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A B S T R A C T   

Sustainable aviation fuel (SAF) is one of the most promising short-to medium-term term options to mitigate 
greenhouse gas (GHG) emissions from aviation. Life cycle assessment (LCA) is commonly used to estimate GHG 
emissions from SAF in comparison to fossil kerosene. While there are several studies reporting the GHG emissions 
from SAF, uncertainty in the results is not always addressed in a comprehensive way. 

In this work, GHG emissions of hydroprocessed esters and fatty acids (HEFA) fuels derived from jatropha 
(Jatropha curcas), pennycress (Thlaspi arvense), castor (Ricinus communis), energy tobacco (Nicotiana tabacum, 
Solaris) and Salicornia (Salicornia bigelovii) oils were estimated. A stochastic methodology was employed where 
parametric uncertainty was propagated using Monte Carlo simulations. Uncertainty due to methodological 
choices was incorporated through scenario analyses. Emissions from direct land use change (DLUC) and the 
associated uncertainty were assessed under the IPCC Tier 1 approach by considering alternative land use tran
sitions per feedstock. 

Analyzed HEFA pathways provide GHG emissions benefits (34–65%) in comparison to fossil kerosene when 
DLUC emissions are not considered. Parametric uncertainty yields up to 26% deviation from the median well-to- 
wake GHG emissions. Changing the allocation choice for the oil extraction step, from the base assumption of 
energy-based allocation to mass- or market-based, can impact the results by up to 46%. DLUC is a more sig
nificant source of uncertainty than both parametric uncertainty and allocation assumptions in the analysis. DLUC 
emissions negate any GHG savings from HEFA fuels if forests or natural shrublands are lost.   

1. Introduction 

The aviation industry is a major contributor to the global economy 
with an economic impact of €3.5 trillion per year (pre-COVID-19) [1]. 
While the COVID-19 pandemic has led to a significant decrease in 
aviation activity [2], it is generally expected that the sector will not only 
rebound, but that traffic will increase beyond pre-COVID-19 levels in the 
medium-term. With regard to long-term traffic development, 
COVID-19-adjusted forecasts now predict that aviation traffic will grow 
between 2.3 and 3.3% per annum between 2019 and 2050 [3]. 

In 2019 the aviation sector accounted for approximately 2.4% of 
total anthropogenic CO2 emissions [4]. When other emissions species, 
such as different nitrogen oxides (NOx), particles and water vapor, were 
included, the total climate impact reached approximately 3.5% of total 

anthropogenic radiative forcing (RF) [4]. In the absence of any 
commercially available alternatives to current-technology aircraft, such 
as solar or electric aircrafts, international aviation is bound to be mostly 
dependent on liquid hydrocarbons by 2050. 

In 2013, International Civil Aviation Organization (ICAO) declared 
its decarbonization goal, which requires the aviation sector to offset 
carbon dioxide emissions in excess of the 2020 levels [5]. To achieve this 
decarbonization goal, ICAO Member States have agreed to develop the 
Carbon Offsetting and Reduction Scheme for International Aviation 
(CORSIA), and the Committee on Aviation Environmental Protection 
(CAEP) within ICAO has developed specific measures [6]. In October 
2021, the International Air Transport Association (IATA) member air
lines pledged to achieve net-zero carbon emissions from their operations 
by 2050 [7]. To achieve this ambitious goal, a combination of measures 
is necessary. The use of sustainable aviation fuels (SAF) as “drop-in 
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fuels” is considered the most promising option to reduce greenhouse gas 
(GHG) emissions and mitigate climate change. The potential of SAF to 
provide significant GHG emission reductions has been widely reported 
in the literature [8,9], and it is the only measure that may deliver 
large-scale emissions reduction in the medium-term. Research is un
derway to find more efficient and cost-effective technologies to produce 
SAF, since there is a large price gap between petroleum-based jet fuel 
and SAF. Given that fuel costs constitute around 20% of an airline’s 
operating cost [10], there is also a clear need for policy support to make 
SAF price competitive. Although global production of SAFs is increasing, 
the current share of SAFs for aviation is still very small (<0.1%) [11]. 

The largest share of commercial SAFs produced today comes from 
the hydroprocessing of triglyceride fatty acids from lipid feedstocks, also 
known as hydroprocessed esters and fatty acids (HEFA) [12]. The HEFA 
process produces paraffin-rich hydrocarbon liquids from the triglyceride 
molecules in the lipid feedstocks such as vegetable oils, waste oils and 
algal oils. Over the years, successful flight trials have been carried out by 
major airlines using HEFA fuels from jatropha, camelina, used cooking 
oil, and others [13]. HEFA fuels are certified by the American Society for 
Testing and Materials (ASTM) to be blended with petroleum-based jet 
fuel up to 50% by volume [14]. HEFA fuels may help achieve the goal of 
net-zero by 2050, since the amount of SAF production is projected to 
increase from 0.05 million tonnes today to 445 billion tonnes in 2050 
[3]. 

The conversion of biomass or waste products into aviation biofuel 
requires the use of energy and chemicals, which are often of fossil origin 
[15,16]. In addition, emissions from agricultural production of biomass 
due to the on-site emissions from fertilizer application and from fuel 
combustion in farming operations can reduce the GHG advantages of 
biofuels over fossil fuels [17–19]. Life cycle assessment (LCA) has been 
used to estimate the potential environmental benefits from the use of 
SAF [20–22]. There are two different methodological options for per
forming an LCA: attributional and consequential LCA [23,24]. Attribu
tional LCA (ALCA) accounts for the energy and material flows 
throughout the life cycle of a product within precisely defined systems 
boundaries. This method relies on detailed GHG emission inventories 
that are useful for benchmarking different feedstocks properties and 
conversion technologies, and for comparing the emission intensities of 
biofuels with those of petroleum-based fuels. Additionally, the produc
tion cycle of biofuels is affected by external events such as GHG miti
gation policies, increase in demand for certain feedstocks, fuel prices, 
and land use change (LUC). Consequential LCA (CLCA) relies on eco
nomic models to estimate the effect of these potential changes on the 
biofuel production chain, by trying to capture the market-mediated 
adjustments of the system as a consequence of an increased 
(decreased) demand for the product [25,26]. 

The results from a well-to-wake (WTWa) ALCA of GHG emissions 

from SAF can be compared with fossil kerosene to determine the emis
sions savings [27–31]. Although studies have been conducted on the 
environmental performance of SAF, there is heterogeneity in the 
methods and variability in the results from the literature with regard to 
the life cycle GHG emissions of the different pathways available [32]. 
Consequently, efforts have been made recently to estimate life cycle 
GHG emission values for SAF pathways using a robust methodology, 
with a particular focus on those conversion technologies that have 
received ASTM approval. ICAO and other organizations are discussing 
the best way to standardize the LCA methodology for the accounting of 
GHG emission savings associated with the most readily available SAFs 
[8,20]. 

