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Abstract 

The impacts associated with climate-related disasters have been rising globally. Several studies argue that 
this upward trend is due to rapid growth in population and wealth exposed to hazardous events. Others argue 
that increased frequency, intensity, and duration of extreme weather events due to climate change are 
responsible for the rise. While disaster impacts, such as loss of human life as its most severe consequence, 
are felt more acutely in low-income countries, existing studies focus mostly on developed countries or at the 
cross-country level. Our paper addresses this impact attribution question in the context of the Global South. It 
assesses the attribution of disaster mortality to indicators of climatic hazards, exposure, and vulnerability in 
Nepal. We employ disaster-specific mixed effects zero-inflated negative binomial regression model to study 
the causality of observed 30-year (1992-2021) landslide and flood mortality at the scale of 753 local units of 
Nepal. As explanatory variables, we use mean and extreme precipitation indices; population density; and per 
capita income and a social vulnerability index as indicators of hazards, exposure, and vulnerability. The 
spatiotemporal trends of disaster mortality closely follow the precipitation extremes trends. A one 
standardized unit increase in maximum 1-day precipitation and heavy rain days increase flood mortality by 
33% and landslide mortality by 45%, respectively. A one-unit increase in per capita income decrease landslide 
and flood mortality by 30% and 45%, respectively. Population exposure does not show significant effects. 
Hence, we propose that the observed rise in climate-related disaster mortality, mainly in western Nepal, is 
attributable primarily to the increased precipitation extremes in these regions due to climate change. 
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1. Background 

 

Weather and climate-related disasters have caused 23,144 deaths and 118.3 billion USD economic losses 
annually on average between 2001-2020 worldwide (CRED, 2021). Moreover, climate-related disaster 
occurrences, as well as loss of life and property, are also on the rise globally (Formetta & Feyen, 2019; Hoeppe, 
2016; Hu et al., 2018; UNDRR, 2022). These observed impacts have been increasingly attributed to the 
anthropogenic climate change (Bouwer, 2019; Huggel et al., 2013; IPCC, 2022). The latest report of the 
Intergovernmental Panel on Climate Change (IPCC) has confirmed the fact that the frequency and intensity of 
weather and climate extremes have increased since pre-industrial times due to anthropogenic greenhouse gas 
(GHG) emissions (Seneviratne et al., 2021). There is also high confidence that even a small additional increase 
in global warming will intensify temperature and precipitation extremes. Nevertheless, empirical evidence of the 
rise in climate extremes leading to a rise in disaster impacts is still limited and primarily focuses on the global 
North. 
 
Several studies argue that the rapid growth in population and wealth exposed to disaster events has mainly 
caused the rise in disaster impacts, and a role of climate change is not evident (Bouwer, 2011; McAneney et 
al., 2019; Pielke, 2021; Visser et al., 2014). These studies focusing on socio-economic impact attribution use 
the predominant loss normalization approach first to normalize the impacts by exposure and check for any 
residual trend in the normalized losses that can be attributed to climate change. However, vulnerability is often 
not, or incompletely, accounted for in this literature, potentially resulting in the false attribution of disaster 
impact trends given the dynamic nature of the vulnerability (Botzen et al., 2021; Mechler & Bouwer, 2015). 
Estrada et al. (2015) proposed a regression-based approach to appropriately account for the change in exposure 
and vulnerability. As one of the only studies, they found an upward trend in the economic losses from the US 
hurricane that cannot be explained by the exposure variable. The effect of climatic hazard variables in explaining 
the trend of disaster impacts is much higher if the vulnerability is also controlled (Estrada et al., 2015; Forzieri 
et al., 2017). 
 
In the past two decades, 90% of global disaster mortality has occurred in low- and middle-income countries 
(UNISDR, 2018). The economic losses due to disasters in low- and lower-middle-income countries are 0.8-1% 
of the gross domestic product (GDP) compared to 0.1-0.3% in high- and upper-middle-income countries 
(UNDRR, 2022). Moreover, almost 90% of the about 1.5 billion people exposed to flood risk and a large part of 
3.6 billion people highly vulnerable to climate change live in low- and middle-income countries (IPCC, 2022; 
Rentschler & Salhab, 2020). Therefore, a better understanding of the disaster impacts trends and the role of 
climatic hazards, exposure, and vulnerability in developing countries is essential to plan and implement climate 
change adaptation and disaster risk reduction (DRR) measures. Otherwise, achieving the Sendai Framework for 
Disaster Risk Reduction, the adaptation goal associated with the Paris Agreement, and the Sustainable 
Development Goals will be extremely difficult. Similarly, more evidence from attribution science is essential for 
avoiding and managing loss and damage (L&D) through international mechanisms (James et al., 2019; R. 
Mechler et al., 2020).  
 
However, most of the existing climate-related disaster impact attribution studies are from the United States, 
Europe, or other developed countries (Bouwer, 2019; Pielke, 2021).To address these scientific and policy-
relevant issues in a Global South context, we present an empirical example of the attribution of climate-related 
disaster mortality to indicators of climatic hazards, exposure, and vulnerability in a low-income country. Nepal 
has been among the top ten countries worldwide most affected by climate-related disasters in the past two 
decades (Eckstein et al., 2021). Over ten thousand people lost their lives due to climate-related disasters in the 
past thirty years, and landslides and floods together account for almost 70% of the total climate-related disaster 
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mortality (Chapagain et al., 2022). The INFORM Risk Index 2022 also categorized Nepal as a high-disaster risk 
country, and a significant increase in disaster risk and vulnerability by 2050 is projected due to climatic, 
demographic, and socio-economic changes (Inter-Agency Standing Committee and the European Commission, 
2022). Hence, Nepal well serves as a case study of a low-income and highly disaster-vulnerable country. 
 
