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Abstract 

Agricultural management practices largely rely on empirical approaches reflecting farmers’ experiences from 

past years. These empirical decisions are afflicted with uncertainty due to incomplete knowledge of the complex 

crop-environment-management interactions. In the face of climate change, these complexities are expected to 

become more adverse, leaving empirical management at risk for failure. With this study, we want to contribute 

to the development of an agricultural decision support system that facilitates current crop management to be 

more resource efficient and reduce GHG emissions from agriculture. We focus on synthetic nitrogen (N) 

fertilization as an application case of this tool and integrate a process-based crop model and model input data 

from different sources and of different availability as a prototype of a potential support tool. We ask how 

coarse/specific certain input needs to be, and how to attain this level of information, when only little output 

uncertainty is tolerable for a local management improvement. 

To do so, we created a decision support prototype based on a multi-scenario simulation experiment for winter 

wheat in Eastern Austria as a case study region. We analyzed the simulated output against data collected from 

four field experiments within our study region. After reducing data uncertainty, we were able to create results 

potentially relevant for local fertilization improvements. As a cost-efficient means to achieve this reduction in 

uncertainty, we propose both a targeted involvement of users within our system and the integration of remote 

sensing data to further improve the performance, accuracy, and applicability of a decision support system such 

as our prototype. 
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Introduction 

In recent years, the pressure on cropping systems to provide food in sufficient quantity and quality while moving 

to more sustainable, "greener" production has increased. Projected increases in frequency and severity of 

weather extremes such as droughts, heat waves, or frosts, together with other climate change related impacts, 

including altered precipitation patterns or pathogen infestations, are expected to pose a significant threat to 

global yields and food production (Leng and Hall, 2019; Savary et al., 2019; Spinoni et al., 2018; Zhao et al., 

2017); at the same time, global agricultural production contributes up to 31 % of greenhouse gas emissions 

(OECD, 2016). In addition to CO2 emissions from land use and land use change, cropping systems produce 

greenhouse gases through nitrous oxide emissions from inadequate synthetic nitrogen (N) fertilizer applications 

(Poore and Nemecek, 2018), and leaching of N to groundwater from over-fertilization can have negative impacts 

on aquatic ecosystems and other vegetation (Cameron et al., 2013; Liu et al., 2020; Lu et al., 2014). It is 

estimated that only 30–50 % of the applied N is actually used by crops (Godinot et al., 2016; Ladha et al., 

2016; Swaney et al., 2018), leading to significant loss of applied N from agricultural fields, resulting in negative 

environmental impacts. In addition, the prospect of substantially higher costs for both N fertilizer production 

and application (due to increases in energy and fuel prices) puts farms at economic risk, when N is applied 

inadequately. 

 

Consequently, the European Commission explicitly proposed "an obligatory nutrient management tool, designed 

to help farmers improve their water quality and reduce ammonia and nitrous oxide levels on their farms" 

(European Commision, 2018), pointing out the importance of improved nutrient (and specifically N) 

management in agriculture. Currently, agricultural N-fertilization practices largely rely on empirical approaches 

reflecting farmers’ experiences from past years. These empirical decisions are afflicted with uncertainty due to 

incomplete knowledge of the complex crop-environment-management interactions, however. In the face of 

climate change, these complexities are expected to become more adverse (Eitzinger et al., 2013; IPCC, 2014; 

Jägermeyr et al., 2021; Ray et al., 2019), leaving empirical management at risk for failure. Another difficulty 

related to N management is that the final outcome of a cropping season (yields) determines how much fertilizer 

has to be applied at the beginning of the season and vice versa, such that the amount of fertilizer applied early 

during a year determines biomass and yield formation at the time of harvest. 

At this point, crop models of different formats have proved versatile tools, translating the multitude of crop-

environment-management complexities into more applicable management support. The advantage of process-

based crop models compared to empirical, statistical, or any more recent AI related approaches is that by 

capturing the underlying biophysical input-output processes these models can predict a whole number of 

outputs, even ones other than the input, making them an integral tool to improve agricultural management in 

many cases (Laso Bayas et al., 2020; Machwitz et al., 2019; Morari et al., 2020). For example, the SSM-iCrop 

model (Soltani and Sinclair, 2012) has been extended and calibrated for winter wheat in Eastern Austria in 

previous studies (Ebrahimi et al., 2016; Manschadi et al., 2021; Manschadi et al., 2022). 

 

Most process-based crop models are based on four categories of input data (at different resolutions and number 

of associated parameters): weather data, genetic characteristics of the grown crop, soil conditions, and 

management measures. For the case of N management this means that one can use above-ground dry matter 

simulations as a convenient proxy to adjust both fertilizer timing and amount, while only defining weather, crop, 

management, and soil conditions. However, the condition for the system to work is that the necessary input 

data is available to the user. In a best-case scenario, such a simulation tool is based on perfectly known 
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conditions: daily available weather data, well calibrated crop characteristics, precise management timing, and 

measurements of the prevailing soil conditions. Mostly because of resource-intensive measurement procedures, 

this is rarely the case, meaning that at least some degree of input uncertainty must be expected (Balkovič et 

al., 2020; Folberth et al., 2019b). 

Given that, we want to understand for which input a certain degree of uncertainty can be accepted and what 

is inevitably required in order to improve agricultural fertilization strategies based on model simulations. To do 

so, we created a multi-scenario simulation experiment, but gradually moving from a scenario of maximum input 

certainty to a scenario of maximum input uncertainty. For the scenario set-up, we included the most important 

soil-related parameters and a range of feasible management strategies as factors, and compared the full range 

of simulation outcomes to ground-truth measurements from four winter wheat field experiments in the study 

region of Eastern Austria. This region is known as the breadbasket of the country, with winter wheat being the 

most important crop grown. 

 

With this study, we want to contribute to the development of an agricultural decision support system that 

facilitates current crop management to be more resource efficient and reduce GHG emissions from agriculture. 

We focus on synthetic nitrogen (N) fertilization as an application case of this tool and integrate a process-based 

crop model and model input data from different sources and of different availability as a prototype of a potential 

support tool. We ask how coarse/specific certain input needs to be, and how to attain this level of information, 

when only little output uncertainty is tolerable for a local management improvement. 

 

Material and methods 

Description of the process-based crop model SSM-iCrop 

For this project, we used the process-based, biophysical crop model SSM-iCrop, a simple simulation model, 

simulating phenology, growth, and yield formation of legume, maize, and grain crops under water- and N-

limited growing conditions. It has been developed Soltani and Sinclair (2012), and tested, extended, and 

calibrated in previous studies to represent the cultivars and growing conditions of our study region in Eastern 

Austria (Manschadi et al., 2022). Values of all crop-related model inputs are listed in Table 2 in the Appendix.  

