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Abstract 

Global risk of forest fires is amplified by the climate change driven heat waves, leading to more intensive 
biomass burning, which create a vicious cycle by accelerating the climate change. Despite of the growing risk 
of forest fires, a response system in South Korea, where more than 60% of its land is forest, is still focusing on 
posterior measures. To improve preventive measures, forest fire model needs to be developed for assessment 
of future risks of forest fires and burned areas. In this context, this study aims at optimization of the IIASA’s 
FLAM – a processed based model integrating both biophysical and human impacts – to the environment of 
South Korea for projecting the pattern and scale of future forest fires. The following model developments were 
performed in the study: 1) optimization of probability algorithms in FLAM, including ignition probabilities 
conditional on population density, lightning frequency, and fuel taking into account distance to cropland, based 
on the national GIS data downscaled to 1 km2, and 2) improvement of fuel moisture computation by adjusting 
Fine Fuel Moisture Code (FFMC) used by FLAM to represent feedbacks with vegetation; this was done by fitting 
soil moisture to the daily remote sensing data, 3) deeper look at the fire frequency in addition to areas burned 
simulated by FLAM. Our results show that the optimization has considerably improved the modelling of seasonal 
pattern of forest fire frequency. After optimization Pearson’s correlation coefficient between monthly predictions 
and observations from national statistics was improved from 0.171 in non-optimized version to 0.893 in the 
optimized version of FLAM. These findings imply that even though FLAM already contained main algorithms for 
interpreting biophysical and human impact on forest fire at a global scale, they were applicable to South Korea 
only after optimization of all its modules. In addition, as the optimization succeed to reproduce the national 
specific pattern of forest fire, it should be followed by the research for developing adaptation strategies 
corresponding to the projected risks of future forest fires. 
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Introduction & Background 

Introduction 

As a part of international efforts toward Net Zero, the need of preserving forests, the carbon absorption sources 
is greater than ever. In particular, a risk of forest fire has been increased by the climate change driven heat 
waves (Sutanto et. al., 2020), and forest fires create a vicious cycle of accelerating the climate change (Clark 
et. al., 1996; Randerson et. al., 2006). To decouple the cycle and be resilient to the disaster, both short-term 
response and long-term objective are required (Engle et. al., 2014). However, a response system in South 
Korea is much more focused on short-term warning or posterior measures rather than a long-term projection, 
which is essential for establishing long-term sustainable objectives. 
 
Diverse research efforts have been widely conducted to project forest fire in climate change scenarios, and 
increasing temperature and dryness were common threat for amplifying the forest fire risk (Varela et. al., 2019; 
Jadmiko et. al., 2017). Meanwhile, social and biophysical characteristics of each region has to be considered to 
project forest fire as it is significantly affected by both spatial and temporal patterns of regional forest fire 
dynamics (Gavin et. al., 2007; Fernandez-Anez et. al., 2021). 
 
In this context, this study aims to develop a forest fire model in South Korea on the basis of IIASA’s FLAM, 
which already contains main algorithms for interpreting social and biophysical factors on forest fire. To represent 
national specific patterns of forest fire and contribute in establishing local scale objectives with precise projection, 
the development includes 1) optimization of probability algorithms in FLAM, including ignition probabilities 
conditional on population density, lightning frequency, and fuel taking into account distance to cropland, based 
on the national GIS data downscaled to 1km2, and 2) improvement of soil moisture computation by adjusting 
Fine Fuel Moisture Code (FFMC) used by FLAM to represent feedbacks with vegetation; this was done by fitting 
soil moisture to the daily remote sensing data, 3) deeper look at the fire frequency in addition to areas burned 
simulated by FLAM.  

Background 

With more than 60% of its land covered with forest, South Korea is suffering from forest fire with 562 forest 
fire events burning 1,863 ha annually for recent 5 years in average (Korea Forest Service, 2022). Located at 
the peninsular in the mid-latitude of Eastern Asia, South Korea is affected by a warm monsoon climate which 
leads to great seasonal climate variation; more than 60% among 1,200mm of annual precipitation concentrated 
in hot rainy summer season while dry from winter to spring, and both warm and dry weather makes spring 
extremely vulnerable to forest fire (Lim et. al., 2019). Therefore, most of the forest fire occurs in spring from 
Feb. to Apr. because of the combination of dry and warm weather through the season developing a large portion 
of mistake ignitions by human to forest fire, especially near the Seoul and south-eastern metropolitan areas 
(Fig. 1). In addition, the mountain chain developed from the north to the south at the east of Korean Peninsula 
affects to the humidity. Dry wind from the north east continent in spring becomes much drier passing over the 
mountain chain and cause large scale forest fires at the east coastal area (Lee & In, 2009). Based on the 
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correlation between historical meteorology and recorded forest fire, both frequency and scale of forest fire in 
South Korea are expected to be increased by the climate change (Sung et. al., 2010).  
 

 

Figure 1. Patterns of forest fire frequency and scale in South Korea (from Jan. 2016 to Mar. 2022) 

  
Materials  

Forest Fire Model Developed by IIASA 

The wildFire cLimate impacts and Adaptation Model (FLAM) is a process-based model developed by IIASA that 
contains parameterization algorithms for capturing impacts of climate, population, and fuel availability on forest 
fire frequency and burned area in global scale (Fig. 2). FLAM calculates ignition probability from both human 
and natural ignition sources by a gridded population density and monthly lightning frequency. The probability 
of fire is calculated by climate and fuel availability in each grid cell. The climate data is used for temperature, 
precipitation, wind speed, and relative humidity to compute fuel moisture content based on the Fine Fuel 
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Moisture Code (FFMC) of the Canadian Forest Fire Weather Index (FWI). Fuel available for burning is defined 
as a combination of litter and coarse woody debris (CWD) from above-ground biomass, excluding stem biomass. 
For the area with positive probability of fire, expected burned area is calculated by simulated fire spread based 
on wind speed, fuel moisture, and the fire suppression efficiency, which is implemented as the probability of 
extinguishing a fire on a given day in FLAM. 
 

 

Figure 2. Architecture of FLAM. 