The technologies that are assessed for SAF production have not yet 
been fully commercialized. The data is mostly limited and proprietary. 
As a result, LCA outcomes are subject to epistemic uncertainty, which 
refers to the lack of knowledge of the process being modeled, or the lack 
of evidence on the accuracy of the models in representing such processes 
[33,34]. Furthermore, there is decision uncertainty or uncertainty due to 
choices derived from the selection and application of a specific meth
odology [35,36]. While there are a number of LCA studies in the liter
ature about hydroprocessing of oilseed crops [30,37–47], most are 
deterministic studies. The results from these studies show that GHG 
emissions are highly impacted by methodological choices such as the 
selection of co-product use, and allocation method [41–43], as well as 
uncertainty in the life cycle inventory (LCI) data [41]. The uncertainty 
due to choices is often tackled through scenario analysis; that is, by 
defining different scenarios to capture different possibilities of the 
choices made [48–50]. To assess parametric uncertainty, two ap
proaches are commonly applied: (a) sensitivity analysis, to understand 
how uncertainty in one or more input parameters leads to uncertainty in 
the output variables; and (b) uncertainty analysis, to propagate and 
quantify results uncertainty based on stochastic techniques. For 
instance, Stratton et al. (2010) tried to capture the variability due to 
choices by examining multiple scenarios, and conducting local (one-a
t-a-time) sensitivity analysis by changing selected representative pa
rameters [41]. However, the combined effects of simultaneous changes 
from the input parameters have been ignored, which could lead to poor 
reflection of uncertainty in the results. Moreover, changing the param
eters by a pre-determined magnitude (for example, ±10%) may not 
reflect the variability of that parameter, and it might be more advan
tageous to use probability distributions [51]. Stochastic analysis has 
previously been shown to be a method for propagating and quantifying 
results uncertainty for techno-economic analysis (TEA) [52–54]. Monte 
Carlo simulation has been used in some cases, which makes it possible to 
obtain a probability distribution of the results by randomly selecting 
values from previously defined probability distribution for each 
parameter to conduct a detailed uncertainty assessment for LCA of 
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biofuels [35,51,55,56]. For instance, Mousavi-Avval et al. (2021) esti
mated the environmental impact of pennycress-based HEFA jet fuel 
using Monte Carlo simulation to evaluate the uncertainty [39]. 

Finally, like many other bio-based products, SAFs may generate 
additional impacts from LUC. This refers to GHG emissions from land 
conversion and associated carbon losses to grow biofuel feedstock; that 
is, direct LUC (DLUC) [57,58]. Further market-mediated land trans
formation can take place due to the increased demand for agricultural 
products for non-food applications; that is, indirect LUC (ILUC) [59–62]. 
Estimation of LUC effects entails additional methodological challenges. 
DLUC accounting is often included within the biofuel’s life cycle based 
on the Intergovernmental Panel on Climate Change (IPCC) guidelines 
[63], as differences in carbon stocks relative to original land uses, 
depending on the location of the production site [64–66]. ILUC esti
mation requires the application of economic modeling under CLCA ap
proaches to be able to predict supply and demand responses across 
bio-based markets, or across the entire economy, depending on the 
scope of each model [67–69]. CORSIA provides estimates for ILUC fac
tors of major feedstocks based on two well-regarded global economic 
equilibrium models [8], to be combined with the so-called core-LCA 
values [70]. GHG emissions from DLUC must also be quantified when 
feedstock production causes on-site land conversion after January 1, 
2008. DLUC quantification must follow the Tier 1 approach of IPCC 
[63], but a more specific protocol is still under development. Hence, 
DLUC remains a source of uncertainty when assessing the GHG savings 
from SAF production pathways, as DLUC effects are largely influenced 
by assumptions on feedstock yields, agricultural practices, and land uses 
to be potentially displaced, which in turn depend on the sourcing region 
[71–73]. 

This article quantifies the viability of using HEFA fuels from selected 
non-edible vegetable oils in terms of lifecycle GHG emissions using a 
stochastic methodology. A comprehensive uncertainty analysis is car
ried out to provide a range of GHG emissions considering parametric 
uncertainty in LCI data and uncertainty in modeling choices. Assump
tions on the land uses to be converted for HEFA feedstocks cultivation 
and underlying carbon stocks are also included. Emissions from DLUC 
and the associated uncertainty are estimated by including a consistent 
scenario analysis across different feedstocks. No peer-reviewed LCA 
studies for GHG emissions from energy tobacco-HEFA jet fuel have been 
found in the literature, and our work is a first example of this pathway. 

2. Methodology 

2.1. Goal and scope 

In this work, attributional LCA is applied to examine the GHG 
emission intensity of alternative pathways for aviation biofuel produc
tion based on the hydroprocessing of lipids, from cradle-to-grave or 
WTWa. In addition to the emissions from the SAF production processes, 
DLUC emissions prior to feedstock cultivation are also included. 

The functional unit (FU) used is 1 megajoule (MJ) of SAF produced 
and combusted and the results are reported as grams of carbon dioxide 
(CO2) equivalent of emissions per FU (gCO2e/MJ jet fuel). CO2, methane 
(CH4) and nitrous oxide (N2O) emissions from well-to-pump activities 
are considered using their 100-year global warming potentials (1, 28, 
265, respectively), in line with the IPCC reporting guidelines [74]. 

LCA is fundamentally a comparative tool and fuel from conventional 
crude is a benchmark for alternative fuels. The choice of baseline is 
important because it determines the relative benefit of using a particular 
biofuel product with respect to its fossil counterpart. Within CORSIA, 
the adopted baseline for WTWa emissions from conventional jet fuel 
production is 89.0 gCO2e/MJ jet [20]. This value was agreed on after 
considering a variety of refinery configurations worldwide for the pro
duction of fossil jet fuel, and used for this work. 

With regard to scope, the system boundary includes the emissions 
from the complete fuel cycle of the SAF. This means that all the direct 

and indirect energy and material inputs from feedstock cultivation and 
transportation, oil extraction and processing, HEFA conversion, fuel 
transportation and distribution (T&D), and fuel combustion stages are 
included. Fig. 1 depicts the system boundary considered for the HEFA 
fuel production from oilseed feedstocks in detail. At the end of the oil 
extraction step, oilseed meal is produced as a co-product. This meal can 
be high in protein content, with potential to be used as animal feed, 
depending on the feedstock. The HEFA conversion step produces other 
fuels such as diesel, naphtha, and propane mix, in addition to jet fuel. 

The emissions from the initial establishment of infrastructure (con
struction of the fuel production facility, manufacturing of equipment, 
etc.) are not included in this analysis since their contribution to overall 
emissions is found to be negligible [75]. Emissions from DLUC are 
incorporated, assuming that land conversion takes place after 2008, 
which requires consideration in line with CORSIA. The CO2 absorbed 
during biomass growth is assumed to offset the CO2 emissions from fuel 
combustion. 

2.2. Feedstock scope 

Historically, the large majority of the biofuels produced/used in the 
European Union (EU) have been produced from biobased feedstocks 
such as rapeseed, soy, and palm oils [76]. However, these feedstocks are 
also used for food purposes, fueling the food vs. fuel debate [77]. In 
addition, production of palm oil takes place in tropical regions with 
deforestation [78], which causes environmental concerns. As a result, 
EU policies evolved to promote the use of sustainable sources as feed
stock [79]. This helped to the development of additional supply chains, 
and nowadays the cheapest feedstocks for HEFA fuels are used cooking 
oil (UCO) and waste oils such as tallow [9,46]. Still, their supply might 
be limited since these feedstocks are also used by the road sector for 
biodiesel production [80]. Non-edible vegetable oils might be more 
sustainable than traditional edible oils due to the possibility of cultiva
tion on marginal land with lower inputs such as fertilizer and water 
[81]. 