Compared to other bio-physical crop models like APSIM or EPIC, the SSM-iCrop model is a parsimonious point-

scale crop model operating at the canopy level. It requires calibration of a relatively small number of crop input 

parameters, making it easy to use. 

The aim of this study was to understand the importance of input data quality and availability when using SSM-

iCrop as a translational tool to provide estimates of crop production and fertilizer demand at spatially extended 

scales to individual decision makers, rather than calibrating the underlying processes as represented by the 

model itself. 

 

SSM-iCrop simulates crop phenology through a number of developmental stages using the biological day 

approach, where a biological day is a day with optimal temperature, photoperiod, and moisture conditions for 

plant development. Above-ground dry matter production is based on the radiation-use efficiency concept, and 

adjusted for temperature, water deficit, and atmospheric CO2 concentration. Depending on the phenological 

stage, daily dry matter production is partitioned between three sinks: leaves, stems, and grains. Yield formation 
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is simulated based on a linear increase in harvest index, which is adjusted for pre-seed growth conditions. Crop 

mass at beginning seed growth is used as an indicator of these conditions. Seed growth rate is limited to crop 

photosynthesis and mobilized dry matter from vegetative organs. 

 

For the simulation of soil water dynamics and other soil-related processes, SSM-iCrop uses a multilayer sub 

model, with a simple cascading bucket method. Plant-available water is calculated as the difference between 

soil water content of each layer and the layer water content at wilting point. SSM-iCrop calculates three water 

deficit factors from the fraction of the plant-available soil water capacity in the root zone to adjust dry mass 

production, leaf area expansion, and phenological development under water deficit conditions. Water addition 

from rainfall or irrigation and water removal due to run-off, evaporation, and drainage are accounted for. Plant 

water uptake is determined by root growth and plant-available water in the rooting zone. Root growth is 

simulated using the potential daily increase in root depth, limited by biological day. It is zero when daily dry 

matter production is zero, the soil layer is dry, and after beginning of seed growth. Transpiration is calculated 

from the daily rate of crop dry mass production, using a transpiration efficiency coefficient and vapor pressure 

deficit. Required soil input parameters are the hydrophysical properties of the profile (volumetric soil water 

content at saturation, drained upper limit (field capacity), crop lower limit (wilting point), air-dry, and soil coarse 

fraction and bulk density) and initial water content at sowing.  

 

Similar to the soil water balance, SSM-iCrop simulates soil N balance in each layer as the result of processes 

that add N to the soil (mineralization of organic matter, fertilization) and those that remove it (volatilization, 

denitrification, leaching and crop N uptake). Crop N uptake from each soil layer depends on the fraction of the 

layer explored by roots and the ratio of N available to the crop from the soil solution in that layer to total 

available N in the root zone. The soil-N sub model requires the depth of soil layers, initial soil soluble N and soil 

organic N available for mineralization, as well as the time, amount, and volatilization fraction of each N fertilizer 

application as input parameters. For a full model description and code, see Soltani and Sinclair (2012). 

 

Description of the reference field experiments 

We used a set of four field experiments from three winter wheat growing seasons in the region of Eastern 

Austria as reference for this simulation study. The first experiment was a designed plot experiment located in 

Tulln and conducted during the 2017/2018 growing period. The closest weather station was “Langenlebarn”. 

The second experiment was an on-farm experiment, conducted in Maria Roggendorf, conducted during 

2020/21. The closest weather station was located in “Schöngrabern”. The third and fourth experiment were 

both conducted during the 2021/22 growing season and both also on-farm experiments, one located in 

Hetzmannsdorf, with the closest weather station also in “Schöngrabern” and one in Potzneusiedl (Figure 1), the 

closest weather station being “Bruckneudorf”. All four field experiments were conventionally managed and 

fertilized. For detailed experimental setup and dates, see Table 3 in the Appendix. 
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Figure 1: Location of the four winter wheat field experiments in Eastern Austria, used as ground-truth reference. 

In addition to regular destructive sampling of above-ground dry matter, the experimental dataset also contains 

a time series of soil samples drilled until 120 cm depth, that have been analyzed for water retention properties, 

texture, and water and N content in 5 layers (0-10 cm, 20-30 cm, 30-60 cm, 60-90 cm, 90-120 cm, see Table 

4 in the Appendix). 

Soil at the Tulln site is classified as an alluvial chernozem, consisting of a silt to sandy loam in the topmost 

horizon (0–70 cm), a loamy sand with a high content of gravel and rock in the second horizon (70–80 cm), and 

a bedrock horizon (80-100 cm). The soil in Maria Roggendorf is classified as chernozem, consisting of a sandy 

clay loam in the first horizon (0-60 cm) and a loamy sand in the second horizon (60-120 cm). In Hetzmannsdorf, 

the soil is classified as colluvial chernozem, with a silt loam in the topmost horizon (0-30 cm) and a loam in the 

lower horizon (30-100 cm). At the Potzneusiedl site, the soil is also classified as a chernozem, consisting of a 

sandy loam (0-20 cm), a sandy loam with a low content of coarse material (20-70 cm), and a loamy sand with 

a low content of coarse material (70-90 cm), and a loamy sand with moderate content of coarse material (90-

100 cm) (BFW, 2007). 

 

Description of soil data sets 

Besides point data from destructive soil samples, we also used information from gridded products for this study. 

The Austrian Digital Soil Map (eBod) is the digital representation of soil properties of Austrian area under 

agricultural cultivation. It is created, maintained and provided by the Federal Research and Training Center for 

Forests, Natural Hazards and Landscape (BFW) and available at no charge to the public. Its origins date back 

to the 1860s, when first analogue soil maps were drawn for areas around Vienna, successively been extended 

and digitized to date. The map is created from regularly taken, gridded field samples of drill cores (on average 

one sample per hectare), landform and topography, surface color and structure, and canopy cover; all combined 

into so-called soil groups. For each 100 hectares of one soil group a full profile is excavated to conduct 

pedological (e.g., definition of horizons, fraction of coarse material, color, etc.) and laboratory (texture, humus 

content, pH, etc.) analysis. eBod is provided as georeferenced vector tile cache at a 1 km2 grid and includes 

information on soil type, arable quality, depth, humus content, porosity, texture, land use, pH etc. Full access 

to the data and a detailed description on all parameters available can be found at www.bodenkarte.at. 
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Within the Agro Drought Austria project (ada.boku.ac.at), the eBod data set has been extended and interpolated 

to also provide information on respective hydrophysical properties at a 500 x 500 m resolution. This product 

was created for drought monitoring activities of the project, using eBod in combination with pedotransfer 

functions to create additional layers, namely the lower limit and field capacity of both a topsoil (0-40 cm) and 

subsoil (40-100 cm) layer of the profile. 