One of the key features of FLAM is a procedure to calibrate spatial fire suppression efficiency for better capturing 
the dynamics of historical areas burned, and it can be interpreted by the effects of infrastructure and 
management over the processed biophysical impacts and probability of fire. Previously FLAM was more aimed 
to simulate burned area rather than forest fire frequency. FLAM demonstrated a good agreement of burned 
area in Europe and Indonesia, but these studies used global dataset lacking of forest fire frequency record 
(Krasovskii et. al., 2016; Krasovskii et. al., 2018). However, forest fire frequency is also an important feature to 
be related with regional environmental factors (Bergeron et. al., 2004), and the impact of infrastructure and 
management on burned area can be better understood with an accurate projection of forest fire frequency. 
Therefore, this study aimed to look deeper into forest fire frequency by exploiting domestic dataset of South 
Korea that records each forest fire event and validate the model’s applicability to the environment of Far East 
Asia. 

Dataset Used 

Forest fire dataset produced by Korea Forest Service includes burned area, start and end date of fire, ignition 
source, and address information for each forest fire event. In this study, the dataset was used from Jan. 2016 
to Mar. 2022 where 3,511 forest fire events were found and the event locations were geo-located. Gridded 
population density with 1km by 1km resolution was collected from National Geographic Information Institute of 
Korea and the other datasets were adjusted to fit this resolution. Daily meteorological data was downloaded 
through API service from three different government agencies: Korea Metrological Agency (KMA), Korea Forest 
Research Institute, and Rural Development Agency. The data was collected from 1,209 stations covering 
approximately 88 km2 of land by one station in average and interpolated for mean and max temperature, 
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precipitation, wind speed, and relative humidity. Lightening observation dataset produced by KMA was used to 
calculate lightening frequency and its processing will be explained at the following section in comparison 
between the preexisting and the proposed optimization method. Fuel calculation was simplified in the scale of 
1km2 in assumption of the biomass for each grid is fully occupied by one or two out of the six dominant tree 
species in South Korea. Fuel is multiplication of above ground biomass (AGB) and ratio of litter and deadwood, 
where AGB is multiplication of stock volume, basic woody density, and biomass expansion factor (Eq.1-2). 
 

Fuel = AGB ∗ (𝑅𝑅𝑡𝑡𝑙𝑙 + 𝑅𝑅𝑡𝑡𝑑𝑑)                                                                              (𝐸𝐸𝐸𝐸. 1) 
AGB =  𝑉𝑉 ∗ WD𝑡𝑡 ∗ BEFt                                                                                  (𝐸𝐸𝐸𝐸. 2) 

 
  AGB: Above ground biomass (t/ha)                                       𝑉𝑉: Stock volume (m3/ha)                 
      𝑅𝑅𝑙𝑙: Ratio of litter per AGB (Ct/ha)                                  WD: Basic woody density (t/m3)                               
     𝑅𝑅𝑑𝑑:𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 𝑅𝑅𝑜𝑜 𝑑𝑑𝑑𝑑𝑅𝑅𝑑𝑑𝑑𝑑𝑅𝑅𝑅𝑅𝑑𝑑 𝑝𝑝𝑑𝑑𝑝𝑝 𝐴𝐴𝐴𝐴𝐴𝐴 (Ct/ha)                   BEF: Biomass expansion factor (unitless) 
 
       𝑅𝑅: Pinus densiflora(Gangwon), Pinus densiflora(Midland), Pinus koraiensis, 
           Larix kaempferi, Quercus variabilis, Quercus mongolica, 
           Quercus variabilis and Pinus densiflora, Quercus mongolica and Pinus densiflora 

 
Parameter V  was derived from the result of Hong et. al. (2022), and WD, BEF, Rl, and Rd was referenced from 
the previous literatures including former IIASA report studied in South Korea (Lee et. al., 2018; Park, 2021). 
Spatial distribution of agricultural land was acquired from the Farm Map which is a digitized agricultural map in 
parcel level produced by Ministry of Agriculture, Food and Rural Affairs. In addition, remote sensing-based land 
observation data was collected for land surface temperature (LST) and vegetation index from NASA Moderate 
Resolution Imaging Spectroradiometer (MODIS) products by using Google Earth Engine. Daily LST was acquired 
from MOD11A1 and masked for not clouded area with the quality band. As vegetation index changes relatively 
slowly compared to temperature, normalized difference vegetation index (NDVI) was acquired from MOD13A2 
with 16-day composite image to minimize the noise in the time series dataset and reconstructed to daily data 
with the algorithm proposed by Chen et. al., (2004). Aaccessible links for the used dataset can be found in the 
Appendix. 

 
Methods 

Ignition Probability 

According to the forest fire dataset in study period, most of the forest fire had been started by human activities; 
61.98% of the forest fire had been caused intentionally or mistakenly by human and 6.75% was spread from 
building fire. The cause of the rest 37.67% are not recorded and only 0.06% of the forest fire had been ignited 
by lightning. Especially, forest fire frequency is exponentially increased at near the metropolitan cities with high 
population density in combination with humidity lowered by multiple reasons such as urbanization, seasonal 
variation, and climate change (S. J. Kim et. al., 2019; Sung et. al., 2010). Not only in South Korea but also in 
Europe, human activity is a major source of forest fire (Ganteaume et. al., 2013). However, unlike that European 
cities are highly concentrated only for small area, metropolitan cities in South Korea such as Seoul and Busan 
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have population densities of 15,699 and 4,320 people per km2 respectively for each city ranges 605.2 and 770 
km2 expanding the high risk of ignition. 
 
Therefore, we adjusted the ignition probability of FLAM to represent dominant ignition frequency at near highly 
populated cities. In FLAM, human impacts are modeled in combination of human ignition probability (Ph) and 
the suppression probability (Fsupp) 
 

𝑃𝑃ℎ = min �1, � 𝑝𝑝
𝑝𝑝𝑢𝑢𝑢𝑢

�
0.43

�                                                                               (𝐸𝐸𝐸𝐸. 3)                                                   

 

𝐹𝐹𝑠𝑠𝑠𝑠𝑝𝑝𝑝𝑝 = 1 − �(1 − 𝑆𝑆𝑆𝑆𝑝𝑝𝑝𝑝𝑚𝑚𝑚𝑚𝑚𝑚) + exp�−𝐶𝐶𝑠𝑠𝑠𝑠𝑝𝑝𝑝𝑝 ∗ 𝑝𝑝��                                                  (𝐸𝐸𝐸𝐸. 4)  
 
where pup, Suppmax, and Csupp respectively indicates upper threshold of population density, maximum probability 
of instant suppression, and coefficient of population density to reach Suppmax.  
 
