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Abstract 

1. Ecosystem good and services are dependent on the overall functioning of the ecosystem within naturally 

variable environmental conditions. Ecosystem function can be investigated through food web models 

describing the flows of energy/material (interactions) between species or functional groups. The 

impracticality of empirically measuring every food web flow can be addressed through linear inverse 

modelling (LIM), which estimates one solved food web from ecologically derived flow inequalities. Thereafter, 

Ecological Network Analysis (ENA) is applied to the solved food web to calculate ecological indicators 

describing ecosystem-level function. However, ecological indicators calculated on single food web solutions 

may not be representative of the actual system’s functional variability.  

2. Ecosystem modelling has evolved to incorporate ecological data variability through solving ensembles of 

plausible food webs using LIM coupled with Markov Chain Monte Carlo (LIM-MCMC) techniques, introducing 

uncertainty of ecosystem function. Using food web ensembles and ecological indicators of a case study 

ecosystem, we aimed to 1) explore the differences in ecosystem network properties derived from single 

solution food webs and ensembles of plausible food webs, and 2) investigate if ensemble methods can 

provide more robust estimates of ecosystem function than single solution methods. 

3. We constructed thirteen monthly food web models (2015 – 2016) of uMdloti Estuary, South Africa, to serve 

as a basis for our investigation. Flow values were parametrised with ecologically derived inequalities, 

reflecting the empirical ecological variability within the system. We used three LIM algorithms commonly 

accepted by ecologists to calculate single network solutions for each model. We complemented the single 

solutions with ensembles of 10,000 plausible network solutions solved using LIM-MCMC. We then applied 

Ecological Network Analysis (ENA) to all solved networks.  

4. We found that ecological indicators calculated from single network solutions were often underestimates of 

ensembles, potentially limiting realistic ecological inferences. In contrast, ensemble solutions have the benefit 

of 1) incorporating ecological variability in ecosystem models, offering more robust estimates of ecosystem 

function, and 2) detecting shifts in ecosystem states after disturbance events. Using ensemble solutions, we 

found that uMdloti ecosystem displays a reliance on primary producers to fuel the food web, low cycling of 

material/energy, and seasonal patterns of increased system activity during summer months. When we 

consider these ecological interpretations together, we can infer that uMdloti ecosystem shows a decreased 

capacity to maintain system function during drought conditions and is potentially more vulnerable to further 

perturbations affecting ecosystem function. 

5. From an ecosystem management perspective, more robust inferences of ecosystem status through ensemble 

methods, together with the advantage of statistical comparisons, may enhance data-driven decision making 

and contribute toward good ecosystem management practices. The next steps of this research are to 

investigate the communication of ensemble uncertainty in a practical and meaningful way for inclusion in 

ecosystem assessments and management. As ecosystem properties cannot be directly managed, connecting 

ecosystem-level information to nodal information can provide insight into how the system components 

(nodes) can be managed in a way to improve overall system function. The next steps of this research are to 

investigate which indicators may be most meaningful to managers trying to maintain the flow of ecosystem 

services.  

Keywords: food webs, ecological variability, uncertainty, estuarine management, linear inverse modelling, ecological 

network analysis, ensemble models  
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1 Introduction 

1.1 Background 

One way to value ecosystems is through their high biological productivity to maintain ecological and socio-

economic goods and services (Day and Rybczyk, 2019). The provision of these goods and services is dependent 

on the overall functioning of the system within the limits of natural variability (physical, chemical, and biological) 

(Mukherjee et al., 2019). Global change, resulting from anthropogenic activities and changes in climate drivers 

due to accelerated global warming, is predicted to alter the natural variability of environmental conditions 

experienced by ecosystems (Chevillot et al., 2018; Day and Rybczyk, 2019). The alteration of the natural 

variability of environmental conditions threatens the productivity of ecosystems by changing the balance of 

human impacts and ecosystem fundamental properties and overall functioning (Chevillot et al., 2018). To 

maintain ecosystem function under global change conditions, there is an urgent need for appropriate 

monitoring, management, and conservation strategies to protect the provision of ecosystem goods and services 

in future. 

An important step in the development of ecosystem management and conservation strategies is the assessment 

of overall function of the ecosystem in question. Holistic approaches to understand ecosystem function often 

involve exploring food webs to identify ecosystem-level emergent properties (D’Alelio et al., 2016; Jørgensen 

and Fath, 2006). Conceptually, food webs are maps of trophic connections between species or functional groups 

(‘nodes’), where trophic connections serve as energy ‘flows’ between nodes (Fath et al., 2007; Scharler and 

Borrett, 2021). Ecological Network Analysis (ENA) can be applied to food webs to calculate ecological indicators 

based on the direct and indirect energy interactions within the food webs (de Jonge and Schückel, 2021; Lau 

et al., 2017). The ENA indicators calculated on the food web are extrapolated to characterise emergent whole-

system properties, such as functioning, providing useful insight into otherwise unmeasurable emergent system 

properties. 