In our study, we focus on the loss of human life as a measure of disaster impact as it is the most extreme 
impact of a disaster. Mortality data for Nepal (and in general) are also better recorded than other impacts, 
making it an appropriate proxy for the attribution study. We first studied the spatiotemporal trends of the past 
30 years (1992-2021) of flood and landslide mortality in Nepal. Second, we studied the spatiotemporal trends 
of six mean and extreme precipitation indices in a climate change context. Third, we employed disaster-specific 
mixed effects zero-inflated negative binomial (ZINB) regression models to study the attribution of disaster 
mortality to climatic hazards, exposure, and vulnerability. We used mean and extreme precipitation indices as 
indicators of climatic hazards, population density as indicator of exposure, and per capita income (PCI) and 
social vulnerability index (SoVI) as indicators of vulnerability. Finally, we synthesized the observed 
spatiotemporal trends of disaster mortality with climatic hazards, exposure, and vulnerability indicators together 
with their statistical association to draw a conclusion on the attribution of disaster mortality. 
 
 

2. Methodology 

2.1. Study Location 

Nepal is a mountainous country in South Asia located between 26° 22′ to 30° 27′ N and from 80° 04′ to 88° 
12′ E (fig. 1). This landlocked country has a total area of 147,516 km2 and is divided into five physiographic 
regions namely Tarai, Siwalik, Hills, Middle Mountains, and High Mountains (MoFE, 2021). The Tarai is a low-
lying flatland in the South with the lowest point of 60 m above sea level (m.a.s.l.) and a tropical climate (Karki 
et al., 2015). Within 193 km width from South to North, the altitude increases up to 8,849 m.a.s.l at Mount 
Everest with the permanently snow-covered polar climate in the high Mountains (DOS, 2021). Such dramatic 
variation in altitude within the small area reflects the country's topographic and climatic heterogeneity, leading 
to highly localized extreme precipitation and disaster events (Pokharel et al., 2019). Hills and mountains are 
prone to landslides due to the steep slopes, whereas the deep river valleys and the low-lying flat lands are at 
risk of floods and flash floods. 
 
Administratively, Nepal is divided into seven provinces and 753 local administrative units (MoFAGA, 2019). The 
local administrative units are the smallest sub-national units and are categorized into metropolitan cities, sub-
metropolitan cities, municipalities as urban units, and rural municipalities as rural units. According to the 2021 
census, the country's total population is almost 30 million, of which 66% live in urban units and 34% in rural 
units (CBS, 2022). Nepal is one of the lowest-income countries in the world, with only 1,222 USD per capita 
GDP (World Bank, 2022). 
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Figure 1: Map showing Nepal’s local administrative units, provinces, and physiographic regions. 
Inset: Nepal on the world map. 

2.2. Data sources and processing 

2.2.1. Climate-related disaster mortality 
 
The Emergency Events Database (EM-DAT), NatCatSERVICE, Sigma, Geocoded Disasters Dataset (GDIS), and 
DesInventar are commonly used global disaster databases. Among all, DesInventar is presently the most robust, 
long-term, local scale, and open-access disaster database for Nepal (Aksha et al., 2018; Chapagain et al., 2022). 
It is a global disaster information management system of the United Nations Office for Disaster Risk Reduction 
(UNDRR) to keep inventories of the occurrence and impact of disasters (DesInventar, 2021). Currently, disaster 
data for 1971-2013 is available in DesInventar for Nepal. In recent years, the Nepal DRR Portal of the Ministry 
of Home Affairs (MoHA) regularly updates all disaster events in Nepal (MoHA, 2021). Both databases follow a 
similar recording format and provide information on the type, date, location, and impacts of individual disasters. 
We used disaster data from DesInventar for the period 1992-2013 and the Nepal DRR portal for the period 
2014-2021 to develop 30-year panel data at the local administrative unit level of Nepal for floods and landslides. 
Further information on the database used, quality control, and geocoding are explained in Chapagain et al. 
(2022). 
 

2.2.2. Climatic hazard indicators 
 
Around 400 surface weather stations of the Department of Hydrology and Meteorology (DHM) across Nepal 
keep records of daily temperature, precipitation, and other climatic parameters (DHM, 2017). We identified 232 



 9 

stations across Nepal that provides daily precipitation records for the study period 1992-2021. The observed 
daily precipitation data from the DHM stations were used to estimate mean precipitation indices and extreme 
precipitation duration, frequency, and intensity-related indices at an annual scale using Climpact software (ET-
SCI, 2016). For this study, we selected six precipitation indices (table 1) from the list of Expert Team on Sector-
specific Climate Indices (ET-SCI) that are most relevant to floods and landslides in Nepal (Chapagain et al., 
2021; ET-SCI, 2016). Selected precipitation indices estimated by observational stations are used for the 
spatiotemporal trend analysis in section 3.2. 
 

Table 1: List of selected precipitation indices (adapted from (ET-SCI 2016)). 