 

Introduction of input uncertainty 

To determine input data requirements for using model simulations as N-management support, we created a 

multi-scenario simulation experiment using SSM-iCrop as the underlying process-based crop model and put 

special emphasis on soil-related model input. We created a total number of 13,824 simulated scenarios, 

gradually differing in uncertainty of the underlying input data (Table 1), moving from best-cases 

(=measurements, corresponding to scenario A for each factor) to datasets or assumptions of higher uncertainty. 

 

The majority of processes determining crop growth depend on the prevailing soil conditions, while related 

parameters are cumbersome to determine and hard to collect at spatially extended scales. Available datasets 

are usually provided at coarse resolutions, giving reason to consider soil data as model input to be afflicted with 

the highest degree of uncertainty. We included all soil-related SSM-iCrop input parameters as factors, namely 

the hydrophysical properties, and initial water and N content at sowing. 

 

For each of the hydrophysical scenarios, the entire profile was treated as one coherent, “spongy” complex, 

meaning that all respective soil hydrophysical properties were changed together. For scenario A (Table 4 in the 

Appendix), we used values of volumetric soil water content at saturation, field capacity, wilting point, air-dry, 

and soil coarse fraction and bulk density values as measured at experimental sites for the simulations. In 

scenario B (Table 5 in the Appendix), we used site-specific values from the combined eBod-Agro Drought Austria 

digital soil map intercepting experimental sites. In scenario C (Table 6 in the Appendix), we intended to account 

for regional variability within soils. Therefore, we created 16 “synthetic” soil profiles, as combinations of quartiles 

of topsoil organic carbon content and plant-available soil water capacity, respectively, using the combined eBod-

Agro Drought Austria data within a 10 km radius from each experimental site. The hydrophysical properties of 

each of the 16 profiles were then based upon means within the quartile combination. For example, for the 

synthetic soil profile nr.1 in Hetzmannsdorf, we used the median of e.g., field capacity values from grid points 

that had topsoil organic carbon contents and plant-available soil water capacity values within the lowest quartile 

of all topsoil organic carbon content and plant-available soil water capacity values within the 10 km radius from 

the experimental site in Hetzmannsdorf. For the synthetic soil profile nr.2, we used the median of e.g., field 

capacity values from grid points that had topsoil organic carbon contents within the lowest quartile of all topsoil 

organic carbon contents and plant-available soil water capacity values within the second-lowest quartile of all 

plant-available soil water capacity values within the 10 km radius, and so on. 

 

Since even the combined soil dataset only included SSM-iCrop relevant information on field capacity, wilting 

point, coarse fraction, and humus content in each layer, we further had to include some assumptions for setting 

up the simulations using hydrophysical properties from scenario B and C: volumetric water content at saturation 

was calculated as field capacity + 0.05 (He and Wang, 2019), air-dry water content was set wilting point * 0.6 
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until 30 cm depth and equal to wilting point below 30 cm depth. Soil organic N was calculated as humus/1.7 

(conversion of humus content to total organic carbon TOC), and TOC/10 based on a common C/N ratio of 10 

of soil organic matter content in arable land. The fraction of soil organic nitrogen available for mineralization 

was set to an average value of 0.15 (Soltani and Sinclair, 2012). 

For the initial water content scenarios, we created conditions within the limits of each profile, reaching from 

completely dry (scenario B) to unlimited water availability to plants (scenario D). In scenario A, we used 

measured values at experimental sites. For scenario B, we used 0 % of plant-available soil water capacity, which 

is equal to the wilting point. This scenario represents growing conditions where no water is available to plants 

at sowing. Scenario C translates into 50 % of plant-available soil water capacity. For scenario D, we used soil 

field capacity equal 100 % of plant-available soil water capacity. The set-up of our initial water content scenarios 

indicates a dependency on the respective hydrophysical property setup of each profile, which was intentional 

to create more realistic conditions at each location. 

 

We based scenarios of initial N content at sowing upon the range of recorded values across all field experiments. 

Since this range was already substantial (reaching from 0 kg N/ha to 200 kg N/ha), we believe that the 

respective values covered most of any potential regional variability, which we wanted to include in our scenario 

set-up. As usual, scenario A corresponds to measured soil mineral N contents at sowing of each experiment. 

For scenario B, we used 0 kg N/ha, the minimum recorded value across all field experiments. This scenario 

represents growing conditions where no N is retained from previous seasons. For scenario B, we used the 

average recorded soil mineral N value across all field experiments, namely 100 kg N/ha. This amount is also 

frequently used by farmers when determining their additional fertilizer requirements. We used 200 kg N/ha for 

scenario C, the maximum recorded value from our field experiments. 

 

To account for different management strategies, we included scenarios of planting dates and the amount of N 

fertilizer applied within upper and lower limits of what is commonly practiced/allowed within our study region. 

For scenario A of sowing dates, we used actual dates according to experimental management. We created an 

early-planting scenario B, where wheat was sown 14 days earlier. Scenario C was the late-planting scenario, 

where wheat was sown 14 later compared to the actual sowing dates. 

 

Finally, for different N fertilization scenarios, we used N amounts as applied to experiments for scenario A. We 

used 90 kg N/ha for scenario B, 90 kg N/ha, a low amount according to common agricultural practices in the 

study region. For scenario C, we used 150 kg N/ha, the average amount according to common agricultural 

practices in the study region, which is also the amount of N fertilizer recommended by the Austrian Ministry of 

Agriculture for winter wheat. In scenario D, we used 210 kg N/ha which maximum amount permitted for 

Austrian cropping regions (BMLFUW, 2017).  

The inclusion of different N fertilization scenarios was not only intended to represent the full range of agricultural 

practices within our multi-scenario simulation study, but ultimately it is also the target variable that our 

simulation tool should support in determining. The different scenarios of N fertilizer applied therefore also 

represent potential N fertilization scenarios that can ultimately be translated into improved management 

measures. 

 

Referring back to the previously mentioned four categories of input data for process-based crop models, 

weather data and genetic characteristics of the crop remain. Theoretically, any user could install an individual 
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weather station at each location simulations are run for. Since there already exists a dense network of weather 

stations across all Austria, which are also frequently maintained by the Austrian Meteorological Agency (ZAMG), 

we took weather data from each closest station as best-case scenario, and did not include any level uncertainty 

in this dimension since the data is accessible to the public at any time and at no costs. We also did not include 

any crop-related uncertainty, first, because SSM-iCrop is well calibrated for winter wheat and any potential 

changes of the parameters could only be reached through long-lasting breeding activities (which goes beyond 

the scope of this study). 