In this study, Ph was optimized in the way of increasing pup from the current value of 300 because it was 
exceeded in most of the cities accounting 7.7% of the land recording the maximum population density of 45,739 
people per km2. Meanwhile, Suppmax and Csupp also have been increased from the current value of 0.9 and 0.025 
to represent fast response system in South Korea that follows higher standard compared to the other countries 
(J. H. Kim & Lee, 2020; Scandella, 2012). 
 
In addition to the human factor, the probability of ignition caused by lightning is currently calculated by 
normalizing lightning frequency in monthly time step and integrated with human factor to calculate total ignition 
probability as follows: 
 

𝐴𝐴𝐿𝐿 = max �0,𝑚𝑚𝑅𝑅𝑚𝑚 �
𝐿𝐿𝑓𝑓 − 𝐿𝐿𝑓𝑓,𝑙𝑙𝑙𝑙𝑙𝑙

𝐿𝐿𝑓𝑓,𝑠𝑠𝑝𝑝 − 𝐿𝐿𝑓𝑓,𝑙𝑙𝑙𝑙𝑙𝑙
�� ,                                                                  (𝐸𝐸𝐸𝐸. 5) 

 

𝑃𝑃𝑙𝑙 =  
𝐴𝐴𝐿𝐿

𝐴𝐴𝐿𝐿 + exp (1.5 − 6𝐴𝐴𝐿𝐿)
,                                                                       (𝐸𝐸𝐸𝐸. 6) 

 
𝑃𝑃𝑖𝑖 = (𝑃𝑃𝑙𝑙 + (1 − 𝑃𝑃𝑙𝑙)𝑃𝑃ℎ)�1 − 𝐹𝐹𝑠𝑠𝑠𝑠𝑝𝑝𝑝𝑝�,                                                                 (𝐸𝐸𝐸𝐸. 7) 

 
where Lf represents the number of flash per month in km2 and the current value of Lf,low and Lf,up are 0.02 and 
0.85 each. The ignition probability is then integrated with biophysical factors at the following steps to calculate 
probability of fire developed from the ignition. However, the current calculation process on lightening inevitably 
overestimates the number of forest fire caused by lightening because of the unmatched time step between 
lightning and the other biophysical factors in particular the fuel moisture content. As introduced above, more 
than 50% of the annual precipitation in South Korea is concentrated in summer. Monthly lightning frequency 
explodes in the rainy summer season, which rarely develops to the fire with precipitation, but when it is 
integrated with daily fuel moisture which is likely to include dry days in hot weather, the probability of fire will 
be unexpectedly increased.  
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Figure 3. Conceptual illustration on extreme probability of fire  
cause by the monthly calculation on lightning frequency 

Therefore, the precision of lightening frequency was changed from monthly to daily time step and Lf,low and Lf,up 
were optimized for the daily BL to have the same data distribution with monthly BL. In addition, the number of 
historical forest fires caused by lightning was referenced to optimize the normalization parameters. Even though 
only two forest fires were recorded to be started by lightning, the parameters were optimized to return little 
overestimation inferring that some forest fire with unknown reason could be caused by lightning. 
 
Warm and dry weather during spring season of South Korea results in a special pattern of forest fire that more 
than 60% are concentrated in a quarter of a year from Feb. to Apr. However, the skewed distribution is not 
only resulted from dry weather but also from the national specific custom of burning agricultural waste such as 
agricultural plastic waste and leftover plants after harvest. According to the dataset, 10.08% of the forest fire 
had been started by burning agricultural waste through the study period and the proportion increases to 22.42% 
when the ignition source recorded as ‘burning waste’ is included. Both ignition sources exponentially increase 
through the spring season when agricultural lands are cleaned up for the new planting, and the increasing 
proportion to the other ignition sources indicates that the increasing number is not solely attribute to the dry 
weather.  
 

 

Figure 4. The number and proportion of forest fire ignited from burning (agricultural) waste 
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Therefore, burning agricultural waste was introduced to FLAM as a new ignition source to project the specific 
pattern of forest fire in South Korea. The probability of ignition from agricultural waste burning was calculated 
by analyzing spatial distribution of agricultural fields and fuel and weighted by the distance between them. The 
ignition probability after introducing the agricultural waste burning is calculated as follows: 
 

𝑃𝑃𝑖𝑖 = (𝑃𝑃𝑙𝑙 + (1 − 𝑃𝑃𝑙𝑙)𝑃𝑃ℎ + (1 − 𝑃𝑃𝑙𝑙 − 𝑃𝑃ℎ)𝑃𝑃𝑚𝑚 + 𝑃𝑃𝑙𝑙𝑃𝑃ℎ𝑃𝑃𝑚𝑚)�1 − 𝐹𝐹𝑠𝑠𝑠𝑠𝑝𝑝𝑝𝑝�,                                   (𝐸𝐸𝐸𝐸. 8) 
 
where Pa is the ignition probability from agricultural waste burning. 

Fuel Moisture Content Calculation  

Fuel moisture content (m), calculated with daily FFMC value (VFFMC) in FLAM algorithm, is one of the key factors 
to project both forest fire frequency and burned area (Eq.9). As a component of Canadian fire weather index 
(FWI), FFMC represents litter and cured fine fuel layer in top 1.2cm as an indicator of the relative ease of 
ignition and flammability of fine fuels (Lawson & Armitage, 2008). FFMC is calculated with daily temperature, 
precipitation, wind speed, relative humidity, and the m of previous day. FFMC ranges from 0 to 100 with higher 
value represent more flammability, and m ranges from 0 to 250% inversely proportional to FFMC (detailed 
formulation for FFMC be found in the appendix). 
 

𝑚𝑚 = 𝑜𝑜𝑚𝑚(𝑉𝑉𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹) =  
0.01(59.5 ∗ 250 − 147.2 ∗ 𝑉𝑉𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹)

𝑉𝑉𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 + 59.5
                                      (𝐸𝐸𝐸𝐸. 9) 

 
In this study, daily FFMC was calculated with domestic meteorological dataset with 1km resolution enabling 
more precise representation on regional variations of parameter m. However, the current FFMC algorithm have 
limitations on acquiring additional precision and accuracy as it only exploits meteorological information without 
knowing the interacting land surface environment.  
 