For this work, five oil sources were selected for an in-depth LCA 
study: jatropha (Jatropha curcas), pennycress (Thlaspi arvense), castor 
(Ricinus communis), Solaris energy tobacco (Nicotiana tabacum L. cv. 
Solaris), and salicornia (Salicornia bigelovii). Plant oils from these 
feedstocks are non-edible and seed oil content ranges from 28 to 47% 
(Table 1 and references therein). Average yields, co-products from the 
oil extraction process and their assumed uses have been listed in Table 1. 
Conservative yield assumptions have been used for the analyzed crops. 
Oilseed feedstocks that already have LCA values within CORSIA have 
also been included for comparison purposes. 

Jatropha-based HEFA fuel was one of the first SAFs to be used for 
flight tests [87]. The prospect of high oil yield, along with the capability 
of the plant to grow on marginal lands with low input, made jatropha 
appealing as a biodiesel feedstock in the early 2000s [88]. The oil 
extraction step from jatropha produces husk and shell in addition to the 
meal. The meal from jatropha is toxic and it cannot be utilized as fodder 
unless it is detoxified [89] However, there are studies showing its po
tential use as fertilizer [90–93]. Husk and shell could be used for energy 
production through combustion [37] or anaerobic digestion [93]. 
Several studies have examined GHG emissions from jatropha-based 
diesel and jet fuel [30,37,44,73,93,94]. Stratton et al. (2010) reported 
a range of emissions from 31.8 gCO2e/MJ to 45.1 gCO2e/MJ from 
jatropha-HEFA jet [37]. A scenario-based deterministic approach was 
used to account for the variability, but LUC was not included. Meal, 
husk, and shell were considered as co-products from the oil extraction 
step, and they were assumed to be used for energy production through 
combustion. Bailis et al. (2010) estimated the emissions from 
jatropha-HEFA jet to be 40 gCO2e/MJ in Brazil, using energy-based 
allocation for the baseline case [73]. Seed cake and husk were consid
ered as co-products from the oil extraction step. Aggregate results 
including DLUC ranged from 13 gCO2e/MJ to 141 gCO2e/MJ, 
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depending on land type used for the cultivation of jatropha. Han et al. 
(2013) estimated the emissions from jatropha HEFA to be 54 gCO2e/MJ 
using similar co-product assumptions as in Stratton et al. (2010), and 
without the inclusion of LUC [30]. Finally, Liu et al. (2021) estimated 
the GHG emissions from jatropha to be between 32 and 107 gCO2e/MJ 
in north-east China, depending on different planting conditions [95]. 
Energy-based allocation was used to distribute the emissions between 
oily cake and oil. 

Pennycress can be cultivated as a winter crop in rotation with con
ventional summer crops such as sunflower, soybean, and corn. It has the 
potential to be used as feedstock for biofuels with a low impact on the 
food supply or land use [96,97]. The oil extraction step for pennycress 
yields a meal that is rich in protein content (31%) [45]. However, the 
meal contains high levels of glycosinolates and erucic acid, which might 
prevent its use as fodder [98]. Fan et al. (2013) deterministically esti
mated the emissions from HEFA jet fuel to be 32.7 gCO2e/MJ jet fuel 

[45]. In this study, pennycress meal was assumed to be used as animal 
feed due to its high protein content. As a result, the emissions were 
allocated between the oil and the meal according to their energy con
tent. Mousavi et al. (2021) used a stochastic method and found the 
emissions from pennycress to be in the range of 35–49 gCO2e/MJ of fuel 
[39]. Pennycress meal was assumed to be combusted to supply on-site 
energy, and not considered for use as animal feed. Neither of these 
studies considered the land use change effects from pennycress 
cultivation. 

Castor is originally a tropical season perennial plant that can also 
grow in temperate climates as an annual crop [99]. The seeds have high 
oil content (up to 50 wt %), more than twice as much as soybean; as a 
result, the oil yield from castor can be as high as 2 t/ha-yr [100]. Castor 
oil is the only commercial source of ricinoleic acid, which is a hydrox
ylated 18-carbon fatty acid used for various chemical products such as 
lubricants, paints, cosmetics, and shampoo. Meal from the oil extraction 
step for castor is toxic and cannot be used as fodder without detoxifi
cation [99]. There are reports on its potential use as fish feed [101], 
fertilizer [102], an absorbent for removal of textile dyes [103], in 
addition to other possibilities [83]. There have been experimental 
studies on the hydroprocessing of castor oil to produce jet fuel [104, 
105], and multiple references on castor-based biodiesel including the 
GHG emissions associated with its production [106–109]. Only recently, 
life cycle GHG emissions from castor-HEFA production in north-east 
China was reported to range between 41 and 78 gCO2e/MJ SAF 
depending on different planting conditions [95]. 

Tobacco is a widely cultivated plant throughout the world, with its 
leaves used for the production of smoking products. Asian countries, 
especially China, account for more than half of its worldwide produc
tion, while in the EU Greece is a big producer that exports most of its 
production [84]. As the demand for tobacco production declines, the 
producers look for other alternatives to utilize tobacco [110]. Tobacco 
seeds are considered a by-product of the tobacco leaf production and 
they are mostly left in the field unused [111]. These seeds have a 
moderate oil yield, which can be used for biofuel production [112]. 
Recently, a nicotine-free version of the tobacco plant non-genetically 
modified organism (GMO) was developed to be used as biomass feed
stock [113]. Energy tobacco (also known as Solaris), unlike the tobacco 
used for smoking, contains no nicotine in the leaves and maximizes the 
production of flowers/seeds, reducing leaf growth [114]. The meal from 
the oil extraction step can be used as animal feed with its high crude 
protein content (33%) [115]. There have only been a few publications 

Fig. 1. Details of the system boundary for the HEFA-jet fuel pathway from oilseed feedstocks, HEFA: Hydroprocessed esters and fatty acids, T&D: Transportation and 
distribution. 

Table 1 
Properties and geographical distributions of various vegetable oils.  

Feedstock Distribution Yield 
(t/ 
ha- 
yr) 

Oil 
content 
(wt%) 

Oil extraction 
co-products/ 

use 

References 

Camelina N. America, EU 1.9 36.0 Meal/fodder [82] 
Castor India, Brazil, 

China 
1.1 47.0 Meal/ 

fertilizer 
[83] 

Jatropha Asia, Africa, S. 
America 

2.5 35.0 Meal/ 
fertilizer, 

husk/energy, 
shell/energy 

[37] 

Palm Malaysia, 
Indonesia 

17.9 22.4 Meal/fodder [84] 

Pennycress Eurasia, N. 
America 

1.0 34.0 Meal/fodder [85] 

Rapeseed EU 3.4 44.0 Meal/fodder [84] 
Salicornia Africa, Middle 

East, S. 
America, 
China, US 

2.0 28.2 Meal/fodder, 
straw/energy 

[37] 

Soybean N. America, 
Brazil 

3.2 19.1 Meal/fodder [84] 

Energy 
Tobacco 

China, Brazil, 
India, US, 

Greece 

2.1 38.0 Meal/fodder [86]  
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on the properties of energy tobacco [86,111,114] and Solaris-based 
biodiesel formation [116], including an LCA study on GHG emissions 
from Solaris-based biodiesel [117]. To the best of our knowledge, there 
have been no peer-reviewed articles on GHG emissions from 
Solaris-HEFA jet fuel, although there are reports claiming the emissions 
benefits from Solaris-based SAF can reach 83% [113,118]. 