 

Spatial extension of the prototype application 

To create a spatially extended ground-truth comparison of simulations, where management input data is known, 

but soil input data is uncertain, we further simulated a dataset from the Austrian Chamber of Agriculture, that 

has been pre-processed in the SATFARM-Services project, containing 347 georeferenced winter wheat fields in 

Lower Austria, mostly south of Vienna, and in Burgenland. In addition to the location, the dataset contained 

information on the crop and cultivar grown, sowing and harvesting date, amount of N fertilizer applied, and 

final yields from the 2017/18 season until 2020. We used scenario B as best-case of the prevailing the 

hydrophysical properties, and scenario C as intermediate scenario for the initial water and N content at sowing. 

Converted yields into total above-ground dry matter (g/m2, hereafter referred to as “DM”) by applying a harvest 

index of 40 %, we compared simulated and recorded total-above ground dry matter values at the end of season. 

 

As another means of spatial extension, we used remotely sensed data from the Sentinel-2 satellite of the 

Copernicus mission from the European Space Agency (scihub.copernicus.eu) to track DM development over the 

growing season non-destructively. 

 

Statistical analysis 

All comparisons are quantified on using the root mean squared error (RMSE), calculated as: 

𝑅𝑀𝑆𝐸 = √∑
(�̂�𝑖 − 𝑦𝑖)

2

𝑛

𝑛

𝑖=1

 (1) 

whereby 𝑛 is the number of simulations, �̂�𝑖are the simulated values and 𝑦𝑖 are the observed values. Calculations 

were conducted in R programming language using the RStudio environment (R version 3.6.3). Graphs were 

also produced within RStudio.
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Table 1: Definition of factors for multi-scenario simulations. 

Input 

category 

Input factor 
associated with 

uncertainty 

Scenario A Scenario B Scenario C Scenario D 

S
o
il 

d
a
ta

 

hydrophysical 
properties of the 

soil 

measured values 
at experimental 

sites 

site-specific values from the 
Austrian digital soil map 

(eBod) intercepting 
experimental sites 

16 “synthetic” soil profiles, created 

within a 10 km radius from each 
experimental site as combinations of 

quartiles of topsoil organic carbon 
content and plant-available soil 

water capacity, respectively 

- 

initial volumetric 
water content at 

sowing 

measured values 
at experimental 

sites 

0 % of plant-available soil 
water capacity, 

“wilting point” 

50 % of plant-available soil water 

capacity 

100 % of plant-
available soil water 

capacity, 
“field capacity” 

initial soil 
mineral nitrogen 

content at 
sowing 

measured values 
at experimental 

sites 

0 kg N/ha, 
minimum recorded value for 

field experiments 

100 kg N/ha, 
average recorded value for field 

experiments 

200 kg N/ha, 
maximum recorded 

value for field 
experiments 

M
a
n
a
g
e
m

e
n
t 

m
e
a
su

re
s 

Sowing date 

actual dates 
according to 

experimental 
management 

14 days earlier 14 days later - 

Amount of 

nitrogen fertilizer 
applied 

according to 

experimental 
management 

90 kg N/ha, 
low amount according to 

common agricultural 
practices in the study region 

150 kg N/ha, 
average amount according to 

common agricultural practices in the 
study region 

210 kg N/ha, 
maximum amount 

permitted for Austrian 
cropping regions 
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Results 

For the presentation of our results, we will progress along the path for refining input data, starting from 

scenarios of maximum input uncertainty to best-case conditions with minimum input uncertainty. 

Performance of the prototype 

Our results in Figure 2 show that the prototype of a decision support tool based on SSM-iCrop as an example, 

simulated DM over the entire growing season and at all four experimental locations well (R2=0.93). The hexbin 

plots also show darker hexagons close to the line of measurements, meaning that the majority of simulations 

were close to the measured values. However, this came at the expense of comparably large outcome variability 

when using input data of maximum uncertainty (RMSE=157.91 g/m2). In some cases, the variability of final 

simulation outcomes was even twice the range of 30-year averages, represented as dashed gray lines in Figure 

2 (in Tulln and Potzneusiedl, for example).  

 

 

Figure 2: Performance of the prototype simulating DM of winter wheat under maximum input uncertainty across all factors. 

Individual graphs show results per field experiment (T=Tulln, P=Potzneusiedl, H=Hetzmannsdorf, M=Maria Roggendorf). 

Red markers and lines represent destructive measurements, tinted hexagons represent simulated values. The darker a 

hexagon, the higher the number of simulated values within the respective area. Horizontal dashed lines in gray show the 

30-year average of DM of winter wheat in the study region. 

There were some differences regarding the seasonal performance across experiments. For example, at the site 

in Maria Roggendorf, measured data were well centered among all potential outcomes, with no general trend 

of an over-or underestimation. In Hetzmannsdorf, the prototype generally underestimated DM early during the 

growing season and did not capture measured values during 150 to 200 days after sowing (DAS), while this 

evened out later towards harvest. Simulations for the Potzneusiedl and Tulln experiments framed measured 

values well early in the season, but were more likely to underestimate DM later on. Measured DM values at 

harvest were higher across all locations compared to the 30-year average of final DM production within the 

study region (900.85 to 1401.80 g/m2), which can potentially be explained be the four field experiments being 

conducted within different growing seasons that also differed from the 30-year average. Under the right scenario 
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setup, the prototype was however able to capture these above-average seasons for all experiments. This result 

underlined the advantage of using a process-based crop model, namely including weather conditions for 

simulating crop DM and other outcomes. 

Contribution of model input data uncertainty to simulation error 

To reduce the previously mentioned variability of final DM simulations and determine which input factor is 

especially important for increasing the accuracy of our prototype, we determined RMSEs for each input factor 

individually. The heat map in Figure 3 shows RMSEs of input factors (x-axis) ranked according to highest RMSE 

across all locations, and experimental locations (y-axis) ranked according to highest RMSE across all input 

factors. We calculated RMSEs for individual input factors by defining scenario A for all other factors, while 

considering the full range of potential scenarios for the respective factor. For example, RMSE for initial water 

content was calculated using scenarios based on measured hydrophysical properties, initial N content, sowing 

dates, and fertilizer applications, while including all scenarios for initial water content. Results shown in Figure 

3 underlined the importance of soil-related input (hydrophysial properties, initial soil water content, and initial 

mineral N content; shown as darker tiles), and also emphasized a masking effect of potential management 

benefits from simulated outcomes when soil-related input is unknown. Different scenarios of N fertilizer amounts 

(ultimately our target variable) accounted for the lowest RMSE values overall, meaning that the use of 

simulations based on inaccurate soil-related input data does not allow improving any N fertilization strategy. 