Index type ID Name Definition Unit 

Mean precipitation 
PRCPTOT Total annual 

precipitation 
Sum of daily precipitation ≥ 1.0 
mm mm 

SDII Simple daily intensity 
index 

PRCPTOT divided by the number 
of wet days mm/day 

Extreme precipitation 
duration CWD Consecutive wet days 

Maximum annual number of 
consecutive wet days (when 
precipitation is ≥1.0 mm) 

days 

Extreme precipitation 
frequency R10mm Number of heavy rain 

days 
Annual number of days when 
precipitation is ≥10 mm days 

Extreme precipitation 
intensity 

R95pTOT Contribution from very 
wet days 100*R95p/PRCPTOT % 

RX1day Max 1-day 
precipitation 

Maximum annual 1-day 
precipitation total mm 

 
Furthermore, we interpolated station-based daily precipitation data to gridded data for the whole country using 
a Random Forest based merging procedure (Zambrano-Bigiarini et al., 2020). This procedure combines 
information from ground-based observations, satellite-based precipitation products, and topographic features 
to improve the accuracy of spatial interpolation of precipitation data in data-scarce regions (Baez-Villanueva et 
al., 2020). We used gridded daily precipitation data from the Multi-Source Weighted-Ensemble Precipitation 
(MSWEP) (Beck et al., 2019) as a satellite-based precipitation product covariate. Similarly, the ASTER Global 
Digital Elevation Model (DEM) V003 (NASA/METI/AIST/Japan Spacesystems and U.S./Japan ASTER Science 
Team, 2019) was used for topographic features covariates. The one arc-second resolution DEM was aggregated 
to a coarser 0.025° resolution grid using bilinear interpolation. MSWEP data were disaggregated from 0.1° to 
0.025° resolution grids by assigning the same value from the larger original cell. Similar to the station data, the 
merged gridded daily precipitation data were then used to estimate precipitation indices using Climpact. Finally, 
average indices values for each local administrative unit were extracted from the gridded data. The precipitation 
indices by local units were then used for the regression analysis in sections 3.3 and 3.4 as indicators of climatic 
hazards. 
 

2.2.3. Exposure and vulnerability indicators 
 
We accessed population data from the periodic national censuses (1991, 2001, 2011, and 2021) from the 
Central Bureau of Statistics (CBS), Nepal. The per capita income data was accessed from the national scale 
periodic Nepal Living Standards Survey (NLSS) conducted by the CBS. The data were then interpolated and 
extrapolated to develop 30-year panel data at the local administrative unit level of Nepal (see Chapagain et al. 
(2022) for further explanation). The population density was then estimated from the population and local unit's 
area. 
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As an alternate proxy of vulnerability, we used the Social Vulnerability Index (SoVI) to the Natural Hazards data 
developed by Aksha et al. (2019). Aksha et al. (2019) applied a principal component analysis to estimate the 
SoVI for Nepal using 39 variables from seven dimensions of vulnerability (Renters and Occupation, Poverty and 
Poor Infrastructure, Favorable Social Conditions, Migration and Gender, Ethnicity, Medical Services, and 
Education). The SoVI uses cross-sectional data based on the 2011 national census. Therefore, we also 
aggregated disaster mortality, climatic hazards, and exposure indicator data for the period 2007 to 2015 for the 
regression analysis with SoVI data in section 3.4. 
 

2.3. Trend analysis 

The temporal trends of disaster mortality, frequency, and precipitation indices were estimated using the 
nonparametric Mann-Kendall test (Mann, 1945) and Theil-Sen slope (Sen, 1968). The Mann-Kendall p-value 
assesses the presence or absence of a monotonic trend in data, and the Theil-Sen slope estimates the trend 
slope. Both tests are widely used methods in the disaster trend analysis (Chapagain et al., 2022; Karki et al., 
2017; Wu et al., 2019) because of their ability to handle missing data and the influence of outliers as well as 
the absence of any distributional assumptions (Chandler & Scott, 2011). 
 

2.4. Regression model fitting 

Climate-related disaster impacts occur due to the complex interaction of hazards, exposure, and vulnerability 
(IPCC, 2012; Oppenheimer et al., 2014). In this risk framework, since taken forward by the IPCC (IPCC, 2022), 
climatic hazard usually refers to climate-related physical events or trends or their physical impacts (IPCC, 2014). 
Climatic hazard becomes a disaster when it interacts with exposure and vulnerability and causes impacts. 
Exposure, for example, is the people living in places and settings that could be adversely affected; vulnerability 
is their propensity or predisposition to be adversely affected (IPCC, 2014). In this study, we focused on observed 
human mortality as a measure of disaster impacts. We developed a regression-based approach to study flood 
and landslide mortality attribution to climatic hazards, exposure, and vulnerability indicators. 
 
Floods and landslides are precipitation-related disasters, so we used six mean and extreme (duration, frequency, 
and intensity-based) precipitation indices defined in table 1 as indicators of climatic hazards. Since we are 
looking at the human aspect of disaster impacts, we used population density as an indicator of exposure. 
Vulnerability is the characteristic generated by multiple factors such as social, economic, political, cultural, 
institutional, and environmental conditions (IPCC, 2012). To this effect, we used per capita income as a proxy 
of vulnerability as in many other disaster studies (Formetta & Feyen, 2019; Jongman et al., 2015; Tanoue et 
al., 2016; Wu et al., 2019; Zhou et al., 2014). We also used the composite SoVI as a measure of social 
vulnerability to climate-related disasters. Finally, to control for the effects of all other location-specific 
unobserved variables on disaster mortality, we added location (local administrative unit) random effects and 
employed mixed effects regression models (Park, 2011). The regression models were run separately for flood 
and landslide mortality. 
 
