irrigated cropland, we incorporated a
water stress index and previous actual irrigations into the allocation procedure to ensure
stability in irrigation distributions over time. To this end, the rebuilt map provided more
detailed insights into both the temporal dynamics of irrigated cropland changes and spa-
tial patterns of land-use transitions. Limited by uneven distributions in water and land
resources, the expanding land was inevitably concentrated in areas with strained water
and land resources [100]. Even so, the expanded irrigation agriculture was far from a
mindless unsustainable expansion, because some trade-offs among food security, water
security, and land protection were involved in the process, including agricultural land-use
intensification, geographical shifts from vulnerable to relatively suitable areas, the Grain
for Green policy, and cropland protection in the competition caused by urbanization.

Some limitations and uncertainties cannot be neglected either. First, due to the lack
of time-series data, we had to adopt several annual irrigation maps with high spatial
resolutions and filled them into neighboring years. However, their spatial discrepancies
led to fluctuations in accuracy and distribution at a temporal level and the subsequent
overestimation of irrigated land change. There might be two feasible solutions possible
in future studies to overcome such fluctuations caused by temporal discontinuity. One
method is based on remote-sensing methods to produce time-series data on the actual
irrigation in order to replace these annual irrigation maps. The other is to build a dynamic
and region-specific score table to reduce uncertainty from local inconsistencies among
different inputs [53]. Second, since fragmented lands in China were observed particularly
in the south, the spatial resolution of cropland datasets used in this study, which was more
suitable for large fields, might limit irrigated cropland mapping [52]. Thus, we guessed
that a higher spatial resolution of cropland distribution would be more appropriate, at least
in the southern region. Third, although we used provincial-level statistics to achieve higher
accuracy and to retain consistency in the spatial pattern with the Irrimap-Syn product,
which used prefecture-level/county-level statistics, it was still believed that statistics
for smaller administrative geospatial units had an advantage in constraining irrigated
cropland extents. The premise of its advantage was built on more detailed data processing
and calibration since there were frequent administrative boundary changes and missing
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data for a specific year. At last, given the continuous expansion of irrigated cropland, fixed
validation samples used in this study might lead to an uncertainty in accuracy assessment,
especially in newly irrigated areas and later periods. A more reliable method in future
studies would be to collect validation samples for different years to adapt to different
development stages.

5. Conclusions

Information on irrigated cropland distribution was critical for agricultural production
monitoring, water and land management, and climate change adaptation in China. In
this study, we reconstruct irrigated cropland extents across mainland China, covering the
period of 2000–2019, by integrating existing irrigation maps, remote-sensing products on
irrigated cropping system, and statistics. Moreover, rebuilt maps and other two time-series
datasets (CCI-LC and Irrimap-Syn) were validated by using 614 reference samples across
mainland China. As a result, our resultant map showed a higher overall accuracy in both
average and single years, and it was more consistent with statistics in the terms of the
magnitude and overall trend. Moreover, our maps shared a similar spatial pattern with
Irrimap-Syn maps, which is different from remote-sensing-based maps (CCI-LC), but there
was a slight difference in the temporal change trend, and this was probably because of
differences in statistical inputs.

Our resultant maps showed that irrigated areas in China had grown tremendously
around 16 Mha over the past two decades but had different growth trends in different
regions. As traditional irrigation zones, HHHP and YARB represented simultaneous large-
scale expansion and abandonment at the same time, leading to the largest area gains and
losses. While in NIR and NEP, which are newly irrigated regions, expansion dominated
their dynamics with respect to irrigated cropland, contributing the two largest net area
gains. On the temporal scale, their expansion mainly occurred in early and middle periods.
In terms of land-use transitions, rainfed cropland was the dominant source of irrigated
cropland expansion, followed by pastures, which contributed to over 70% and 20% in total
area gains, respectively. As a special case, SCR, constrained by land scarcity, had to make full
use of all sources to maintain irrigated agricultural developments. Moreover, the land-use
shift from rainfed to the irrigated system resulted in two potential positive changes, water
scarcity alleviation and soil suitability improvement, with the indication that agricultural
land-use intensification was enhanced by irrigated cropland expansion. Moreover, some
efforts on sustainable agriculture development also had been detected, such as geographical
shifts from vulnerable to relatively suitable areas, the Grain for Green policy, and cropland
protection in the competition of urbanization. Thus, the subsequent consequences of
changes in irrigated cropland related to food security and water consumption need further
assessments. The reconstructions in this study provide explicit and reliable information
on irrigated cropland distributions for applications in agricultural production monitoring,
water and land management, and climate change adaptation. Future studies will integrate
remote-sensing methods and apply cropland distribution and the statistics of irrigated
area with higher spatial resolutions in order to improve classification accuracies. Another
possibility is to explore the impact of actual irrigation on crop yields and watershed water
resources based on irrigated cropland maps.
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Appendix A