To overcome the limitation of meteorological modelling, Park et. al. (2021) proposed a framework of comparing 
the results of meteorological modelling and land surface observation to project future with the forecasted 
meteorology with calibration of empirical difference at local environment. Therefore, we also aimed to improve 
the calculation process of FFMC by fitting the daily parameter values m with remotely sensed soil moisture and 
by deriving an empirical equation of the difference that could be explained by land surface characteristics. 
 
In this study, we compared moisture content m with Vegetation Temperature Condition Index (VTCI) which is a 
satellite base index effective for representing top soil moisture by interpreting LST-NDVI feature space (Wang 
et. al., 2001). VTCI is calculated based on the ratio of LST normalized by NDVI in between upper (dry edge) 
and lower (wet edge) limit of the data boundary (Fig. 5). VTCI ranges from 0 to 1 for the dry and wet edge 
respectively corresponding to minimum and maximum evapotranspiration. Similar to FFMC representing fuel 
moisture content at the surface layer in top 1.2cm, VTCI is also known for reliable correlation especially with the 
soil moisture content in the surface level (Patel et. al., 2019).  

https://cfs.nrcan.gc.ca/authors/read/14166
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Figure 5. Concept of Vegetation Temperature Condition Index (VTCI) in LST-NDVI feature space 

 
Considering that FFMC is calculated by integrating the meteorological condition of the day (Mt) and the previous 
m value (mt-1), m and VTCI were compared by replacing the previous m to the previous VTCI (Eq. 10). As m 
and VTCI cannot be interpreted in the same scale, the iso-value lines of VTCI were optimized between the two 
edges. The iso-value line can both adjust the scale of VTCI and determine the way of interpreting LST-NDVI 
feature space so the VTCI value can better represent the moisture in specific layer (Sun, 2015), such as fuel in 
the surface layer. 
 

𝑚𝑚 = 𝑜𝑜𝑚𝑚(𝑉𝑉𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 ,𝑡𝑡) = 𝑜𝑜𝑚𝑚�𝑜𝑜𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹(𝑚𝑚𝑡𝑡−1,𝑀𝑀𝑡𝑡)� ≒ 𝑜𝑜𝑚𝑚 �𝑜𝑜𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹�𝑜𝑜𝑖𝑖𝑠𝑠𝑙𝑙(𝑉𝑉𝑉𝑉𝑉𝑉𝐹𝐹𝑉𝑉,𝑡𝑡−1),𝑀𝑀𝑡𝑡��                     (𝐸𝐸𝐸𝐸. 10) 

 
In addition, both daily average temperature and daily maximum temperature were tested for the FFMC 
calculation to find which method better represents daily forest fire pattern while the original algorithm for FFMC 
calculation uses meteorology at noon. 

Probability of Fire 

Based on the ignition probability calculated from human and natural ignition sources, FLAM calculates the 
probability of fire – the probability of ignition develops to fire spread without instant suppression – in 
consideration of local biophysical factors: fuel availability and fuel moisture. However, the probability equations 
for integrating biophysical factors are originally designed in 1,000km2 scale; therefore, they need to be 
optimized in terms of data distribution and scale when applied to 1km2. 
 
In the current process of FLAM, the ignition probability conditional on fuel availability (Pb) is calculated by 
normalizing the amount of fuel (B) as follows: 
 

𝑃𝑃𝑏𝑏 = max �0,𝑚𝑚𝑅𝑅𝑚𝑚 �1,
𝐴𝐴 − 𝐴𝐴𝑙𝑙
𝐴𝐴𝑠𝑠 − 𝐴𝐴𝑙𝑙

�� ,                                                                   (𝐸𝐸𝐸𝐸. 11) 

 
where Bu and Bl are maximum and minimum boundary of the probability set to 200 gC/m2 and 1000 gC/m2 as 
a baseline, respectively. In this study, Bu and Bl were optimized to broaden the normalization boundary as the 
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distribution of B will be expanded in the data with higher spatial resolution with more precise representation on 
environmental heterogeneity in local scale.  
 
The daily probability of ignition by fuel moisture (Pm) is calculated by the following equation: 
 

𝑃𝑃𝑚𝑚 = 1 − 𝑅𝑅𝑅𝑅𝑚𝑚ℎ �1.75 ∗
𝑚𝑚
𝑚𝑚𝑒𝑒

�
2

,                                                              (𝐸𝐸𝐸𝐸. 12) 

 
where me is the moisture of extinction set to 0.35 as a baseline. In case of the me, it was adjusted to 
reproduce the seasonal pattern of forest fire frequency in South Korea. 
 
Then, the probability of fire (P) is calculated by the multiplication of the entire probabilities of ignition: 
 

𝑃𝑃 = 𝑃𝑃𝑖𝑖 ∗ 𝑃𝑃𝑏𝑏 ∗ 𝑃𝑃𝑚𝑚 .                                                                               (𝐸𝐸𝐸𝐸. 13) 
 
The optimization on P was performed in consideration of downscaling the data to 1km2. As the original 
probability of fire (PL) indicates probability of more than one fire in 1,000km2, it can be expressed by the 
complementary event of every thousand areas consisting of the 1,000km2 have not experienced any forest fire. 
Therefore, the probability of fire in 1km2 (PS) can be statistically derived supposing that all subordinating areas 
share the averaged environmental factors of the 1,000km2. However, in practical application, PS varies for each 
location because the downscaled dataset can represent heterogeneous environments, and it results in greater 
probability of fire as P exponentially increases at extreme environment, especially by Pm, as expressed in the 
following equation: 
 

𝑃𝑃𝑆𝑆 = 1 − �1 − (𝑃𝑃𝑖𝑖 ∗ 𝑃𝑃𝑏𝑏 ∗ 𝑃𝑃𝑚𝑚)1000 ,                                                                 (𝐸𝐸𝐸𝐸. 14) 
 

𝑃𝑃𝐿𝐿 = 1 − (1 − 𝑃𝑃𝑆𝑆,𝐴𝐴𝐴𝐴𝐴𝐴)1000 ≤ 1 −� (1 − 𝑃𝑃𝑆𝑆,𝑗𝑗),
1000

𝑗𝑗=1
                                          (𝐸𝐸𝐸𝐸. 15) 

 
where PS,Avg is statically downscaled P supposing that all subordinating areas share the averaged environmental 
factors of the 1,000km2 and PS,i is statically downscaled P at the environment of location j. Therefore, to match 
the PL with the integrated probability of PS, the calculation process of PS should be optimized by the two 
approaches: 1) decreasing the overall probability value or 2) producing more homogenous probability in the 
subordinating areas compared to the original equation. In this study, PS was optimized by weighting the PS of 
adjacent areas as a simplified method of the later approach, leaving the stepwise calibration on each probability 
equation as a future work. In addition, interdependency with the previous time step was introduced on PS for 
modelling the recurred ignition by smouldering fire. Also, the calibration coefficient (Ccalib) was multiplied to P 
for complementing the discordance between the substantial number of optimizations, such as imbalanced 
optimization between probability of ignition and suppression. Therefore, the optimization on PS was performed 
by the following steps: 
 