We started fitting the regression models with the ordinary least squares (OLS) mixed effects linear model. 
However, disaster mortality is right-skewed count data with many small and occasionally large values. 
Therefore, count data models such as Poisson, negative binomial, and zero-inflated models are better suited 
for disaster mortality than the linear model (Roback & Legler, 2021). The mortality data also suffered from the 
overdispersion issue, i.e., variance is greater than the mean and violated the equidispersion assumption for 
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standard Poisson regression (table S1 in supplementary materials - SM). Hence, we tested the negative binomial 
model to account for overdispersion in the dependent variable (Roback & Legler, 2021). The disaster mortality 
data also includes many observations where there was zero mortality. To take excess zero into account, we 
fitted the zero-inflated regression models. 
 
The zero-inflated regression model is a two-part model providing more robust statistical results for the zero-
inflated data (Kim et al., 2019; Roback & Legler, 2021). The zero-inflated model part first fits the logistic 
regression to predict the number of structural and actual zeros. In this case of disaster mortality, the local units 
in a particular year with a zero probability of disaster fatality are the structural zeros, and the units with a 
positive probability still did not experience fatality are the actual zeros. The count model part separates the 
excessive zeros from the structural origin and runs the count data model with a log-linear link function. Results 
of mixed effects linear, Poisson, negative binomial, zero-inflated Poisson, and zero-inflated negative binomial 
(ZINB) models are compared to identify the most robust model. These results are presented in table S2 in SM. 
Descriptive statistics (such as mean, variance, and dispersion), model diagnostics, and goodness-of-fit 
measures, mainly the Akaike Information Criterion (AIC), Bayesian information criterion (BIC), R2, and 
Interclass Correlation Coefficient (ICC) were explored in the model selection process. We mostly observed the 
consistent direction of the association and its significance between dependent and explanatory variables across 
the models. However, the R2 value is highest (0.47), and AIC and BIC are lowest in the case of the ZINB model. 
Based on the results, we identified the mixed effects ZINB model as the most appropriate regression model for 
disaster mortality. The count model part of the regression model with log link is summarized below in equation 
1. 
 

log (𝑀!,#) = a	 +	𝛽$𝐻!,# +	𝛽%𝐸!,# +	𝛽&𝑉!,# + 𝑢! + 𝑣!,#  (1) 
 
The dependent variable 𝑀!,# is the disaster-specific total annual mortality in local administrative unit 𝑖	in year 𝑡. 
The explanatory variable 𝐻!,# is the corresponding climatic hazard indicators, i.e., observed mean and extreme 
precipitation indices defined in table 1. 𝐸!,# is the corresponding population density to represent disaster 
exposure. 𝑉!,# is the vulnerability component, and we used PCI and SoVI as vulnerability proxies. The intercept 
a is the grand mean of location-specific intercepts. 𝛽$, 𝛽%, and 𝛽& are the marginal effects of hazards, exposure, 
and vulnerability indicators. 𝑢! is the random effect variable to accommodate local administrative unit-specific 
heterogeneity. 𝑣!,# is the standard random error term. 

 

3. Results 

3.1. Spatiotemporal trends of climate-related disaster mortality in 
Nepal 

More than 10,000 people lost their lives due to climate-related disasters in Nepal in the past three decades. 
Landslides and floods killed 3,692 and 3,201 people respectively, which together account for 70% of the total 
climate-related disaster mortality. Landslide mortality was highest in mid-hills and mountains in eastern 
(Province 1) and central Nepal (Bagmati and Gandaki). Flood mortality was highest in central Nepal (Madhesh, 
Bagmati, and Gandaki) (fig. 2). Western Nepal (Lumbini, Karnali, and Sudurpashchim) has experienced relatively 
lesser disaster mortality in the past. 
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Figure 2: Spatial trends of landslide and flood mortality in Nepal during 1992 - 2021. 

 
Temporal trends show that disaster mortality is mainly increasing in western Nepal, which was historically less 
impacted regions. Both the frequency and mortality of the flood and landslide showed statistically significant 
increasing trends at p = 0.05 level during the past three decades in Lumbini, Karnali, and Sudurpashchim 
provinces. The trends are mostly not significant but positive in Gandaki, Bagmati, Madhesh, and Province 1 in 
central and eastern Nepal (table 2). Flood frequency in Province 1 and landslide frequency in Bagmati and 
Gandaki showed statistically significant increasing trends. 
 

Table 2: Trends of flood and landslide mortality (number of fatalities/year) and frequency 
(number of incidences recorded/year) in Nepal by provinces. Trends slope based on Theil-Sen 

slope and significance based on Mann-Kendall p-value. 

Province 
Flood Landslide 

Mortality Frequency Mortality Frequency 
1. Province 1 0.211 0.4 *** 0 0.059 
2. Madhesh 0.167 0.1 0 0 
3. Bagmati 0 0.118 0.222 0.3 ** 
4. Gandaki 0.182 0.1 * 0.375 0.273 ** 
5. Lumbini 0.524 *** 0.4 *** 0.4 ** 0.25 *** 
6. Karnali 0.167 ** 0.105 *** 0.579 *** 0.286 *** 
7. Sudurpashchim 0.24 ** 0.2 ** 0.318 ** 0.25 *** 

Significance codes: *p < 0.1; **p < 0.05; ***p < 0.01 
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3.2. Spatiotemporal trends of mean and extreme precipitation 
indices in Nepal 