As before, we observed some differences across experiments. Across all five input factors, simulations for 

Potzneusiedl showed highest RMSEs. Here the importance of soil-related input was especially pronounced. 

Simulations for Maria Roggendorf showed lowest RMSEs overall. This was also the site with no general trend of 

an over-or underestimation over the entire season (Figure 2). Interestingly, in Maria Roggendorf uncertainty 

related to hydrophysical properties did not contribute to simulation RMSE as much as in the other experiments. 

 

 

Figure 3: Heat map of RMSE associated to single input factors of the multi-scenario simulation experiment. The darker a 

tile, the higher the RMSE associated to one of the five factors (for details, see Table 1). Input factors (x-axis) are ranked 

according to highest RMSE across all locations, and experimental locations (y-axis) are ranked according to highest RMSE 

across all input factors. 
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Refining of model input data 

In Figure 4, we present seasonal simulation results for a step-wise refining of input data according to the results 

shown in Figure 3 by the example of Potzneusiedl, the location of maximum RMSE for simulations of maximum 

uncertainty. We intentionally chose Potzneusiedl as an extreme case to show what degree of accuracy can be 

attained, even for high initial simulation error and variability. Compared to RMSEs shown in Figure 3, RMSEs 

shown here were calculated by a stepwise definition of scenario A for the refined factor(s) while considering 

the full range of potential scenarios for all non-refined factors. 

Starting from maximum input uncertainty (RMSE=219.45 g/m2, Figure 4.1), we first defined hydrophysical 

properties according to measured conditions in scenario A (Figure 4.2). Although RMSE did not decrease 

substantially (RMSE=197.74 g/m2), the density of simulated outcomes shifted closer to the line of 

measurements, shown by darker hexagons along the red line. In a next step, we defined the initial soil water 

content to be equal to scenario A (Figure 4.3), which resulted in a more pronounced error reduction 

(RMSE=131.52 g/m2) and eliminated a group of low DM simulations. When we also refined the initial mineral 

N content of the soil (Figure 4.4), in other words considering scenarios where all three soil-related input factors 

used best-case scenario A, DM simulations followed the line of measurements very well already. This refining 

step eliminated the remainder of underestimating simulations, and RMSE was substantially reduced by almost 

half (RMSE=75.07 g/m2). Refining the final two management steps (Figure 4.5 and .6), ultimately targeting an 

improved N management, further streamlined the simulated seasonal wheat growth, yielding a five-fold 

reduction of RMSE to 43.35 g/m2 for the final step. 

 

 

Figure 4: Performance of the prototype simulating DM of winter wheat under increased input certainty. Results are presented 

for the experiment in Potzneusiedl as example. Individual graphs (1-6) show results for a stepwise definition of input factors 

according to their importance (see Figure 3). Red markers and lines represent destructive measurements, tinted hexagons 

represent simulated values. The darker a hexagon, the higher the number of simulated values within the respective area. 

The horizontal dashed lines in gray show the 30-year average of DM of winter wheat in the study region. 

In accordance with results shown in Figure 2, Figure 5 shows simulated DM over the entire growing season and 

at all four experimental locations when using input data of maximum certainty (scenario A for all factors 

exclusively). Results of this scenario essentially represent the performance of SSM-iCrop for simulating winter 

wheat at the experimental locations itself. Outcome variability was eliminated and DM production of winter 
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wheat reproduced very well. Although R2 values were very high overall, maximum input certainty further 

increased R2 to 0.94 across all for experiments. Compared to the simulation error under maximum input 

uncertainty, RMSE was reduced to 66.45 g/m2, a third of the initial value. 

Similar to our earlier results, there were some minor differences when comparing simulations of field 

experiments among each other. In Maria Roggendorf, simulations followed measured data well overall, but 

slightly underestimated DM at the end of season. Hetzmannsdorf showed some underestimations earlier during 

the vegetative growth period, which were eliminated later on. Simulations for the Potzneusiedl and Tulln 

experiments followed measured values well for the better part of the season, but showed a slight 

underestimation at the end of the season in Potzneusiedl. These results are in line with the simulation trends 

under maximum input uncertainty (see Figure 2). 

 

 

Figure 5: Performance of the prototype simulating DM of winter wheat under maximum input certainty (=best-case) across 
all factors. Individual graphs show results per field experiment (T=Tulln, P=Potzneusiedl, H=Hetzmannsdorf, M=Maria 
Roggendorf). Red markers and lines represent destructive measurements, tinted hexagons represent simulated values. The 
darker a hexagon, the higher the number of simulated values within the respective area. 

As indicated, soil-related input uncertainty might disable a simulation-based management improvement. 

Simulation errors of related input uncertainty overruled management effects predicted by the prototype tool. 

Since a full laboratory description of field-specific soil conditions is usually not available to users, we included a 

first step towards refining generally available soil data (in our case the eBod-Agro Drought Austria combined 

digital soil map) and eventually improve the accuracy of a support system using such soil data as input. We 

focused on the hydrophysical property factor in this post-processing step, first, because it was contributing to 

simulation error the most, then, because the initial water content at sowing depends on the hydrophysical setup 

and is therefore already indirectly accounted for when refining the earlier. The third soil-related soil input factor, 

initial mineral N content, can only be determined by laboratory analyses and was therefore not included. 

For this procedure, we assigned hydrophysical properties to each location that were closest to scenario A 

conditions a) in geographical space, which translates to scenario B (site-specific values from eBod) and b) in 

attribute space, which required a post-processing of scenario C. In this first step, we defined the attribute space 

as topsoil organic carbon content, determining a number of e.g., aeration, microbial, nutrient and water 

retention characteristics, and plant-available soil water capacity which largely determines DM production in 

water-limited cropping systems such as winter wheat production in Austria. We determined hydrophysical 
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properties closest in attribute space by choosing one out of the 16 synthetic profiles where topsoil organic 

carbon content and plant-available soil water capacity matched measured values best. In the next step, we 

included a step-wise refining of all remaining input data, but calculated simulation errors per soil scenario. 