𝑆𝑆𝑅𝑅𝑑𝑑𝑝𝑝1: 𝑃𝑃𝑆𝑆 = 1 − �1 − (𝐶𝐶𝑐𝑐𝑚𝑚𝑙𝑙𝑖𝑖𝑏𝑏 ∗ 𝑃𝑃𝑖𝑖 ∗ 𝑃𝑃𝑏𝑏 ∗ 𝑃𝑃𝑚𝑚),1000                                          (𝐸𝐸𝐸𝐸. 16) 
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𝑆𝑆𝑅𝑅𝑑𝑑𝑝𝑝 2: 𝑃𝑃𝑆𝑆 =
∑ �𝑑𝑑𝑗𝑗 ∗ 𝑃𝑃𝑆𝑆,𝑗𝑗�𝑗𝑗

∑ 𝑑𝑑𝑗𝑗𝑗𝑗
,                                                                  (𝐸𝐸𝐸𝐸. 17) 

 
𝑆𝑆𝑅𝑅𝑑𝑑𝑝𝑝3: 𝑃𝑃𝑆𝑆,𝑡𝑡 = 1 − (1 − 𝑃𝑃𝑆𝑆,𝑡𝑡) ∗ (1 − 𝐶𝐶𝑟𝑟𝑒𝑒𝑐𝑐𝑠𝑠𝑟𝑟 ∗ 𝑃𝑃𝑆𝑆,𝑡𝑡−1),                                           (𝐸𝐸𝐸𝐸. 18) 

 
where j and t indicate the adjacent nine pixels in 1km2 resolution and projected time in daily time step, 
respectively, and Crecur represents to percentage of forest fire recurrence within one day. 

 
Results & Discussion 

Optimized Probability Equations 

Table 1 shows the parameters of FLAM optimized in South Korea. According to the optimization, the probability 
equation at each processing step has been improved to reproduce the forest fire patterns in South Korea 
resulting in the changed value range. As the Ccalib was used in this study for compensating the scale difference 
which is a cumulative result of probabilities caused by the original equations designed for global scale and 
optimization imbalances by the multicausality, probabilities are more meaningful with the interpretation of the 
patterns rather than the size of the values. 

Table 1. FLAM Parameters Optimized in South Korea 

 Human Lightning Fuel Fire 
 Pup Suppmax Csupp Lf,low   Lf,up B l Bu Pm Ccalib Crecur 

Global Scale 300 90 0.025 0.02 0.85 200 1,000 0.35 - - 
Optimized 2,000 94 0.100 0.02 0.55 0 2,000 0.32 30 0.0067 

 
The human impact on forest fire ignition has been relatively increased in densely populated area by increasing 
the upper threshold of population density, while the probability of unsuppressed ignition in sparsely populated 
area has been decreased by the increased probability of instant suppression (Fig. 6).  
 

  
(a) (b) 

 

Figure 6. Optimization on ignition probability by human impact; 
(a) Original probabilities in global scale, (b) Optimized probabilities in South Korea 
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Probability of ignition Pl was optimized in both data generation process and the equation parameters in such a 
way that the monthly probability has the same data distribution as the optimized daily probability (Fig. 7). As 
the lightening dataset is acquired for each lightning event at the exact location, lightning density was calculated 
with the focal statistics tool in ArcGIS software with focal radius of 17841.24m which is equivalent to 1,000km2, 
as same as the designed scale of the FLAM algorithm. As a result of the optimization, the forest fire frequency 
ignited by lightening has been changed from 1,874.61 to 6.53 times within the study period, which corresponds 
to the number of observed forest fire caused by lightning. 
 

.   
(a) (b) 

  
(c) (d) 

 

Figure 7. Optimization on ignition probability by lightning; 
(a) Original probabilities in global scale, (b) Optimized probabilities in South Korea, 

(c) Probability distribution calculated with monthly dataset and the original parameters, 
(d) Probability distribution calculated with daily dataset and the optimized parameters 

 
The newly introduced Pa was calculated by a function of forest boundary neighboring the agricultural field. As 
the calculation is processed in grid format, the number of grids with 10m resolution located at the forest 
boundary and neighboring agricultural field within 200m for 50m interval was acquired for each 1km2 area (Fig. 
8). Then, Pa for each 1km2 was calculated by the following equation: 
 

𝑃𝑃𝑚𝑚 = 1 − (1 −𝑑𝑑𝑚𝑚 ∗ 𝑝𝑝≤50)𝑁𝑁≤50 ∗ (1 − 𝑑𝑑𝑚𝑚 ∗ 𝑝𝑝≤100)𝑁𝑁≤100  
∗ (1 − 𝑑𝑑𝑚𝑚 ∗ 𝑝𝑝≤150)𝑁𝑁≤150 ∗ (1 − 𝑑𝑑𝑚𝑚 ∗ 𝑝𝑝≤200)𝑁𝑁≤200 ,                                            (Eq. 19) 

 
where N≤ 50, N≤ 100, N≤ 150, and N≤ 200 represent the number of 10m grids within 200m for 50m interval, and r≤ 50, 
r≤ 100, r≤ 150, and r≤ 200 are the weights for each distance set to 0.46845, 0.42829, 0.18948, and 0.13902, 
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respectively, referring to the forest fire ratio at each zone (Lee 
et. al., 2004), and wm is weight for each month set to 3.5e-4 for 
Jan. and 1.2e-3 for both Feb. and Mar. based on the historical 
pattern of forest fire frequency. 
 
By fitting the iso-value lines of VTCI with the Equation (10), the 
scale of m and VTCI have been matched in such a way that the 
daily fuel moisture change in both indicators roughly 
corresponds to each other (Fig. 9). As the two different 
indicators exploits different types of dataset, mismatch in local 
level modelling is inevitable. However, when the difference 
between m and VTCI is projected in the ∆m - fractional 
vegetation cover (Fr) data space, where Fr is calculated by 
squared normalized NDVI (Gillies et. al., 1997), the rate of fuel 
moisture change was faster in the FFMC algorithm as compared 
to the VTCI, especially when Fr is lower and the changing 
amount is greater (Fig. 10); therefore, the rate of fuel moisture 
change in FFMC is needed to be slowed to be compatible with 
the remotely sensed moisture content.  