Mean and extreme precipitation indices showed mixed trends across the country, with mostly rising trends in 
western Nepal but decreasing in central Nepal in the past 30 years (fig. 3). Rising trends in total annual 
precipitation (PRCPTOT) have been observed in 75% of the stations in Karnali (significant in 13%), and 57% 
in Sudurpashchim province (significant in 5%). Consecutive wet days (CWD), a duration-based extreme 
precipitation index, showed rising trends in 50% of the stations in Karnali (significant in 6%) and 42% in 
Sudurpashchim (significant in 11%). The annual number of heavy rain days (R10mm), an extreme precipitation 
frequency index, showed increasing trends in 53% of stations in Sudurpashchim (significant in 5%). Maximum 
1-day precipitation (RX1day), an indicator of extreme precipitation intensity, showed increasing trends in 68% 
of the stations in Sudurpashchim (significant in 11%) and 58% in Lumbini (significant in 15%). Contribution 
from very wet days (R95pTOT), another intensity-based index, also showed an increasing trend in 58% of the 
stations in both Sudurpashchim and Lumbini (significant in 5% and 4% respectively). 
 
In central Nepal, precipitation indices mostly showed decreasing trends. PRCPTOT and simple daily intensity 
index (SDII) have decreased in 83% of the stations in Bagmati (significant in 21% and 24%). Similarly, CWD 
showed decreasing trends in 60% (significant in 24%) and R10mm in 86% of stations (significant in 29%). 
RX1day and R95pTOT showed decreasing trends in 76% (significant in 10%) and 69% of the stations 
respectively (significant in 14%). A similar pattern has been observed in Gandaki province. R10mm and 
R95pTOT showed decreasing trends in 53% and 58% of stations in Gandaki (significant in 18% and 13%). 
 

 

 
Figure 3: Temporal trends of mean and extreme precipitation indices during 1992-2021 by 

observational stations across Nepal. 

 



 14 

3.3. Attribution of disaster mortality to climatic hazards 

All the mean and extreme precipitation indices studied showed a significant positive association with landslide 
mortality and most of the indices showed a significant positive association with flood mortality (fig. 4). Results 
of selected regression models are presented in table 3 and all regression models are presented in table S3 and 
S4 in SM. Regression results show that one unit (one standard deviation from the mean) increase in PRCPTOT 
increases landslide mortality by 41% and flood mortality by 16 % (ceteris paribus). The rise in extreme 
precipitation intensity showed the most potent effect on flood mortality. A one unit increase in RX1day and 
R95pTOT increase flood mortality by 33% and 31% respectively. The effects of extreme precipitation frequency 
and duration are highest in landslide mortality. Landslide mortality increased by 45% and 34% with a one unit 
increase in R10mm and CWD respectively. 
 

 

 
Figure 4: Effects of mean and extreme precipitation indices (in standardized Z-score) on flood 

and landslide mortality shown as Incidence Rate Ratios - IRR (points), and its 95% confidence 
interval (lines). IRRs are estimated from the mixed effects ZINB models and equal to the exp 

(𝜷𝒉) in equation 1. Statistical significance at the 0.05 level (see SM table S3 and S4 for the 
complete regression results). 

 
The differences in effect size and significance of extreme precipitation indices with flood and landslide mortality 
could also be due to the nature of disaster types. Landslides are largely local phenomena, so the local unit’s 
boundary appears sufficient to capture the precipitation events associated with the landslides. However, floods 
are not only determined by the local precipitation events but also by upstream precipitation. Our regression 
model does not capture the precipitation events that could have been observed in the local units upstream but 
caused flooding in the local units downstream. 
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Table 3: Results of mixed effects ZINB models. Disaster mortality as a dependent variable and 
indicators of exposure, vulnerability, and hazard (in standardized Z-score) as explanatory 

variables. 

 Flood mortality Landslide mortality 
Predictors IRR CI p IRR CI p 
Count Model 
Intercept 0.42 0.33 – 0.54 <0.001 0.61 0.39 – 0.96 0.033 
Pop. density 1.03 0.91 – 1.17 0.637 0.96 0.87 – 1.06 0.432 
Per capita income 0.55 0.48 – 0.63 <0.001 0.70 0.62 – 0.78 <0.001 
RX1day 1.33 1.21 – 1.46 <0.001    
R10mm    1.45 1.28 – 1.66 <0.001 
Zero-Inflated Model 
Intercept 1.96 1.38 – 2.79 <0.001 1.56 0.69 – 3.50 0.283 
Pop. density 1.21 1.04 – 1.40 0.014 0.99 0.83 – 1.17 0.878 
Per capita income 0.29 0.23 – 0.36 <0.001 0.45 0.32 – 0.64 <0.001 
RX1day 0.66 0.58 – 0.74 <0.001    
R10mm    0.77 0.67 – 0.89 <0.001 
Observations 15420 13020 
Marginal R2 0.303 0.466 
Conditional R2 1.00 1.00 

 

3.4. Attribution of disaster mortality to vulnerability and 
exposure 

Per capita income as a proxy indicator of vulnerability showed a significant negative association with disaster 
mortality. A one-unit increase in per capita income decreases landslide mortality by 30% and flood mortality by 
45% (table 3). The social vulnerability index showed a positive association with disaster mortality but was 
significant only with landslide mortality (table 4). A one-unit increase in SoVI increases landslide mortality by 
22%. The population density as a proxy of exposure does not show any significant association with disaster 
mortality. 

Table 4: Results of negative binomial models. Disaster mortality as a dependent variable and 
indicators of exposure, vulnerability, and hazard (in standardized Z-score) as explanatory 

variables. 