 

Figure 6 shows results of the step-wise refining of input data per hydrophysical property scenario. Similar to 

our previous refining pathway, simulation results gradually improved (RMSE decreased) with the definition of 

input data. Moving from maximum input uncertainty in step 1 (Figure 6.1), where also no hydrophysical post-

processing was included, the definition of hydrophysical properties slightly reduced RMSE (Figure 6.2). In this 

case, where all other input data was still maximally uncertain, hydrophysical input data from less accurate 

sources (scenario B and C) yielded even smaller simulation errors compared to scenario A simulations. Scenario 

A related RMSE outliers could be explained by extreme combinations of scenarios of other input factors, that 

exceeded the capability of SSM-iCrop representing related biophysical processes when using scenario B and 

post-processed scenario C hydrphysical property input data. With the definition of initial water content (Figure 

6.3) RMSE of scenario A simulations however, dropped compared to scenario B and post-processed scenario C 

simulations. As before, RMSE further decreased as we consecutively defined the initial N content (Figure 6.4), 

and the definition of sowing date (Figure 6.5) and the amount of N fertilizer applied (Figure 6.6) yielded last 

minor improvements. 

Regarding the post-processing of generally available soil data, simulations using scenario B (geographically 

closest) yielded lower RMSEs compared to post-processed scenario C simulations (closest in attribute space). 

But neither reached the accuracy of using the best-case scenario A of hydrophysical properties as input. These 

results indicate that we might have oversimplified the matching conditions for defining soil profiles closest in 

attribute space. Further including soil texture, aggregate composition, or bulk density into the matching 

procedure might improve these results in the future.  

 

 

Figure 6: Performance of the prototype simulating DM of winter wheat under increased input certainty. Results are presented 

for each hydrophysical property scenario individually. Graph 1 shows the full range of potential outcomes. In graph 2, 

hydrophysical properties are defined. Graph 3 further includes measured initial soil water content. In graph 4, the initial soil 

mineral N content is defined. In graph 5, also the measured sowing date is used. For graph 6, the amount of applied N 

fertilizer is finally defined. 
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Spatial extension 

Simulating end-of season DM of the SATFARM-Services dataset, which contained 347 winter wheat fields in 

Lower Austria and Burgenland, showed, that in cases where management input data is known, but soil input 

data is uncertain, the prototype failed to estimate measured values (R2=0.05). Given that –besides the location 

of fields- the dataset did not contain any information on soil-related input data, this result only confirmed our 

previous finding of the overruling importance of accurate soil input to the system. In order to simulate the 

respective DM records, we had to use scenario B as best-case of the prevailing the hydrophysical properties, 

and scenario C as intermediate scenario for the initial water and N content at sowing. It is also important to 

mention that the original dataset contained records on grain yield because continuous destructive DM 

measurements over the season are extremely laborious and in most cases not feasible outside of an 

experimental setting. We converted yield into DM by applying a harvest index of 40%. This might have 

introduced another level of uncertainty contributing to the low R2 value. Finally, compared to the results 

presented in Figure 5 where final DM estimates deviated from measured values of some field experiments, we 

expected a decrease in simulation accuracy when simulating end-of-season DM only. 

 

 

Figure 7: Measured vs. simulated end-of-season DM of winter wheat across 347 fields in Lower Austria and Burgenland, 

given maximum soil-related input uncertainty. Individual dots represent simulated end-of season DM at each site. The 

solid line marks the best fit regression line. 

To overcome this difficulty of a) working with only one yield record at the end of the season, and b) non-feasible 

DM measurements over the course of the entire growth period, we fitted an exponential model (R2=0.94, 

Equation 2) to remotely-sensed values of the difference vegetation index (DVI, Equation 3, Skakun et al. (2019)) 

of the three on-farm experiments in Maria Roggendorf, Hetzmannsdorf, and Potzneusiedl. Spectral data for 

Tulln were not available, since plots were too small for the current Sentinel-2 resolution of 20 m grid size. This 

allowed us to track DM development over the growing season non-destructively over large areas. 

𝐷𝑀 = 6.6021 ∗ 𝑒0.0012𝐷𝑉𝐼 (2) 

  

𝐷𝑉𝐼 = 𝑁𝐼𝑅 − 𝑅𝑒𝑑 (3) 
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One shortcoming of the DVI is, that it works for DM estimation of green canopies only. For the application case 

of N fertilization, this however less of a disadvantage, since the N is applied early during the vegetative growth 

stage. Our results showed that during that time, DVI was a capturing destructively measured DM values at all 

three experimental sites, again with some differences across locations. Interestingly, in Hetzmannsdorf, DVI 

estimates capture measured DM values even better than the prototype simulations, where early season values 

were underestimated. In Maria Roggendorf, where the best-case prototype simulations captured early-season 

DM very well, DVI estimates deviated more substantially, however (see Figure 5 for comparison). 

 

 

Figure 8: DM production in Potzneusiedl (P), Hetzmannsdorf (H), and Maria Roggendorf (M), based on an exponential DVI 

model (top right). Markers and lines in red represent destructive measurements, markers and lines in pink DVI estimates. 

 

Discussion and Outlook 

The aim of this study was to contribute to the development of an agricultural decision support system that 

facilitates crop N fertilization to be more resource efficient and reduce GHG emissions from agriculture. As a 

prototype of a potential support tool, we used a process-based crop model based on model input data of 

different sources and availability, and put special emphasis on soil-related input. 

In the following, we will discuss the strengths and weaknesses of our prototype, and how to attain a required 

level of information, when the prototype is used to support decisions of N fertilization and only little output 

uncertainty is tolerable for a local management improvement. We also outline next steps to improve the system 

in the future. 

 

Under the condition of having access to accurate soil information, our prototype of a decision support tool 

yielded information that did not only outperform regional long-term average DM production averages frequently 

used to determine empirical fertilization strategy empirically, but also captured site-specific crop growth over 

the entire season at various under various pedoclimatic growing environments in Eastern Austria. This is 

especially important for an improved N management, since fertilizer is applied early in the season when DM 

production is still low and substantial amounts of N could be lost to the environment when applied inadequately. 

We used SSM-iCrop as an example of a process-based biophysical crop model and performed our analysis by 
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the example of N fertilization of winter wheat grown in Austria. Conceptually, SSM-iCrop could be replaced by 

any other process-based crop model, winter wheat by any other crop in any other region, used to support any 

other management measure (Balkovič et al., 2020; Beveridge et al., 2018; Wang et al., 2022). 