 
Figure 9. Comparison of daily fuel moisture 

change calculated by FFMC and VTCI 

 
Figure 10. Fuel moisture difference between FFMC and 

VTCI in ∆m - fractional vegetation cover data space 

 
Thus, the optimization on FFMC algorithm has been conducted by reflecting the effect of Fr and adjusting overall 
fuel moisture change rate. To reflect the effect of Fr on fuel moisture change rate, fine fuel equilibrium moisture 
content (EMC) was calibrated with the first order equation of Fr (detailed equation can be found in the appendix). 
As a result of optimization, higher Fr decreased EMC for drying and increased EMC for wetting, which resulted 
in increased change rate at higher Fr. In this stage, fuel moisture of FFMC changes faster than VTCI in both 
low and high Fr condition. Then, the overall fuel moisture change rate of FFMC was adjusted to 43% of the 
original algorithm to fit the rate with VTCI. By optimizing the algorithm with Fr, which is a representative land 
surface environment with simple calculation, the optimized FFMC is projectable to future with simulated Fr. 
 
In addition, using maximum temperature for calculating m was found to be a better option for representing 
historical forest fire frequency pattern compared to using average temperature; it corresponds to the FFMC 

Figure 8. Counting the number of forest 
boundary grids neighboring agricultural field 
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calculation manual that encourages to use meteorological data at noon which is likely to be similar to the 
maximum temperature rather than average temperature. In the similar context, the decrement on me can be 
explained by the overestimation of m because of using daily average relative humidity. 
 
The spatial weights at the downscaled probability of fire for increasing regional homogeneity is derived by the 
distance-weighted mean algorithm: 
 

𝑑𝑑𝑗𝑗 =
1

∑ |𝑑𝑑𝑗𝑗,𝑘𝑘|𝑘𝑘
,                                                                                 (𝐸𝐸𝐸𝐸.  20) 

 
where k is a location of the adjacent nine pixels other than j and dj,k is the distance between j and k. The Crecur 
was set to 0.0067 by the percentage of historical forest fire recurrence in a day within the adjacent pixels.  

Simulation on Historical Forest Fire Events 

To validate the optimization performance, historical forest fire frequency and burned area were simulated by 
using the dataset from Jan. 2016 to Mar. 2022; the equations for burned area were not optimized in the original 
algorithm (Krasovskii et. al., 2018). The performance was evaluated with Pearson’s correlation coefficient (r) 
between the FLAM modelling and observed dataset, and the dataset was separated into two periods – period A 
and B respectively indicating before and after 2020 – to check if the model is generalized through the time.  

 
Figure 11. Temporal evaluation on forest fire frequency simulated by the optimized FLAM  

 

Figure 12. Temporal evaluation on burned area simulated by the optimized FLAM 

According to the simulation results, temporal evaluation on forest fire frequency in period A and B has been 
improved from the r of 0.050 and 0.447 to 0.919 and 0.896, respectively, when the optimization condition is 
changed from the only application of the Equation (14) for downscaling to the full optimization (Fig. 11). 
Temporal evaluation on burned area was performed only for the months burned less than 1,000 ha as this 
study focused on frequency optimization and applied global scale optimization on burnt area. The simulation on 
burned area at the period A and B recorded the r of 0.657 and 0.315, respectively (Fig. 12).  
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The simulation on forest fire frequency was also evaluated in spatial extent by aggregating the frequency value 
at 25km by 25km grids. Figure. 13 shows the spatial evaluation in period A and B with the grids within 95% of 
confidence level recording the r of 0.8066 and 0.7052, respectively. The evaluation results show that the 
optimized FLAM is able to reproduce the forest fire patterns in South Korea showing good correlation with the 
historical records, particularly for the forest fire frequency. Also, the evaluation results did not show substantial 
difference between the period A and B; therefore, the model is expected to be robust for with respect to time 
periods, including possible projections of future fires. However, several outlier grids have been found in the 
spatial evaluation and all of the outliers were commonly underestimations in the region where high forest fire 
frequency was observed.  
 

  
(a) (b) 

Figure 13. Spatial evaluation on forest fire frequency simulated by the optimized FLAM;  
(a) Period A from Jan. 2016 to Dec. 2019, (b) Period B from Jan. 2020 to Mar. 2022 

 

  
(a) (b) 

Figure 14. Expected number of forest fire through the studied period;  
(a) Simulation of the optimized FLAM, (b) Observation 
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The underestimated forest fire frequency can be detected by comparing the maps of expected number of forest 
fire where the result of the optimized FLAM presents smaller scale of undispersed hotspot near the cities 
compared to the observation (Fig. 14). The expected number of forest fire is a cumulated sum of P which 
records relatively higher value through the linear feature of major mountain chains and near the cities 
generating varied scale of hotspot. 

Discussion 

In this study, probability algorithms in FLAM that works at a global scale were optimized and downscaled to the 
environment of South Korea to project forest fires at a local scale. The optimization was performed by using 
the dataset from Jan. 2016 to Mar. 2022. most of which were collected from the domestic sources and aimed 
at adjusting the key parameters for interpreting human and biophysical impacts on forest fires, such as 
population density, lightning frequency, fuel moisture, and the amount of fuel. As the previous studies on FLAM 
had no other choice but to focus on modelling burned area because of the limitation of using global dataset 
without frequency information, this study had a deeper look at the forest fire frequency which is important for 
interpreting forest fire ignition patterns and as an intermediate process for further improvement on burned area 
projection. The simulation results showed that modeling of forest fire frequency was considerably improved by 
the optimization from the sub-optimal evaluation score with correlation coefficient r of 0.050 and 0.447 to 
correlation coefficient r over 0.89, when tested for two different time periods. The simulation on burned area 
which has been performed without optimization of the fire spread algorithm showed a reliable correlation only 
for the small scale fire which is proportional to the forest fire frequency. 
 