 Flood mortality Landslide mortality 
Predictors IRR CI p IRR CI p 
Intercept 2.98 2.67 – 3.33 <0.001 3.80 3.40 – 4.25 <0.001 
Pop. density 0.80 0.67 – 0.92 0.008 0.95 0.82 – 1.09 0.443 
Social Vulnerability Index 1.08 0.97 – 1.21 0.154 1.22 1.08 – 1.38 0.001 
RX1day 1.13 1.01 – 1.26 0.036    
R10mm    1.38 1.24 – 1.54 <0.001 
Observations 271 252 
R2 Nagelkerke 0. 079 0.212 
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4. Discussion 

 

Landslides and floods have been the two deadliest disasters in Nepal, accounting for 70% of the total climate-
related disaster mortality during 1992 - 2021. Historically, flood and landslide mortality have been highest in 
central and eastern Nepal and lowest in western Nepal. This spatial pattern of disaster mortality aligns exactly 
with Nepal’s mean and extreme precipitation pattern. Eastern and central Nepal have received higher 
precipitation due to the dominance of the Indian summer monsoon (Karki et al., 2017; Talchabhadel et al., 
2018). The highest mean annual precipitation (> 3,500 mm) has been mostly located in around 83° – 85° 
longitudinal zones in central Nepal between 2,000 to 3,500 m elevation (Talchabhadel et al., 2018). Similarly, 
the southern foothills of central Nepal have received the highest extreme precipitation, and pocket areas in the 
middle mountain received relatively higher extreme precipitation (Karki et al., 2017; Talchabhadel et al., 2018). 
Western Nepal has received less precipitation than the country on average, and the disaster mortality has also 
been the lowest in this region. 
 
When we look at the temporal trends of disaster mortality and frequency, it is significantly increasing in western 
Nepal but does not show significant trends in central and eastern Nepal. Almost similar temporal trends are 
observed in mean and extreme precipitation indices. Most of the stations in western Nepal have shown a rise 
in mean and extreme precipitation, although the trends are statistically significant in a relatively small proportion 
of the stations. Rising precipitation extremes in western Nepal are also confirmed by previous studies (Bohlinger 
& Sorteberg, 2018; Karki et al., 2017; Pokharel et al., 2019; Talchabhadel et al., 2018). There is high confidence 
that such a rise in precipitation extremes at the global and regional scales is a direct consequence of increased 
radiative forcing and the increase in the water-holding capacity of the atmosphere due to global warming 
(Seneviratne et al., 2021). For example, 1°C of warming results in a 7% increase in atmospheric water vapor 
content, leading to a robust increase in precipitation extremes such as RX1day (Seneviratne et al., 2021). The 
change in precipitation patterns and the rise in extreme precipitation in the Himalayas are attributed to the 
warming Indian Ocean, alteration of Arctic Oscillation, and intensification of an upper tropospheric mid-latitude 
shortwave due to the rise in greenhouse gases and aerosols (Karki et al., 2017; Wang et al., 2013). 
 
Nepal’s flood and landslide mortality showed a mostly significant positive association with the mean precipitation 
and extreme precipitation duration, frequency, and intensity. The rise in extreme precipitation intensity, such 
as maximum one-day precipitation (RX1day) and contribution from very wet days (R95pTOT), is mainly 
associated with flood mortality in Nepal. Most of the deadliest flooding events in recent years in Nepal, such as 
the Melamchi flood of 2021, the Terai flood of 2017, and the western Nepal flood of 2014, were triggered by 
unusually high-intensity precipitation events (Bhandari et al., 2018; ISET, 2015; Maharjan et al., 2021). Such 
high-intensity precipitation events cause a sudden rise in peak flow triggering floods, particularly flash floods, 
along the river valleys providing no time for people to escape and causing higher mortality. Landslide mortality 
in Nepal is strongly associated with extreme precipitation frequency indices such as the annual number of heavy 
rain days (R10mm) and duration indices such as consecutive wet days (CWD). The accumulated rain over the 
previous 3, 7, and 10-day is directly associated with the landslide occurrence in the hills and mountains in Nepal 
(Dahal & Hasegawa, 2008; Muñoz-Torrero Manchado et al., 2021). Because the continuous precipitation events 
saturate the soil water triggering slope failure (Kirschbaum et al., 2015). Moreover, the highest incidences of 
landslides in western Nepal have been recorded when the wet monsoon has been preceded by a warm and dry 
monsoon (Muñoz-Torrero Manchado et al., 2021). 
 
As a proxy of vulnerability, per capita income showed a significant negative association with flood and landslide 
mortality. This may suggest that income increases are associated with reduced disaster vulnerability, thus 
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ultimately reducing disaster mortality. Because higher income increase the demand for higher safety and also 
enable people to spend more on physical and non-physical risk reduction measures such as better housing, 
early warning systems, and disaster response (Formetta & Feyen, 2019; Jongman et al., 2015; Wu et al., 2019). 
A significant positive association of landslide mortality with the social vulnerability index indicates that regions 
with high social vulnerability experience higher landslide mortality. We do not find a significant role of population 
density on landslide and flood mortality in Nepal. In the context of Nepal, this refutes the conclusion that the 
observed increase in disaster impacts is mainly due to exposure increments (Bouwer 2011; Visser et al. 2014; 
McAneney et al. 2019; Pielke 2021). We argue that the mortality in highly populated regions is not higher 
because urban areas in Nepal are relatively less vulnerable to climate-related disasters than rural areas 
(Chapagain et al., 2022). 
 