The results of this study however also showed that simulations can support N management only when soil-

related input data is available, especially the hydrophysical properties. Other management practices such as 

irrigation might alter the results. Given the high dependency of most agronomic processes on the prevailing soil 

conditions (He and Wang, 2019; He et al., 2017), we expect a similar importance of soil-related model input, 

however. For the common case, that specific information is unknown, we also tested a first, simple approach 

to post-process generally available hydrophysical data. Although we expect improved simulation results of the 

prototype as soon as we advance this post-processing, uncertainty related to other soil input such as the initial 

water and N content at sowing (or even more advanced parameters when using more advanced process-based 

models) will remain. Some of it could be eliminated using other model simulations or intense data mining 

(Folberth et al., 2019a; Le Bourgeois et al., 2016; Piniewski et al., 2019; Schauberger et al., 2020; Tóth et al., 

2015; Tóth et al., 2017; Vogeler et al., 2019) but even then, this information will come at a certain resolution 

only and will most probably be afflicted with some remaining uncertainty (Carr et al., 2020). For eBod, the 

digital soil map of Austria provided at a comparably high resolution of 1 x 1 km, for example, we showed the 

remaining uncertainty and its implications when translated into applied management measures at individual 

sites. 

 

At this point, we want to propose two mutually complementing ways of how to attain a required level of 

information when growing condition and hence input data for the prototype are lesser known compared to our 

reference field experiments. 

First, integrating bottom-up users such as farmers or extension officers into the processing chain might provide 

a cost-effective means to substantially improve the performance of such a support tool. Some of the factors we 

tested within the multi-scenario simulation experiment, such as planting day, are usually known by farmers and 

come with no additional costs. Soil water content or even some hydrophysical properties such as texture could 

be determined by simple field tests. Determining soil N content requires laboratory analyses. The average price 

for getting one soil sample analyzed for organic and mineral N content are between 20 and 30 € in Austrian 

laboratories. By integrating farmers into the processing chain, we could further benefit from their personal 

experience regarding the prevailing growing conditions. A promising way to do so could be the use of mobile 

applications, that can integrate all data available and directly translate it into management information. Similar 

systems have already been developed (Laso Bayas et al., 2020; Laso Bayas et al., 2017; Machwitz et al., 2019). 

Second, we propose the use of remote sensing data (Jin et al., 2017). As described, most measurements to 

accurately determine simulation inputs are cumbersome procedures and might even be impossible as a spatially 

extended top-down approach. Remotely sensed canopy reflectance data are easily available (Lesiv et al., 2018) 

and could help define the trajectory of potential simulation outcomes, especially early in the season, when 

canopies are still green and a variety of spectral models can be used to track crop growth and biomass 

accumulation. Today, several methods exist to narrow down the range of potential simulation outcomes, for 

example by the reverse integration of radiative transfer models (Li et al., 2018; Machwitz et al., 2014) or 

machine learning algorithms (Cai et al., 2019; Evans and Shen, 2021). This has already proved successful in 

the past (Colaço and Bramley, 2018; Morari et al., 2020). Our spectral model was based on Skakun et al. (2019) 

who found the DVI as the best estimator when incorporating surface reflectance and phenological fitting into 

their yield regression models. Other indices might even perform better or over an extended period of time 

(Aranguren et al., 2020; Fang et al., 2021; Quemada et al., 2019). 
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We believe that especially the combination of both the bottom-up user involvement and top-down remote 

sensing technology will help to further improve the performance, accuracy, and applicability of a decision 

support system such as our prototype. 

 

Finally, some questions remain, for example: Would benefits from using our prototype compensate potential 

costs to refine input data? What is the value of information provided by such a system, and how to quantify it? 

Finding answers goes beyond the scope and purpose of this specific study, leaving room for future work, 

however.  
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Appendix 

SSM-iCrop crop input data 

Table 2: SSM-iCrop crop input data for winter wheat grown in Austria. Adapted and calibrated based on Soltani 
and Sinclair (2012). 

Parameter Description Unit Value 

a_plapow_d 
A coefficient (exponent) in power relationship between plant 

leaf area and mainstem node number 
- 1.1718 

b_plapow_d 
A coefficient (exponent) in power relationship between plant 

leaf area and mainstem node number  
- -0.0006 

bdANTPM Biological days from anthesis to physiological maturity biol. day 32.4 

bdBOTEAR Biological days from booting to ear emergence biol. day 2.5 

bdEARANT Biological days from ear emergence to anthesis biol. day 4 

bdEMRTIL Biological days from emergence to first-tiller biol. day 1.2 

bdPMHM Biological days from physiological maturity to harvest maturity biol. day 8 

bdSELBOT 
Biological days from first-node to booting (ligule of flag leaf 
visible) 

biol. day 
12.8 

bdSOWEMR Biological days from sowing to emergence biol. day 4.1 

bdTILSEL Biological days from first-tiller to first-node (stem-elongation) biol. day 12.1 

CO2RUE 
Coefficient to adjust RUE for higher (and lower) atmospheric 
CO2 concentration 

- 0.8 

CPP Critical photoperiod hour 16 

FLDKL Killing no. of consecutive flooding day 20 

FLF1A 
Partitioning coefficient to leaves during main phase of leaf area 

development at lower levels of total crop mass 
g/g 0.7829 

FLF1B 
Partitioning coefficient to leaves during main phase of leaf area 

development at higher levels of total crop mass 
g/g 0.2773 

FLF2 
Partitioning coefficient to leaves from termination leaf growth 

on mainstem to beginning seed growth 
g/g 0.1 

FRTRL 
Fraction crop mass at beginning seed growth which is 

translocateble to grains 
g/g 0.22 

FRZLDR 
Fraction of leaf destruction below the critical by each degree 
centigrade 

m2/m2/ 
oC 

0.01 

GCC Grain conversion coefficient g/g 1 

GNCmax Maximum grain nitrogen concentration g/g 0.026 

GNCmin Minimum grain nitrogen concentration g/g 0.016 

GRTDP Potential daily increase (growth) in root depth 
mm/ 

biol. day 
50 

iDEPORT Depth of roots at emergence mm 200 

IRUE physiological potential radiation use efficiency g/MJ 2.58 

KPAR 
Extinction coefficient for photosynthetically active radiation 

(PAR) 
- 0.65 

leaf_number_phyl2 Number of leafs on main stem for activating PHYL2 - 6.4 

MEED Maximum effective depth of water extraction from soil by roots mm 1200 

MXNUP Maximum uptake (fixation) rate of nitrogen g/m2/day 0.57143 

PDHI Potential slope of harvest index (DHI) g/g/day 0.017 

PHYL1 Phyllochron - 79 

PHYL2 Phyllochron - 93 
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PLACON 
A coefficient (constant) in power relationship between plant leaf 