Salicornia is a member of the halophyte family, which is known for 
its ability to grow in brackish water on marginal lands [119]. The 
amount of seed oil produced from salicornia is small compared to the 
straw biomass of the plant [37]. On the other hand, salicornia straw can 
be gasified and converted into other energy products via Fischer Tropsch 
(FT) synthesis, pyrolysis, etc. [120]. Stratton et al. (2010) reported the 
emissions from Salicornia-HEFA considering different scenarios to ac
count for the variability [37]. Salicornia meal was assumed to be used as 
meal, whereas straw was used for the production of FT fuels. The 
emissions ranged between 30.5 gCO2e/MJ and 66.1 gCO2e/MJ when 
LUC was not considered. The aggregate emissions, including LUC sce
narios, were between − 19.2 gCO2e/MJ and 32.2 gCO2e/MJ. Finally, a 
recent study by Warshay et al. (2017) provided information on LCA of an 
integrated seawater energy agriculture system (ISEAS) that includes 
Salicornia as a component for HEFA fuel production [120]. Their results 
indicate that ISEAS-HEFA yields GHG emissions savings of between 38% 
and 68% when compared with fossil jet fuel. 

2.3. HEFA process 

The HEFA process converts triglycerides in the lipidic feedstocks into 
paraffin-rich liquids through the hydrogenation, deoxygenation, hydro- 
isomerization and hydrocracking processes [121]. Hydrogenation is the 
catalytic addition of hydrogen to saturate the double bonds of the lipid 
chain. Hydrogen addition is also used to remove the carbonyl group and 
to break the glycerol compound, forming propane and chains of free 
fatty acids (FFA) [121]. Afterwards, the carboxylic acid that remains 
attached to the FFA has to be removed, and this can be done in three 
different ways: hydrodeoxygenation, decarboxylation and decarbon
ylation. Finally, hydro-isomerization and hydrocracking are required to 
improve the biofuel qualities (such as better cold flow properties), and to 
adjust the product slate. 

The chain length of the triglycerides from vegetable oils is mostly 
within the diesel range (C15–C22) (SM1) [40]. Therefore, additional 
hydrocracking is needed to obtain jet fuel range hydrocarbons (C9–C15). 
As a result, jet fuel is produced along with co-products such as naphtha 
(C5–C8), and light gases (<C4). The product slate can be adjusted ac
cording to market needs. Multiple companies have patented HEFA 
production technologies, and these differ in the consumption of 
hydrogen gas and energy, as well as the final product slate produced. 

The fatty acid profile of the lipidic feedstock may be important for 
the HEFA process since the amount of unsaturated fatty acids and their 
chain lengths would determine the hydrogen supply of the process. 
Higher chain length fatty acids would require more hydrocracking, 
which would result in the production of more co-products. If the hy
drocracking amount is not adjusted well, the process will result in lighter 
range products, such as propane mix and naphtha, which are less 
valuable than diesel and jet fuel [40]. 

Han et al. (2013) estimated the amount of hydrogen and utilities (i. 
e., natural gas and electricity) needed for the hydroprocessing step of 
soybean, palm, rapeseed, jatropha, and camelina oils based on their fatty 
acid profile using literature data [30]. They found a maximum of 2.2 
gCO2e/MJ SAF emissions difference for the HEFA conversion step of the 
highest (camelina) and lowest (palm) emitting oils analyzed. This was 
not as significant as the difference from cultivation emissions of these 
feedstocks. In CORSIA, the utilities needed in the HEFA process and the 
resulting fuel product slate were assumed to be the same for different 
oilseeds, such as soybean, rapeseed/canola, and camelina [20]. In this 
work, we followed a similar approach and used the same HEFA pro
cessing data for the conversion of analyzed oils. 

2.4. Model design for addressing uncertainty 

2.4.1. Stochastic modeling 
For the analysis, probability density functions (PDF) are assigned to 

most model parameters using literature data. Triangular or PERT dis
tributions were employed for PDFs in the previous studies when few 
data points exist and the type of distribution was unknown, but mini
mum, maximum, and most likely values were available [53,122,123]. In 
this work, triangular distributions are defined for most of the parameters 
using minimum, average and maximum values. Input parameters such 
as fertilizer, diesel use for farming, electricity, natural gas, and hydrogen 
are treated as stochastic variables. A detailed list of these parameters 
and their variability is provided in SM2-SM6 in the supporting docu
mentation. A Monte Carlo simulation was run using Crystal Ball® (a 
spreadsheet-based application used for simulations and forecasting) 
with 20,000 iterations at 95% confidence level to estimate the un
certainties caused by the variability of input parameters. 

Emission factors for the physical inputs are deterministic and they 
are taken from the Greenhouse Gases, Regulated Emissions and Energy 
Use in Transportation (GREET) database [124] and the EU’s Joint 
Research Center’s (JRC) input data for GHG default emissions from 
biofuels in EU legislation [125]. The 100-year global warming potential 
of other GHG gases methane and nitrous oxide is also deterministic and 
values from IPCC’s 5th assessment report are used [74]. 

2.4.2. Scenario analysis: treatment of co-products 
During the production of SAF, other products with commercial value 

may be obtained. For example, soy meal is produced during the crushing 
of oil from soybeans. These products should also be taken into account 
during an LCA, since LCA results are significantly impacted by the 
methodological choices regarding the treatment of co-products [43]. 
The allocation of emissions between the main product and co-product(s) 
occurs using an allocation ratio, which can be based on properties of the 
products such as mass, energy or market value [43]. A displacement 
credit is applied if the co-product is assumed to displace a similar 
product in the global market. GHG emissions equivalent to the life cycle 
GHG emissions from the production of the displaced product are then 
subtracted. According to the ISO standards for LCA, allocation of life 
cycle emissions between co-products should be avoided where possible 
by expanding the system boundaries [126]. This is also known as the 
displacement or substitution method. However, identifying the product 
to be displaced is not always a straightforward task, and the results are 
sensitive to the share of the co-product to be assessed in the product 
slate. 

Under CORSIA [20] and EU Renewable Energy Directive (RED) 
[127], total emissions are allocated proportionally to the main product 
and the co-products based on their energy content using lower heating 
values (LHV). If electricity is produced as a co-product, the displacement 
method is used instead of energy allocation under the EU RED. 
Following the approach in these two regulatory systems, energy-based 
allocation (E) was applied in the present study to distribute the emis
sions between the co-products that are produced during the fuel pro
duction processes. A scenario analysis was conducted for mass-(M) and 
market-based ($) allocation methods for the oil extraction step, with 
emissions between fuel co-products allocated using energy-based allo
cation (E) in all scenarios. 