With additional global warming, extreme precipitation events will inevitably become more frequent and intense 
worldwide. For each 1°C of global warming, the extreme daily precipitation events are projected to intensify by 
around 7% on a global scale (IPCC, 2021). In Nepal, extreme precipitation events are projected to rise with the 
strongest rise in high emission scenarios (Chapagain et al., 2021; MoFE, 2019; Rajbhandari et al., 2017). For 
example, the number of extremely wet days is projected to increase by 28% in 2016-2045 and by 60% in 2036-
2065 in the high emission (RCP8.5) scenario compared to the 1981-2010 period (MoFE, 2019). Such a rise in 
precipitation extremes in Nepal and worldwide is most likely to increase disaster mortality if the vulnerability of 
the exposed population is not reduced. 
 
This study is based on the most robust and high-resolution empirical data currently available for a country like 
Nepal. Nevertheless, climate change attribution science is complex and inherits several uncertainties. Further 
improvements in geocoding of the disaster locations, improved delineation of the disaster-specific exposure 
boundary, and inclusion of more indicators of explanatory variables, particularly the vulnerability indicators, 
could further improve the accuracy of our findings. Moreover, similar studies for other climate-related disaster 
types and in other countries, regions, and on a global scale could provide more empirical evidence of the role 
of climate change on disaster impacts from different parts of the world. 
 
 

5. Conclusions 

 

There have been increasing trends of climate-related disasters and their socio-economic impacts worldwide. 
Particularly, the poor people in the Global South are mainly impacted by such disasters. The extreme weather 
and climate events have also increased due to anthropogenic climate change and are projected to increase 
further in future GHG emission scenarios. Nevertheless, extremely limited studies have looked at the role of 
climate change on rising disaster impacts in low-income countries. Here, we studied the spatiotemporal trends 
of flood and landslide mortality and its attribution to climatic and socio-economic changes at the sub-national 
scale in the low-income country's context, taking Nepal as a case study. 
 
We found that the flood and landslide mortality in the past three decades was highest in central and eastern 
Nepal and lowest in western Nepal. This pattern of disaster mortality matched closely with the observed spatial 
pattern of mean and extreme precipitation in Nepal. The temporal trends of extreme precipitation events mainly 
showed increasing trends in western Nepal but mostly decreasing trends in central Nepal. Correspondingly, the 
landslide and flood frequency and mortality have also increased in western Nepal, but no significant trends were 
observed in central and eastern Nepal. Such spatiotemporal patterns showed a direct association between 
precipitation extremes and landslide and flood mortality. 
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Regression results confirmed that the extreme precipitation events, mainly the extreme precipitation intensity 
(RX1day and R95pTOT), have increased flood mortality, and extreme precipitation frequency and duration 
(R10mm and CWD) have increased landslide mortality. A one unit increase in RX1day and R95pTOT increase 
flood mortality by 33% and 31% respectively. A one unit increase in R10mm and CWD increase Landslide 
mortality by 45% and 34% respectively. Lower vulnerability, represented by higher income and lower social 
vulnerability, has decreased flood and landslide mortality. A one-unit increase in per capita income decreases 
landslide mortality by 30% and flood mortality by 45%. However, population exposure did not show a significant 
effect on mortality. Hence, the observed rise in flood and landslide mortality, mainly in western Nepal, is 
attributable primarily to the rise in precipitation extremes in these regions due to climate change. Moreover, 
the projected rise in precipitation extremes is most likely to increase climate-related disaster mortality in the 
future if no actions are taken to reduce the vulnerability strongly. 
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Supplementary materials 
 
 

Table S1: Descriptive statistics of dependent variable 

Parameter Landslide mortality Flood mortality 
Observations (n) 13020 15420 
Mean 0.28 0.21 
Variance 3.97 16.9 
Dispersion 
(Dispersion test results for Poisson model) 

12.23 
(p-value = 0.0016) 

70.34 
(p-value = 0.0821) 
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Table S2: Comparison of OLS and count data regression models. Explanatory variables in standardized Z-score. 

 Dependent variable: number of fatalities due to landslides 

 
Linear Poisson Negative Binomial Zero-Inflated Poisson 

Zero-Inflated Negative 

Binomial 

Predictors Estimates std. Error p IRR std. Error p IRR std. Error p IRR std. Error p IRR std. Error p 

Intercept 0.28 0.02 <0.001 0.16 0.01 <0.001 0.20 0.01 <0.001 1.90 0.11 <0.001 0.61 0.14 0.033 

Pop. density -0.01 0.02 0.586 0.95 0.04 0.206 0.95 0.05 0.294 1.02 0.06 0.770 0.96 0.05 0.432 

Per capita income -0.00 0.02 0.994 1.06 0.02 0.005 1.06 0.06 0.235 0.75 0.02 <0.001 0.70 0.04 <0.001 

R10mm 0.14 0.02 <0.001 1.72 0.05 <0.001 1.69 0.09 <0.001 1.29 0.04 <0.001 1.45 0.10 <0.001 

Zero-Inflated Model 

Intercept          9.09 0.42 <0.001 1.56 0.64 0.283 

Pop. density          1.03 0.05 0.507 0.99 0.09 0.878 

Per capita income          0.71 0.03 <0.001 0.45 0.08 <0.001 

R10mm          0.76 0.03 <0.001 0.77 0.06 <0.001 

Random Effects 

σ2 3.94 1.91 3.26 0.01 0.00 

τ00 0.01 Local units 0.81 Local units 0.23 Local units 0.72 Local units 0.32 Local units 

ICC 0.00 0.30 0.07 0.99 1.00 

N 434 Local units 434 Local units 434 Local units 434 Local units 434 Local units 

Observations 13020 13020 13020 13020 13020 

Marginal R2 

Conditional R2 

0.005 

0.008 

0.099 

0.366 

0.075 

0.135 

0.164 

0.990 

0.466 

1.000 

AIC 54870.8 22536.7 11376.1 12750.5 11277.2 

BIC 54915.6 22574.1 11421.0 12795.4 11326.1 

log-Likelihood -27429. 4 -11263.4 -5682.1 -6364.3 -5626.6 
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Table S3: Results of mixed effects zero-inflated negative binomial models. Flood mortality as dependent 
variable and indicators of exposure, vulnerability, and hazard (in standardized Z-score) as explanatory 

variables. 