Irrigated cropland expansion may not only reduce drought impacts but also improve
soil suitability through increased inputs and strengthen management [1,6–10]. Thus, we
used agricultural drought and soil suitability indices to reflect potential gains caused
by irrigated cropland expansion. Impacts on drought reduction were calculated by the
difference between irrigated and rainfed WS. Rainfed WS was calculated by Equation
(2), ranging from 0 to 1. Irrigated WS was set by a fix value (0.8), which was a standard
indicating that water requirements for crops were met. Therefore, the impact on drought
reduction (DR) could be obtained as Equation (A1) shows:

DR =


high, DWS ≥ 0.4

moderate, DWS ≥ 0.2
slight, 0 < DWS < 0.2

not− requied, DWS ≤ 0

, (A1)

where DR is divided into four levels, high, moderate, slight, and not-required, according to
DWS, which denotes the difference between irrigated and rainfed WS.

Soil suitability also is also changed by assuming a transition from rainfed cropland
or pasture with low input and traditional management to irrigated land with high input
and advanced management. Thus, we used the difference in soil suitability between high
inputs and low inputs to determine improvements after the expansion. Soil suitability
improvement was obtained as follows:

SSI = CS× SSH, (A2)

and

CS =

{
1, SSH > SSL
0, SSH ≤ SSL

, (A3)

where SSI represents soil suitability improvements after the expansion, which is obtained
by a changing state and soil suitability with high inputs; CS denotes a state variable that
is 1 if soil suitability with high inputs (SSH) is greater than that with low inputs (SSL)
and 0 otherwise. Moreover, both soil suitability indices with high inputs and low inputs
were obtained from the GAEZv4 dataset [70]. SSI is divided into four levels, including
non-change, marginal, moderate, and high. Non-change represents no improvements
after the expansion, while the other three levels correspond to a soil suitability index with
high inputs (high level: very high and high; moderate level: medium and moderate; and
marginal level: marginal and very marginal).

Appendix B

Table A1. Area differences with statistics in average and irrigated area changes of Irrimap-Syn,
CCI-LC, and HYDE at a provincial level from 2000 to 2019.

Province Name

Statistics Irrimap-Syn CCI-LC HYDE

Average
Area

Area
Changes

Area
Differences
with Statistics

Area
Changes

Area
Differences
with Statistics

Area
Changes

Area
Differences
with Statistics

Area
Changes

Beijing 247 −225 191 −238 −170 −1 63 35
Tianjin 359 −62 352 −25 −233 −1 92 73
Hebei 4753 −39 4300 −160 −3627 −19 −90 647
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Table A1. Cont.

Province Name

Statistics Irrimap-Syn CCI-LC HYDE

Average
Area

Area
Changes

Area
Differences
with Statistics

Area
Changes

Area
Differences
with Statistics

Area
Changes

Area
Differences
with Statistics

Area
Changes

Shanxi 1309 454 1185 314 −993 −6 −58 362
Nei Mongol 2893 830 2577 449 −849 212 −1306 533
Liaoning 1629 205 1525 230 −265 −65 −384 947
Jilin 1675 607 1669 589 339 159 −242 1759
Heilongjiang 3937 4151 3892 4236 −2268 36 −1841 2673
Shanghai 234 −95 208 −95 186 −94 41 12
Jiangsu 3989 368 4055 266 3220 −412 749 126
Zhejiang 1490 28 1368 −44 379 −221 −115 437
Anhui 3786 1405 3647 1374 4182 −151 427 416
Fujian 1045 204 908 28 −398 −73 −630 340
Jiangxi 1961 171 1892 137 463 −55 237 305
Shandong 5288 469 4791 484 −2282 −118 555 874
Henan 5076 614 4922 669 1968 −273 485 560
Hubei 2487 937 2199 350 3541 −106 276 589
Hunan 2892 516 2819 410 211 −73 −92 62
Guangdong 1804 400 1835 −193 624 −192 −453 639
Guangxi 1599 266 1514 3 638 −90 −177 761
Hainan 238 126 177 21 11 −18 −81 177
Chongqing 664 73 626 211 −443 −24 122 591
Sichuan 2682 608 2428 581 −1179 −82 −98 1165
Guizhou 928 506 1128 965 −752 −16 −509 498
Yunnan 1666 563 1556 377 −839 −29 −922 588
Xizang 222 138 123 −41 39 9 −200 39
Shaanxi 1393 11 1247 125 −83 −43 −118 249
Gansu 1209 377 1046 163 −392 45 −494 616
Qinghai 211 5 169 −20 1 8 −123 95
Ningxia Hui 490 150 447 49 −150 3 −170 130
Xinjiang Uygur 4337 2151 3352 1797 6657 1251 −1740 1258
Sum 62,494 15,912 58,151 13,010 7537 −439 −6797 17,553

Area unit: Mha.
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