In case of market-based (economic) allocation, when no historical 
prices are available for the vegetable oils assessed here, the minimum 
selling price (MSP) from TEA studies in the literature is utilized [45, 
128]. Table 1 lists co-products from the oil extraction step of the 
analyzed feedstocks and their assumed uses. Additional details are 
provided in the supporting document (SM7). 

2.4.3. Sensitivity analysis 
Local sensitivity of LCA results to seed oil content, nitrogen fertilizer, 

and hydrogen gas (H2) has been analyzed. The values for these 
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parameters were changed by ± 20% (one-at-a-time) to observe the effect 
on the overall results. Sensitivity to the hydrogen production methods 
was included. The baseline methodology uses steam methane reforming 
(SMR) from natural gas for hydrogen production, which is the most 
common technology used today. In addition, hydrogen production from 
“electrolysis” (water splitting) using renewable electricity, and 
hydrogen production from “coal” were considered. 

A scenario in which the oilseed meal is assumed to be discarded was 
also included. This scenario is called “no meal” and it shows the case 
where the oil carries all the emissions burden from cultivation, and oil 
extraction steps. This scenario is included to understand the conse
quences from the treatment of meal as a residue, resulting in low ma
terial use efficiencies as meal is produced in larger amounts than oil in 
most cases. 

2.5. Direct land use change (DLUC) 

The quantification of DLUC follows the IPCC guidelines [63] for the 
calculation of the annual GHG emissions and removals from land con
verted into cropland under the Tier 1 approach (equation in SM8). DLUC 
emissions arise from differences in land carbon stocks before and after 
land conversion into oilseed production, considering the following car
bon pools: above- and below-ground biomass (AGB, BGB), dead wood 
and litter, and soil organic carbon (SOC) in mineral soils. Carbon stocks 
in AGB, BGB, and reference soils have been taken from IPCC (2006), 
which remain the recommended guidelines until the 2019 values are 
validated [129]. An amortization period of 25 years is considered to 
annualize emissions from carbon stock changes, although this takes 
place as a one-time effect following land conversion. Flows of N2O 
emissions from mineralized N due to SOC changes are also included. 

Scenario analysis is applied to assess uncertainty in DLUC emissions 
due to assumptions on both the land uses to be converted (and associ
ated carbon stocks) and agricultural practices for SAF feedstock pro
duction after land conversion. Different scenarios are defined per oilseed 
feedstock, including conversion of (secondary) forests and different 
types of grasslands (severely degraded, improved, or nominally 
managed) into cropland; as well as conversion from long-term cultivated 
cropland (with annual crops) into oilseeds for SAF production. In 
addition to the five feedstocks assessed here, DLUC values are also 
estimated for more conventional oilseed feedstocks already included in 
CORSIA, namely camelina, palm, rapeseed, and soybean. These feed
stocks have ILUC values [70], but DLUC values are not yet assigned to 
them in CORSIA. 

Since CORSIA does not allow for the use of SAFs produced at the cost 
of land classified as primary forests, wetlands and peatlands after 
January 1, 2008, only secondary forests are considered in the case of 
forestland conversion. For the same reason, emissions from peatland 
oxidation do not need to be accounted. Typical sourcing regions are 
assumed per feedstock – considering major producing regions – to 
identify carbon stocks associated with each land use prior to land con
version depending on the climatic zone and soil type [63]. For instance, 
jatropha, soybean, oil palm, energy tobacco, and castor bean are 
assumed to be produced in tropical locations. Pennycress, rapeseed, and 
camelina mostly grow in temperate climates, while Salicornia bigelovii is 
productive in tropical dry climates [130–132]. Additional scenarios are 
defined to capture variability in crop management and input intensity 
after land conversion, as these determine SOC losses under Tier 1 
approach. 

Oilseed production also generates carbon gains through carbon 
sequestration in crop biomass, as well as potential SOC gains in the case 
of improved soil management relative to previous uses. These gains are 
also included for estimating net carbon stock changes. Average crop 
yields and carbon embodied in agricultural biomass are estimated from 
the literature, assuming that both vary with the fertilizer input intensity. 
Conservative yield values are preferably considered, given the wide 
variability detected for some feedstocks (SM9). For instance, energy 

tobacco yields vary from 2.1 t/ha in the EU conditions [86] to >6 t/ha 
for Brazil [117]. In their review, Van Eijck et al. (2014) identified 
jatropha yields in the range 0.4–12 t/ha, depending on the production 
location [133]. However, the range in Table SM9 for jatropha is 
consistent with average yields for irrigated jatropha (high input in
tensity) in Brazil, USA and India, based on the spatially-explicit esti
mates from the Global Agro-ecological Zones (GAEZ) v4 database [134]. 

In the case of pennycress and camelina, these are considered to be 
double-cropped, replacing winter fallow between typical summer crops 
[96]. This has beneficial effects for weed control, potentially increasing 
yields and adding value, while delivering further environmental services 
[135–138]. Specifically, it is assumed that both pennycress and camel
ina are double-cropped with soybean or sunflower, capturing typical 
options in the US and the EU [85,96,137,139]. Thus, DLUC emissions 
from these two crops are additionally allocated between the first and 
second crop, also based on relative yields [84] and LHVs [140,141]. The 
average allocation factor between soybean and sunflower scenarios is 
used. DLUC emissions are expressed in gCO2e/MJ by considering the 
same allocation assumptions and conversion efficiencies as for the rest of 
life cycle GHG emissions (see Section 2.5.2). 

2.6. Life cycle inventories 

Each unit process is described briefly in this section and relevant 
energy and material flows have been listed (Table 2). For more details 
and data references, readers are referred to the supporting material 
(Tables SM2-SM6). 

2.6.1. Feedstock cultivation and transportation 
Inputs for the cultivation stage are similar for all the oilseed crops 

that are studied. Fertilizers such as nitrogen (N), potassium (K) and 

Table 2 
Life cycle inventories for HEFA fuel production from castor, jatropha, penny
cress, salicornia and energy tobacco for the baseline scenario based on mean 
values from the probability distribution functions.  