 Dependent variable: number of fatalities due to floods 

 (1) (2) (3) (4) (5) (6) 

Predictors IRR p IRR p IRR p IRR p IRR p IRR p 

Count Model 

Intercept 0.35 <0.001 0.37 <0.001 0.36 <0.001 0.40 <0.001 0.42 <0.001 0.41 <0.001 

Pop. density 1.00 0.987 1.04 0.569 1.00 0.975 1.04 0.531 1.03 0.637 1.04 0.547 

Per capita income 0.60 <0.001 0.58 <0.001 0.60 <0.001 0.57 <0.001 0.55 <0.001 0.57 <0.001 

CWD 1.04 0.617           

PRCPTOT   1.16 0.034         

R10mm     1.06 0.399       

R95pTOT       1.31 <0.001     

RX1day         1.33 <0.001   

SDII           1.16 0.025 

Zero-Inflated Model 

Intercept 0.99 0.981 1.21 0.397 1.03 0.890 1.64 0.014 1.96 <0.001 1.55 0.029 

Pop. density 0.67 0.142 1.12 0.425 0.77 0.315 1.20 0.026 1.21 0.014 1.19 0.042 

Per capita income 0.22 <0.001 0.22 <0.001 0.21 <0.001 0.26 <0.001 0.29 <0.001 0.26 <0.001 

CWD 0.85 0.102           

PRCPTOT   0.69 <0.001         

R10mm     0.79 0.009       

R95pTOT       0.68 <0.001     

RX1day         0.66 <0.00   

SDII           0.74 <0.001 

Random Effects 

σ2 0.00 0.00 0.00 0.00 0.00 0.00 

τ00 0.77 Local units 0.83 Local units 0.78 Local units 0.85 Local units 0.90 Local units 0.86 Local units 

ICC 1.00 1.00 1.00 1.00 1.00 1.00 

N 514 Local units 514 Local units 514 Local units 514 Local units 514 Local units 514 Local units 

Observations 15420 15420 15420 15420 15420 15420 

Marginal R2 0.254 0.264 0.257 0.304 0.303 0.267 

Conditional R2 1.00 1.00 1.00 1.00 1.00 1.00 

AIC 10695.5 10626.4 10680.7 10536.4 10471.8 10631.6 

BIC 10746.5 10677.3 10731.6 10587.3 10522.7 10682.5 
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Table S4: Results of mixed effects zero-inflated negative binomial models. Landslide mortality as 
dependent variable and indicators of exposure, vulnerability, and hazard (in standardized Z-score) as 
explanatory variables. 

 Dependent variable: number of fatalities due to landslides 

 (1) (2) (3) (4) (5) (6) 

Predictors IRR p IRR p IRR p IRR p IRR p IRR p 

Count Model 

Intercept 0.50 0.001 0.60 0.035 0.61 0.033 0.69 0.103 0.79 0.195 0.64 0.069 

Pop. density 0.98 0.703 0.97 0.490 0.96 0.432 0.95 0.381 0.95 0.399 0.95 0.313 

Per capita income 0.75 <0.001 0.69 <0.001 0.70 <0.001 0.70 <0.001 0.69 <0.001 0.69 <0.001 

CWD 1.34 <0.001           

PRCPTOT   1.41 <0.001         

R10mm     1.45 <0.001       

R95pTOT       1.16 0.020     

RX1day         1.23 <0.001   

SDII           1.29 <0.001 

Zero-Inflated Model 

Intercept 0.97 0.942 1.56 0.307 1.56 0.283 1.96 0.066 2.61 <0.001 1.67 0.224 

Pop. density 0.89 0.437 1.01 0.868 0.99 0.878 1.02 0.862 1.04 0.616 1.02 0.760 

Per capita income 0.36 <0.001 0.45 <0.001 0.45 <0.001 0.50 <0.001 0.55 <0.001 0.47 <0.001 

CWD 0.74 0.001           

PRCPTOT   0.71 <0.001         

R10mm     0.77 <0.001       

R95pTOT       0.72 <0.001     

RX1day         0.72 <0.001   

SDII           0.81 0.003 

Random Effects 

σ2 0.00 0.00 0.00 0.00 0.00 0.00 

τ00 0.28 Local units 0.33 Local units 0.32 Local units 0.42 Local units 0.50 Local units 0.39 Local units 

ICC 1.00 1.00 1.00 1.00 1.00 1.00 

N 434 Local units 434 Local units 434 Local units 434 Local units 434 Local units 434 Local units 

Observations 13020 13020 13020 13020 13020 13020 

Marginal R2 0.41 0.44 0.47 0.26 0.25 0.34 

Conditional R2 1.00 1.00 1.00 1.00 1.00 1.00 

AIC 11310.4 11258.9 11277.2 11318.8 11280.9 11334.9 

BIC 11359.3 11307.7 11326.1 11367.7 11329.7 11383.8 
 

 