As the optimization process includes adjusting substantial amount of parameters for interpreting various factors, 
downscaling, and introducing new equations, the best optimization options were selected step by step with trial 
and error method aiming to reproduce historical forest fire patterns. Even though the process could handle the 
multiple optimization tasks efficiently and suggested overall optimization frameworks supported by background 
studies, further improvement on each equation is recommended to develop more effective equation forms 
based on the statistical analysis of forest fire patterns. For example, ignition probability by human sources needs 
to be improved to interpret the dispersion of human activity so the downscaled application of FLAM can 
reproduce large scale hotspots near the cities. In this context, Ccalib is one of the most important factor in the 
current optimization process to offset the impact of accumulate error at each optimization step and represents 
the limitation of the current optimization process at the same time.  
 
Although the optimization process can be further improved, the results of the optimized FLAM were promising 
and especially interesting, because they demonstrated the agreement between probability Pm conditional on 
moisture content and time-series pattern of forest fire frequency in South Korea (Fig. 11). These results show 
the importance of Pm on projecting forest fire frequency and also can be interpreted as an evidence of successful 
optimization of the FFMC algorithm. In addition, the underline hypothesis of the FFMC optimization was that 
the rate of soil moisture change becomes higher proportional to Fr; the hypothesis is in line with the literature 
that both soil moisture changes and evapotranspiration from soil were faster in forest compared to grassland 
(Pérez-Corona et. al., 2021; Rahgozar et. al., 2012) and that the top soil moisture content was more varied 
through the time when the grass coverage was higher (Yang et. al., 2019).  
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To further investigate the impacts of Pm in the future, the trend of the optimized Pm in spring season (Jan. and 
Feb.) was examined for the observed 7 years (Fig. 15). According to the result, the average Pm of the 7 years 
was relatively high near the Seoul metropolitan area and the east costal area, where frequent and severe forest 
fire currently occurs. Moreover, Pm at the east coastal area is being increased with significant level which implies 
that the risk of forest fire will be even more increased in the future at the areas, which have already suffered 
from the large-scale forest fires. Even though we may need a longer observation period to confirm this results, 
we are confident the risk of forest fires is being increased by the climate change with drier fuel in certain regions 
of South Korea. 
 

   
(a) (b) (c) 

Figure 15. Trends of the ignition probability by fuel moisture (Pm) in spring season; 
(a) Average Pm, (b) Slope of the time-series Pm, (c) Pearson’s correlation coefficient of the time- series Pm 

 

As a result of the optimization, FLAM can be used to project the patterns of forest fires in the future by exploiting 
diverse scenario dataset, which can provide useful insights for developing adaptation strategies for reducing 
the risk of forest fire. Therefore, we further examined its applicability on future projection by using the forest 
management scenario produced by Hong et. al. (2022). According to the projection, both forest fire frequency 
and burned area are expected to be increased by the increasing amount of fuel in all three future scenarios: 
maintaining the current management, over protection, and applying the ideal management plan based on the 
6th basic forest plan of South Korea (Korea Forest Service, 2018). Nevertheless, applying the ideal forest 
management plan, which actively harvests wood products from over-matured forests, can decrease forest fire 
frequency to 63% ~ 81% of the over protection scenario and to 77% ~ 92% of remaining current management. 
Also, burned area can be decreased to 61% ~ 72% of the over protection scenario and to 85% ~ 96% of 
remaining current management. 
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(a) (b) 

Figure 16. Future projection of forest fire by the optimized FLAM based on the forest management scenario 
(Hong et. al., 2022); 

(a) Forest fire frequency per year, (b) Burned area per year 

 

Conclusion and Future Work 

Conclusion 

In this study, we optimized FLAM to the environment of South Korea based on the national GIS data downscaled 
to 1km2 resolution with additional algorithms introduced for reproducing national specific patterns of forest fire 
frequency, such as ignition from agricultural waste burning. For the forest fire frequency aggregated over South 
Korea, we obtained Pearson’s correlation coefficient r of 0.893 for temporal evaluation and 0.802 for spatial 
evaluation which showed that the optimized FLAM is capable of capturing both spatial and temporal pattern of 
forest fire frequency with a reliable reproduction of the historical forest fire patterns. Considering that the pre-
optimization algorithms produced sub-optimal results with r of 0.171, FLAM is applicable to South Korea only 
after optimization of all its modules even though it already contained main algorithms for interpreting biophysical 
and human impacts on forest fires at a global scale. Moreover, the limitation of the previous studies on FLAM 
incapable of looking deeper into the forest fire frequency, because of using global dataset, makes the 
optimization performed in this study valuable for the model development. 
 
Especially, the algorithm of FFMC was improved by fitting the moisture content m to the remotely-sensed soil 
moisture to incorporate land surface environment in FLAM for better representation of local fuel moisture 
variations linked to vegetation. With the improved algorithms, time-series pattern of probability Pm conditional 
on moisture content showed good agreement with the seasonal patterns of the forest fire frequency. Meanwhile, 
based on the simulated forest fire frequency, dense population in urbanized area in combination with other 
factors lead to exponentially increasing probability of fire. In this context, Pm seems to be the most plausible 
factor for exploding forest fire in the future as the increasing trend of Pm put additional threats to the already 
affected areas, which can be interpreted as a result of a changing climate. 
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Future Work 

As the optimization succeeded to reproduce the national specific pattern of forest fire in South Korea, it should 
be followed by the research on developing adaptation strategies for reducing forest fire risks with diverse 
application of the future scenarios’ dataset. This study has already presented a future projection by using forest 
management scenario which showed the effect of ideal forest management reducing approximately a quarter 
of forest fire frequency. Therefore, the following task will aim at finding the best adaptation scenario by 
integrating climate change scenarios dataset with multiple adaptation options in consideration of feasibility, cost 
effectiveness, regional priority, etc.   
 