Parameter Castor Jatropha Pennycress Salicornia E. Tobacco 

Cultivation: per 
kg dry seeds 

(except as 
noted)      

Seed yield (kg/ 
ha) 

1100 2500 1000 2000 2100 

Seed moisture 
content (%) 

3.5 5.8 12 6.4 5 

Seed oil content 
(wt %) 

47 35 34 28.2 38 

Oil extraction 
efficiency (%) 

96 96 96 96 96 

N fertilizer (g) 32.8 27.6 63.5 50.6 56.1 
P fertilizer (g) 17.3 24.5 31.8 – 36.8 
K fertilizer (g) 13.7 20.1 18.2 – 31.7 
Pesticides (g) – 2.9 – – 0.33 
Herbicide (g) – – – – 0.41 

Diesel (MJ) 1.2 1.1 0.17 26.7 0.13       

Oil extraction 
(per kg oil)      
Seeds (kg) 2.1 2.8 2.7 3.5 2.6 

Natural gas 
(MJ) 

2.4 1.8 3.1 4.0 3.0 

Electricity (MJ) 0.4 – 0.53 0.38 0.51 
N-hexane (MJ) 0.14 0.18 0.18 0.23 0.17 

Co-product, 
meal (kg) 

1.1 0.73 1.7 2.4 1.6 

Co-product, 
straw (kg) 

– – – 25.0 – 

Co-product, 
electricity 

(MJ) 

– 8.5 – – –  
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phosphorus (P), and diesel use for farming equipment are the main in
puts for the cultivation step. Herbicides and pesticides are also needed 
for some of the crops. Direct and indirect N2O emissions from the use of 
synthetic nitrogen fertilizer are quantified in line with the IPCC Tier 1 
methodology (SM10). Data related to the transportation step for the 
oilseed crops have been adapted from soybean transportation based on 
assumptions from ICAO Supporting Document [20]. 

2.6.2. Oil extraction 
Feedstock recovery from the oilseeds requires an extraction step. 

This can be done by the mechanical pressing of seeds followed by 
extraction with a non-polar solvent, such as n-hexane, in order to in
crease the oil yield. This type of solvent extraction is used at large-scale 
production facilities and provides up to 99% oil extraction efficiency 
[142]. However, there may not be any commercial oil extraction facil
ities available for the discussed feedstocks in this study. As a result, 
assumptions were made for the energy consumption for the extraction 
step using data from similar crops such as soybean and rapeseed. The 
modified model by Sheehan et al. (1998) [143] on soybean oil extraction 
was used to calculate the energy inputs of the oil extraction step for each 
oilseed feedstock. The following process steps are included: receiving 
and storage of the seeds, seed preparation (flaking and cleaning), oil 
extraction, meal processing, oil recovery, solvent recovery, oil degum
ming and waste treatment. The seeds are assumed to be dried at the farm 
in the open air. Hexane amount needed for the extraction is adjusted 
according to the data from Schneider et al. (2013) [144], which is an 
LCA study on the oilseed crushing practices in the EU. Another variable 
is the amount of oil contained in the seed. The effect of this change on 
the oil extraction step is also captured by assuming low, baseline, and 
high values for the oil content, and calculating the utilities for the 
extraction step accordingly. 

2.7. Fuel production and transportation 

For the fuel production step, the HEFA conversion data and product 
slate assumptions from CORSIA have been employed [20]. In CORSIA, 
the GREET database and JRC’s E3 database have been used as data 
sources. GREET uses the HEFA production technology by Honeywell 
UOP in the US [124], whereas E3 uses NEXBTL technology by Neste in 
the EU [145]. For the jet fuel T&D step, the data comes directly from the 

CORSIA emissions inventory [20]. 

3. Results and discussions 

3.1. Life cycle GHG emissions 

Box-and-whisker plots in Fig. 2a show the WTWa GHG emissions for 
the HEFA fuels from the five oilseed feedstocks that were investigated in 
this study, using default energy-based allocation. Attributional LCA re
sults without the inclusion of DLUC for the investigated feedstocks show 
life cycle GHG emissions below the CORSIA fossil-fuel baseline of 89.0 
gCO2e/MJ. Castor-HEFA has the lowest median emissions value (39.5 
gCO2e/MJ), while pennycress-HEFA has the highest (48.2 gCO2e/MJ) 
among the five HEFA pathways studied. The variability is higher for 
pennycress-, jatropha- and energy tobacco-HEFA than castor- and 
salicornia-HEFA. This is mainly due to the wider range of data for the 
probability distribution of N fertilizer for the former feedstocks. For 
energy tobacco-HEFA, the emissions range from 32.5 to 55.9 gCO2e/MJ 
SAF, showing the highest variability around the median value (±26%). 
Following a sensitivity analysis, N fertilizer is found to be the most 
important contributor to variance in all cases (SM11). Natural gas and 
hydrogen consumption for the HEFA conversion step are other key 
parameters. 

Fig. 2b shows the GHG emissions by process steps for each feedstock 
for different HEFA fuels, while underlying values are included in SM12. 
The main contributors to the GHG emission results are farming and fuel 
production steps. Fertilizer and diesel fuel use for farming causes the 
higher emissions from cultivation, whereas hydrogen and natural gas 
are the main sources of emissions from the fuel production process. 

Pennycress has the lowest seed yield at 1.0 t/ha-yr, which results in 
higher fertilizer use per kg seeds compared to other crops. Nitrogen 
fertilizer use results in N2O emissions, which is a gas with a much higher 
GWP. As a result, emissions from the cultivation step of pennycress are 
higher than the other oilseed crops. Salicornia cultivation is diesel- 
intensive, but the distribution of emissions between the seed and the 
straw decreases the burden on the seed, resulting in similar overall 
emissions from the cultivation step as other feedstocks. The same allo
cation factor (16.9%, SM7) is also applied to the feedstock trans
portation step of salicornia, which results in lower emissions (0.11 
gCO2e/MJ jet) when compared to other feedstocks. Salicornia has a 

Fig. 2. (a) Box-and-whisker plot showing the WTWa emissions from HEFA-oilseed pathways and the associated uncertainty. Center lines represent the median 
values, the edges of boxes represent the 25th and 75th percentiles, and the limiting bars represent the 5th and 95th percentiles of the distributions resulting from 
20,000 Monte Carlo simulations. (b) Greenhouse gas emissions of oilseed-HEFA pathways in gCO2e/MJ SAF, showing the contribution from each process step; 
median values from the stochastic analyses are used. E. Tobacco: Energy tobacco, NG: Natural gas, SAF: Sustainable aviation fuel, T&D: Transportation and 
distribution. 
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narrower probability distribution due to the availability of fewer data 
points for the cultivation inputs (Fig. 2a). Jatropha-HEFA has the lowest 
emissions from the oil extraction step, while energy tobacco-HEFA has 
the highest. Although both crops have similar yields and similar oil 
content, the allocation factor to the oil is lower for jatropha due to the 
produced electricity, which reduces the emissions from the extraction 
step allocated to the oil and hence to the fuel. 

3.2. Scenario analysis 

Fig. 3 shows the median results from stochastic analysis when 
different allocation methods are used. Detailed results of this stochastic 
analysis are included in SM13. Mass allocation (M) of emissions between 
the oil extraction co-products lower the GHG emissions for all of the 
analyzed HEFA pathways. This is because meal is obtained in greater 
amounts than oil through the extraction step in most cases, resulting in a 
higher share of emissions allocated to the meal (SM7). Hence, the allo
cation factor for the oil decreases relative to that based on energy allo
cation, since the oil has a higher LHV than the meal. The decrease in 
GHG emissions relative to those in Fig. 2 is smallest for jatropha (7%), 
and largest for salicornia (35%). 

For market-based allocation ($) of emissions between oil extraction 
co-products, overall emissions increase due to the generally lower price 
of the meal and the higher price of the oils, which translates into a higher 
allocation factor for the oil (SM7). The emissions increase is largest for 
salicornia at 46% and smallest for jatropha at 1%. For the rest of the 
feedstocks, the increase in results with respect to the energy-based 
allocation is around 20%. 