area and mainstem node number 
- 0.3021 

PLAPOW 
A coefficient (exponent) in power relationship between plant 

leaf area and mainstem node number 
- 2.7357 

PPSEN Photoperiod sensitivity coefficient - 0.004 

SLA Specific leaf area m2/g 0.021 

SLNG Specific leaf nitrogen in green leaves (target) g/m2 2.53 

SLNS Specific leaf nitrogen in senesced leaves (minimum) g/m2 0.2 

SNCG Stem nitrogen concentration in green stems (target) g/g 0.022 

SNCS1 Stem nitrogen concentration in senesced stems (minimum) g/g 0.01 

SNCS2 Stem nitrogen concentration in senesced stems (maximum) g/g 0.002 

TBD Base temperature for development oC 0 

TBRUE Base temperature for dry matter production oC 0 

TCD Ceiling temperature for development oC 40 

TCRUE Ceiling temperature for dry matter production oC 35 

TEC350 Transpiration efficiency coefficient (350 Pa) Pa 5.8 

TEC700 Transpiration efficiency coefficient (700 Pa) oC 1.37 

TP1D Lower optimum temperature for development oC 27.5 

TP1RUE Lower optimum temperature for dry matter production oC 10 

TP2RUE Upper optimum temperature for dry matter production oC 22 

VSEN Vernalization sensitivity coefficient - 0.03 

WDHI1 A critical point for seed growth rate g/m2 0 

WDHI2 A critical point for seed growth rate g/m2 600 

WDHI3 A critical point for seed growth rate g/m2 1200 

WDHI4 A critical point for seed growth rate g/m2 3200 

WSSD 
A coefficient that specifies acceleration or retardation in 
development in response to water deficit 

- 0.4 

WSSG FTSW threshold when dry matter production starts to decline - 0.3 

WSSL FTSW threshold when leaf area development starts to decline - 0.4 

WSSN FTSW threshold when nitrogen fixation starts to decline - 0 

WTOPL 
Total crop mass when leaf partitioning coefficient turns from 
FLF1A to FLF1B 

g/m2 127.6 

 

Field experimental management details 

Table 3: Experimental details for reference experiments in Eastern Austria. 

Experimental 

location 
lat long 

Sowing 

date 

Harvest 

date 

N fertilizer application (kg/ha) 

1st 2nd 3rd 4th 

Tulln 16.0504 48.3106 16.10.2017 04.07.2018 70 70 - - 

Ma.Roggendorf 16.1125 48.6064 06.10.2020 12.07.2021 40 40 30 30 

Hetzmannsdorf 16.1046 48.6115 22.10.2021 12.07.2022 40 50 30 40 

Potzneusiedl 16.9493 48.0387 13.10.2021 27.06.2022 10 50 50 - 
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Hydrophysical property scenarios 

Table 4: Scenario A, defined as measured for experimental sites (volumetric (%) water content at saturation 
(SAT), field capacity (DUL), wilting point (LL), air-dry (ADRY); initial volumetric (%) content at sowing, soil 
organic nitrogen content (NORG), soil mineral nitrogen content (NMIN)). 

Experimental 

location 

Layer depth 

(cm) 
SAT DUL LL ADRY iniWL BDL NORG NMIN 

Tulln 

10 0.50 0.45 0.15 0.09 0.35 1.36 0.22 14.30 

30 0.56 0.51 0.24 0.14 0.44 1.37 0.22 28.60 

60 0.56 0.51 0.27 0.27 0.45 1.38 0.16 18.60 

90 0.59 0.54 0.29 0.29 0.49 1.42 0.14 8.70 

120 0.59 0.54 0.29 0.29 0.48 1.48 0.11 5.70 

Maria 

Roggendorf 

10 0.39 0.34 0.17 0.10 0.16 1.50 0.21 4.85 

30 0.39 0.34 0.18 0.11 0.17 1.50 0.21 10.06 

60 0.40 0.35 0.21 0.21 0.18 1.47 0.18 33.47 

90 0.37 0.32 0.20 0.20 0.28 1.51 0.19 24.41 

120 0.31 0.26 0.20 0.20 0.30 1.59 0.17 7.71 

Hetzmannsdorf 

10 0.36 0.31 0.15 0.09 0.25 1.52 0.24 9.30 

30 0.32 0.27 0.14 0.08 0.25 1.54 0.23 18.59 

60 0.35 0.30 0.16 0.16 0.28 1.55 0.15 12.20 

90 0.33 0.28 0.16 0.16 0.24 1.57 0.06 15.35 

120 0.28 0.23 0.15 0.15 0.18 1.60 0.04 19.35 

Potzneusiedl 

10 0.40 0.35 0.21 0.13 0.29 1.58 0.18 26.05 

30 0.40 0.35 0.21 0.13 0.29 1.58 0.17 52.10 

60 0.37 0.32 0.12 0.12 0.27 1.58 0.14 70.25 

90 0.35 0.30 0.12 0.12 0.24 1.62 0.09 24.81 

120 0.32 0.27 0.12 0.12 0.21 1.66 0.04 20.24 

 

Table 5: Scenario B, defined as site-specific values from the Austrian digital soil map intercepting experimental 
sites (for abbreviations, see caption of Table 4). 

Experimental 

location 

Layer depth 

(cm) 
SAT DUL LL ADRY iniWL BDL NORG NMIN 

Tulln 
40 0.63 0.58 0.36 0.22 
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100 0.58 0.53 0.37 0.37 1.60 0.19 

Maria 

Roggendorf 

40 0.46 0.41 0.20 0.12 1.50 0.12 

100 0.40 0.35 0.15 0.15 1.60 0.12 

Hetzmannsdorf 
40 0.50 0.45 0.24 0.14 1.50 0.12 

100 0.46 0.41 0.23 0.23 1.60 0.12 

Potzneusiedl 
40 0.47 0.42 0.22 0.13 1.50 0.12 

100 0.39 0.34 0.15 0.15 1.60 0.12 
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Table 6: Scenario C, defined as profile closest in attribute space among 16 “synthetic” soil profiles, created 
within a 10 km radius from each experimental site (for abbreviations, see caption of Table 4). 

Experimental 

location 

Layer depth 

(cm) 
SAT DUL LL ADRY iniWL BDL NORG NMIN 

Tulln 
40 0.49 0.44 0.24 0.14 
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100 0.43 0.38 0.18 0.18 1.60 0.20 

Maria 

Roggendorf 

40 0.57 0.52 0.33 0.20 1.50 0.15 

100 0.46 0.41 0.26 0.26 1.60 0.15 

Hetzmannsdorf 
40 0.57 0.52 0.33 0.20 1.50 0.15 

100 0.46 0.41 0.26 0.26 1.60 0.15 

Potzneusiedl 
40 0.50 0.45 0.24 0.14 1.50 0.16 

100 0.37 0.32 0.13 0.13 1.60 0.16 
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