In this context, FLAM that currently works with probabilities can be modified to the agent-based-model (ABM) 
to better identify the tipping point or threshold that provokes extreme forest fire events. For example, if the fire 
spread algorithm of FLAM are converted to the ABM and reflects the limited suppression capability in the 
algorithms, the burned areas caused by the large scale forest fires can be estimated better as unsuppressed 
fire spreading between the adjacent pixels and modelled by as the interactions between agents. Inversely, the 
demanded suppression capability can be forced to minimize forest fire damage in various climate change 
scenarios. 
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Appendix 

Dataset Used 

Table 2. Source of the dataset used 

Dataset Source 

Forest Fire Dataset https://www.data.go.kr/data/3062614/openapi.do 

Gridded Population Density http://map.ngii.go.kr/ms/map/NlipMap.do?tabGb=total 

Meteorological Dataset https://data.kma.go.kr/data/grnd/selectAsosRltmList.do?pgmNo=36 

Farm Map http://data.nsdi.go.kr/dataset/20210707ds00001 

MOD11A1 https://developers.google.com/earth-
engine/datasets/catalog/MODIS_061_MOD11A1 

MOD13A2 https://developers.google.com/earth-
engine/datasets/catalog/MODIS_061_MOD13A2 

 

FFMC Algorithms 

ro, T, H, W respectively indicate precipitation, temperature, relative humidity, and wind speed. Fo is FFMC value 
at the previous day and Ed and Ew respectively indicates EMC for drying and EMC for wetting. Equations starting 
with ▷ symbol only work for the optimization while equations starting with ▶ symbol do not applied to the 
optimization. Optimization parameters w1, w2, w3, and w4 were respectively set to 0.621, 0.338, 0.994, and 
0.43 by the minimizing the fitting error, and they may not follow natural phenomenon; therefore, they should 
be carefully applied to the other dataset. 
 
𝑚𝑚𝑙𝑙 = 47.2(101 − 𝐹𝐹𝑙𝑙)/(59.5 + 𝐹𝐹𝑙𝑙) 

𝑝𝑝𝑓𝑓 = 𝑝𝑝𝑙𝑙 − 0.5    𝑅𝑅𝑜𝑜 𝑝𝑝𝑙𝑙 > 0.5 

𝑚𝑚𝑟𝑟 = 𝑚𝑚𝑙𝑙 + 42.5𝑝𝑝𝑓𝑓(𝑑𝑑−100/(251−𝑚𝑚𝑜𝑜 ))(1 − 𝑑𝑑−6.93/𝑟𝑟𝑓𝑓)     𝑅𝑅𝑜𝑜 𝑚𝑚𝑙𝑙 ≤ 150 

𝑚𝑚𝑟𝑟 = 𝑚𝑚𝑙𝑙 + 42.5𝑝𝑝𝑓𝑓(𝑑𝑑−100/(251−𝑚𝑚𝑜𝑜 ))(1 − 𝑑𝑑−6.93/𝑟𝑟𝑓𝑓) + 0.0015(𝑚𝑚𝑙𝑙 − 150)2𝑝𝑝𝑓𝑓0.5     𝑅𝑅𝑜𝑜 𝑚𝑚𝑙𝑙 > 150 

𝑚𝑚𝑙𝑙 = 𝑚𝑚𝑟𝑟 

𝐸𝐸𝑑𝑑 = 0.942𝐻𝐻0.679 + 11𝑑𝑑(𝐻𝐻−100)/10 + 0.18(21.1 − 𝑇𝑇)(1 − 𝑑𝑑−0.115𝐻𝐻) 

𝐸𝐸𝑙𝑙 = 0.618𝐻𝐻0.753 + 10𝑑𝑑(𝐻𝐻−100)/10 + 0.18(21.1 − 𝑇𝑇)(1 − 𝑑𝑑−0.115𝐻𝐻) 

▷ 𝐸𝐸𝑑𝑑 = 𝐸𝐸𝑑𝑑 − (𝑑𝑑1𝐹𝐹𝑝𝑝𝑙𝑙2 + 𝑑𝑑3) 

▷ 𝐸𝐸𝑙𝑙 = 𝐸𝐸𝑙𝑙 + (𝑑𝑑1𝐹𝐹𝑝𝑝𝑙𝑙2 + 𝑑𝑑3) 
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𝑘𝑘𝑙𝑙 = 0.424[1 − (𝐻𝐻/100)1.7] + 0.0694𝑊𝑊0.5[1 − (𝐻𝐻/100)8] 

𝑘𝑘𝑑𝑑 = 𝑘𝑘𝑙𝑙 ∗ 0.581𝑑𝑑0.0365𝑉𝑉 

𝑘𝑘𝑙𝑙 = 0.424[1 − ((100 − 𝐻𝐻)/100)1.7] + 0.0694𝑊𝑊0.5[1 − ((100 − 𝐻𝐻)/100)8] 

𝑘𝑘𝑙𝑙 = 𝑘𝑘𝑙𝑙 ∗ 0.581𝑑𝑑0.0365𝑉𝑉 

▶𝑚𝑚 = 𝐸𝐸𝑑𝑑 + (𝑚𝑚𝑙𝑙 − 𝐸𝐸𝑑𝑑) ∗ 10−𝑘𝑘𝑑𝑑     𝑅𝑅𝑜𝑜 𝑚𝑚𝑙𝑙 > 𝐸𝐸𝑑𝑑  𝑑𝑑𝑒𝑒𝑒𝑒𝑑𝑑, 

▶𝑚𝑚 = 𝐸𝐸𝑙𝑙 + (𝐸𝐸𝑙𝑙 − 𝑚𝑚𝑙𝑙) ∗ 10−𝑘𝑘𝑤𝑤     𝑅𝑅𝑜𝑜 𝑚𝑚𝑙𝑙 < 𝐸𝐸𝑙𝑙  𝑑𝑑𝑒𝑒𝑒𝑒𝑑𝑑, 

▷𝑚𝑚 = (1 − 𝑑𝑑4)𝑚𝑚𝑙𝑙 + 𝑑𝑑4[𝐸𝐸𝑑𝑑 + (𝑚𝑚𝑙𝑙 − 𝐸𝐸𝑑𝑑) ∗ 10−𝑘𝑘𝑑𝑑]    𝑅𝑅𝑜𝑜 𝑚𝑚𝑙𝑙 > 𝐸𝐸𝑑𝑑  𝑑𝑑𝑒𝑒𝑒𝑒𝑑𝑑, 

▷𝑚𝑚 = (1 − 𝑑𝑑4)𝑚𝑚𝑙𝑙 + 𝑑𝑑4[𝐸𝐸𝑙𝑙 + (𝐸𝐸𝑙𝑙 − 𝑚𝑚𝑙𝑙) ∗ 10−𝑘𝑘𝑤𝑤]    𝑅𝑅𝑜𝑜 𝑚𝑚𝑙𝑙 < 𝐸𝐸𝑙𝑙  𝑑𝑑𝑒𝑒𝑒𝑒𝑑𝑑, 

𝑚𝑚 = 𝑚𝑚𝑙𝑙 
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