3.3. Sensitivity analysis 

The results of the sensitivity analysis are displayed in Table 3. 
Changing the amount of nitrogen application affects the overall emis
sions results on average by ± 9%, except for the case of salicornia. As 
explained in Section 3.1, since the burden on the seed is lower for sali
cornia than the other pathways, the amount of nitrogen use does not 
affect the GHG emission results per MJ of SAF as much as it does in other 
feedstocks. 

Varying the hydrogen amount changes the results by ± 2%, while 
changing the hydrogen production method has a greater effect. When/if 
electrolysis is used for hydrogen, the GHG emissions decrease by around 
9%, whereas using coal (with no carbon capture) instead of SMR from 

natural gas increases the GHG emissions by around 8%. 
The “no meal” scenario highlights the effect of using the meal for 

other applications on the GHG emission intensity of the SAF. If the meal 
cannot be utilized as a co-product of value, then all emissions are allo
cated to the oil, increasing the overall emissions considerably. The 
emissions increase by 28.9% and 71.8% for castor and salicornia, 
respectively, for minimum and maximum cases. 

3.4. DLUC emission results 

Emissions from DLUC vary greatly with assumptions both on the land 
uses converted to produce the feedstock as well as on the crop man
agement after land conversion. Fig. 4 shows DLUC factors for all sce
narios, highlighting in orange/red those cases where the DLUC factor 
alone already exceeds the CORSIA minimum GHG reduction require
ment; that is, DLUC greater than 80.1 gCO2e/MJ. More detailed DLUC 
factors broken down by source are available in the supporting infor
mation (SM14). 

In the case of camelina and pennycress, it is assumed that these do 
not require high input application, as soybean contributes to N fixation 
in soil through double-cropping. Hence, only low or medium fertilizer 
input application scenarios are included in the scenario analysis. Simi
larly, it is considered that perennial plants (oil palm, jatropha) only 
require reduced tillage or no tillage practices. 

Annual crops are generally associated with higher DLUC factors, 
especially when produced at the cost of carbon-rich ecosystems such as 
tropical forests or tropical shrubland. The highest DLUC factor across 
scenarios is estimated for castor bean produced at the cost of tropical 
rainforest, with 80% of emissions arising from biomass losses. Producing 
energy tobacco and castor bean on grassland also delivers DLUC factors 
greater than 80.1 gCO2e/MJ, partially due to the relatively lower yields. 
In other words, energy tobacco and castor bean could not meet the 
CORSIA threshold unless produced in arable land or degraded grassland, 
or grassland with high input application in the case of energy tobacco. 
These patterns are comparable to those of soybean produced in tropical 
and subtropical climates, such as South America. In contrast, other 
lower-yielding crops, mainly camelina and pennycress, generate DLUC 
emissions lower than 80.1 gCO2e/MJ in all scenarios except when pro
duced at the cost of temperate forest. This is because a large share of 
DLUC emissions is allocated to the main crop based on energy allocation. 
Salicornia shows the best performance among oilseed feedstocks, with 
DLUC factors smaller than 80.1 gCO2e/MJ across all scenarios, due to 
co-product allocation assumptions, i.e., straw for fuel production. 
However, the lowest DLUC factor among oilseeds is obtained for jatro
pha produced on long-term cultivated land, with no tillage and low 
input application (− 83.4 gCO2e/MJ). This is mainly related to SOC gains 
and carbon sequestration in crop biomass, which are both substantially 
larger in perennial crops than in annual crops. In contrast, jatropha 
production at the cost of tropical forest or shrubland results in net DLUC 
emissions, as was observed for oil palm. It is important to note that 
DLUC factors are higher than estimated ILUC factors for CORSIA feed
stocks when secondary forest or shrublands are converted into SAF 
production; even improved grassland in the case of rapeseed and cam
elina (>49.4 and 38.4 gCO2e/MJ, respectively vs. 24.1 gCO2e/MJ and 
− 13.4gCO2e/MJ). 

3.5. Total life cycle GHG emissions including DLUC 

Scenario-specific DLUC factors (Fig. 4) are combined with median 
GHG emissions to estimate net GHG savings associated with each sce
nario and evaluate eligibility for CORSIA (Fig. 5). When low and high 
input application is considered for DLUC estimation, WTWa emissions 
are also adjusted accordingly, assuming lower or higher fertilizer doses 
and associated emissions from both production and on-field application. 
These are estimated by using the lowest and highest inputs from the 
probability density function of N fertilizer in line with the scenario 

Fig. 3. Attributional LCA results of oilseed-HEFA pathways in gCO2e/MJ SAF 
when different allocation methods are used for the oil extraction step, median 
values from the stochastic analyses are displayed. Allocation type used for oil 
extraction and fuel production steps co-products: E/E: energy/energy, M/E: 
mass/energy, $/E: market/energy, SAF: Sustainable aviation fuel. 
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chosen for DLUC estimations (Table SM14). For comparison purposes, 
traditional oilseed feedstocks from CORSIA are also included with their 
DLUC emissions from Section 3.4. In the case of CORSIA feedstocks, 
“core-LCA” emissions from the CORSIA document are used [70]. For 
palm-HEFA, the open-pond value from CORSIA is utilized. 

The inclusion of DLUC emissions in the life cycle changes GHG 
emissions dramatically for all feedstocks; these emissions were, in 
principle, below the CORSIA threshold (Fig. 2). Fig. 5 distinguishes 
between combinations of feedstock-scenarios that qualify for CORSIA 
(green), those that do not (red), and those that still provide GHG emis
sions savings (white) but not enough (<10%) to qualify for CORSIA. 

When the scenarios defined in Section 2.6 are considered, castor 
bean and energy tobacco have especially high DLUC factors when pro
duced at the cost of carbon-rich ecosystems, due to relatively lower 
yields (Fig. 4). When including core-LCA emissions, salicornia-HEFA 
yields GHG savings greater than 10% across all scenarios, except for 
tropical steppe loss with low input intensity. Pennycress-HEFA does not 
meet the CORSIA threshold when produced on grassland with full 
tillage, on improved grassland, and on temperate forest. Similarly, 
camelina HEFA only meets the minimum GHG-saving requirements 

when produced at the cost of arable land or degraded grassland; as well 
as grassland with medium input intensity or no tillage. HEFA fuels 
produced from jatropha and oil palm show better GHG performance 
than HEFA fuels produced from annual crops such as soybean, rapeseed, 
castor bean, and energy tobacco. Both perennial crops meet the CORSIA 
threshold unless tropical forests are lost; or tropical shrubland in the 
case of jatropha. Energy tobacco- and castor-HEFA only yield GHG 
savings greater than 10% when grown on arable land; or on degraded 
grassland (mainly with reduced or no tillage and/or high input in
tensity). In contrast, soybean- and rapeseed-HEFA provide GHG savings 
greater than 10% in almost all scenarios that entail conversion of 
degraded grassland. 

Under CORSIA, crops cultivated at the cost of primary forests, wet
lands and peatlands on land converted after January 1, 2008 are not 
eligible for SAF production. In line with CORSIA sustainability criteria, 
it can be expected that oilseeds for HEFA are mainly produced on 
grasslands or previously cultivated arable land. Fig. 6 specifically shows 
DLUC results from these two scenarios of converted land uses (with 
reduced tillage and medium input intensity after conversion as default 
scenario), and how these affect net GHG emissions under of all oilseed- 

Table 3 
Sensitivity analysis for oilseed-HEFA pathways, “gCO2e/MJ SAF” results followed by percent change with respect to the baseline, E/E: energy/energy.   

Base Seed oil content N fertilizer H2 use H2 production No meal  

E/E − 20% +20% − 20% +20% − 20% +20% Electrolysis Coal  

Castor-HEFA 39.5 40.7 
+3.1% 

38.4 
− 2.7% 

36.2 
− 8.2% 

42.7 
+8.2% 

38.7 
− 2.0% 

40.3 
+2.0% 

35.7 
− 9.6% 

43.0 
+8.9% 

50.9 
+28.9% 

Jatropha-HEFA 41.1 44.2 
+7.4% 

38.8 
− 5.8% 

38.1 
− 7.4% 

44.2 
+7.4% 

40.4 
− 1.9% 

41.9 
+1.9 

37.3 
− 9.3% 

44.7 
+8.6% 

56.0 
+36.3 

Pennycress-HEFA 48.1 49.0 
+1.9% 

47.2 
− 1.7% 

42.9 
− 10.8% 

53.3 
+10.8% 

47.3 
− 1.7% 

48.9 
+1.7% 

44.2 
− 8.1% 

51.6 
+7.5 

78.1 
+62.4% 

Salicornia-HEFA 41.5 41.0 
− 1.3% 

42.0 
+1.1% 

40.7 
− 1.9% 

42.3 
+1.9% 

40.7 
− 2.0% 

42.4 
+2.0% 

37.5 
− 9.6% 

45.2 
+8.9% 

71.3 
+71.8 

E. Tobacco-HEFA 44.2 45.9 
+3.9% 

42.7 
− 3.2% 

39.8 
− 10.0% 

48.6 
+10.1% 

43.4 
− 1.8% 

45.0 
+1.9% 

40.3 
− 8.7% 

47.8 
+8.2% 

61.0 
+38.0%  

Fig. 4. Scenario-based DLUC emission factors (gCO2e/MJ) for oilseed feedstocks to be employed in HEFA pathways. Non-feasible combinations are grayed-out. D: 
Degraded; HI: High input intensity; I: Improved; LI: Low input intensity; MI: Medium input intensity; Red: Reduced, CORSIA: Carbon offsetting and reduction scheme 
for international aviation, DLUC: Direct land use change, HEFA: Hydroprocessed esters and fatty acids. 
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HEFA fuels considered. 
Pennycress-HEFA provides 45.8% emissions benefit without the in

clusion of DLUC. When including emissions from grassland conversion 
into penycress (77.0 gCO2e/MJ), GHG emissions savings are reduced to 
13.5%. The effect of DLUC emissions is more significant for castor and 
energy tobacco. WTWa emissions from these crops are 39.5 and 44.2 
gCO2e/MJ SAF, respectively, without DLUC. However, the inclusion of 
DLUC for grassland conversion increases the emissions to 162.9 and 

130.4 gCO2e/MJ SAF, well above the fossil jet reference. Jatropha is still 
the best-performing crop when including DLUC emissions from grass
land conversion, with 12.4 gCO2e/MJ SAF overall emissions, providing 
86.1% of GHG emission reductions. This is mainly due to the carbon 
sequestration in SOC and biomass relative to both, grassland and arable 
land. Grassland conversion also reduces GHG savings for salicornia- 
HEFA (with 49.7 gCO2e/MJ or a 44.2% decrease vs 53.4% without 
DLUC). Among CORSIA feedstocks, camelina- and palm-HEFA provide 
GHG emission benefits of 19.7% and 69.7% for the grassland conversion 
scenario. 

Converting arable land instead of grassland yields greater emission 
savings for all new feedstocks assessed. For instance, this scenario de
livers 67.2% and 60.7% emission savings for castor and energy tobacco, 
respectively. GHG emissions from pennycress-HEFA are 45.5 gCO2e/MJ 
SAF when arable land is converted, providing 48.9% emissions re
ductions. Jatropha delivers the greatest GHG emissions savings when 
cultivated on arable land (− 29.1 gCO2e/MJ or 132.7% emission sav
ings). This indicates that arable land is the preferred land use to be 
converted into SAF production with the goal of reducing GHG emissions 
relative to conventional kerosene. However, this may come at the cost of 
other uses (food, feed), with subsequent ILUC and food security impli
cations. These are out of the scope of this study, as their quantification 
would require CLCA approaches. 

4. Conclusions 

SAFs are seen as one of the most promising alternatives to achieve 
the emission reduction goals from aviation in the short-to medium-term. 
In order to be sustainable SAF should deliver GHG savings relative to 
fossil kerosene based on LCA. However, uncertainty associated with the 
LCA calculations should be considered in detail when estimating the 
potential emission benefits from these fuels. Our stochastic assessment 
of GHG emissions from castor-, jatropha-, pennycress- and salicornia- 
HEFA fuels covers the range of deterministic results reported in the 
literature (Section 2.2) when land use change is not included. No peer- 

Fig. 5. Scenario-based GHG savings (%) for HEFA pathways relative to the CORSIA fossil fuel comparator (89 gCO2e/MJ). Non-feasible combinations are grayed-out. 
D: Degraded; HI: high input intensity; I: Improved; LI: low input intensity; MI: medium input intensity; Red: Reduced. Green: scenarios with GHG savings (%) ≥10, 
white: scenarios with 0 < GHG savings (%) <10, red: scenarios with no reduction in GHG emissions. CORSIA: Carbon offsetting and reduction scheme for inter
national aviation, GHG: Greenhouse gas emissions, HEFA: Hydroprocessed esters and fatty acids. 

Fig. 6. GHG emissions from oilseed-HEFA pathways including DLUC emissions. 
Core-LCA: WTWa GHG emissions without DLUC emissions. DLUC emissions 
factors are included to the WTWa emissions for two scenarios: grassland into 
cropland, and arable land into cropland. * indicates CORSIA feedstocks. HEFA: 
Hydroprocessed esters and fatty acids, LCA: Life cycle assessment, SAF: Sus
tainable aviation fuel 
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reviewed LCA studies for energy tobacco-HEFA jet fuel have been found 
in the literature, and our work will be the first example of this pathway. 
In addition, emission results are found to be most sensitive to the 
hydrogen production method and nitrogen fertilizer use. 

The results indicate that DLUC is a more significant source of un
certainty than parametric uncertainty and allocation assumptions in the 
LCI analysis. The IPCC Tier 1 approach provides carbon stocks at the 
continent level, while both yields and carbon stocks are subject to spatial 
variability, potentially leading to further uncertainty in DLUC estimates. 
Results also show that DLUC emissions can be higher than those esti
mated from ILUC in CORSIA feedstocks [70]. Further harmonization of 
DLUC estimations in CORSIA is desirable, as it is associated with mul
tiple choices, starting with the producing region and major land uses. 
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