The first challenge in food web modelling is the conceptualisation and quantification of food webs. Given the 

inherent complexity of empirical food webs and the difficulty of estimating flow values from direct 

measurements, the empirical input data are often insufficient to quantify all flows in the food web (Kones et 

al., 2009; Soetaert and van Oevelen, 2009). There are typically more unknown flow values than quantified flows 

in food web models, resulting in a state of ‘under-determinacy’ (Kones et al., 2009; Soetaert and van Oevelen, 

2009; Van den Meersche et al., 2009; van Oevelen et al., 2010). In under-determined networks, there exists 

an infinite number of plausible flow solutions, from which one plausible solution can be estimated through linear 

inverse modelling (LIM) methods. 

Linear Inverse Modelling (LIM) describes the food web model as a linear mathematical function of the flows 

(van Oevelen et al., 2010). LIM uses the observed input data as linear equations to define a polytope of solution 

in Euclidean space (‘solution space’), with each linear equation defining a boundary of the solution space. Flow 

inequalities (i.e., constraints) representative of the empirical observations introduces uncertainty in the model 

(van Oevelen et al., 2010; Waspe et al., 2018). Within the solution space, an infinite number of plausible food 

web configurations exist (Soetaert and van Oevelen, 2009; Van den Meersche et al., 2009; van Oevelen et al., 
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2010). From these plausible food web configurations, a single solved configuration can be estimated using 

established LIM algorithms such as the central solution (Soetaert et al., 2009), parsimonious solution (flow 

vector that has the smallest sum of squared values) (Kones et al., 2009; Vézina and Platt, 1988) and likelihood-

approach solutions (van Oevelen et al., 2010). The single solution returns one solved (i.e., plausible) food web 

model, where each flow value in the food web model has been estimated from several plausible flow values 

within the solution space. Solved flow values are thereafter analysed with ENA, which calculates various 

mathematical indicators that can be used to describe characterise ecosystem function. 

A potential problem with empirically derived single network solutions is that they only capture a snapshot of 

potential ecosystem function. Therefore, one plausible food web configuration does not represent the range of 

potential ecosystem energy flows, limiting the ecological relevance of this method (Scharler and Borrett, 2021; 

Soetaert and van Oevelen, 2009). The focus of this research is how to capture ecological variability and quantify 

uncertainty in ecosystem function into useful indicators for ecosystem management.  

To address some the constraints with single solution methods, a recent approach is to look at not one realization 

of the network model, but to solve ensembles of multiple plausible solutions from the solution space. The 

ensembles are sampled from the solution space using iterative Markov Chain Monte Carlo (MCMC) random walk 

algorithms (collectively referred to as LIM-MCMC) (Kones et al., 2006; Van den Meersche et al., 2009; van 

Oevelen et al., 2010). Each plausible solution within the ensemble is a valid and unique configuration of the 

food web flows under known ecological constraints (van Oevelen et al., 2010). Calculating ensembles of 

plausible networks accounts for the various configurations of energy flows that may exist in the empirical 

system, thereby introducing uncertainty of resultant ecosystem indicators. The uncertainty in the ecosystem 

indicators may provide potentially richer views of ecological system function variability (Hines et al., 2018; 

Scharler and Borrett, 2021; Waspe et al., 2018).  

1.2 Aims & Objectives 

Currently, neither LIM nor LIM-MCMC are used to their full potential in management. While single network 

solutions may be easier to calculate and communicate, they ignore variability in the input data, and often take 

extreme values at the edge of the solution space. These extreme values, although still plausible, may not 

necessarily be the most representative of the actual ecosystem state (Guesnet et al., 2015; Kones et al., 2006). 

Ensembles of plausible solutions address the issue of incorporating input data variability, therefore providing 

more robust estimates of ecosystem function, but are difficult to communicate in a meaningful way to ecosystem 

managers. Using food web ensembles and select ENA indicators describing ecosystem function in a highly 

variable case study system, we aimed to 1) explore the differences in ecosystem network properties derived 

from single solution food webs and ensembles of plausible food webs, and 2) investigate if ensemble methods 

can provide more robust estimates of ecosystem function than single solution methods. 
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2 Methods 

2.1 Case study site 

Estuaries are highly productive and naturally variable 

environments given their embedded nature between terrestrial, 

freshwater, and marine environments (Mahoney and Bishop, 

2017). As the interface between these environments, estuaries 

experience a large variability in conditions that influence 

ecosystem structure and function, and are therefore vulnerable to 

compounded effects of global change from each of these 

environments (Poloczanska et al., 2007). We selected uMdloti 

Estuary (29°39'2.1348" S, 31°7.'44.9328" E) located on the east 

coast of South Africa (Figure 1) as our case study site for this 

investigation. uMdloti Estuary is a perched, large predominantly 

closed estuary (Van Niekerk et al., 2019b) classified as heavily 

modified (Skowno et al., 2019; Van Niekerk et al., 2019c), due to 

very high pressures of pollution (DWA, 2013), siltation (DWA, 

2013), and high pressures of flow modification, habitat loss, and 

invasive fish (Van Niekerk et al., 2019a). 

During the study period (2014 – 2016), the region was 

experiencing an extended drought, limiting freshwater flow into 

the estuary (Scharler et al., 2020). Freshwater flow was further 

constricted by the ongoing water abstraction from Hazelmere Dam 

upstream of the estuary (Brooker and Scharler, 2020). The limited 

freshwater flow lead to extended mouth closure conditions, with 

a single mouth breach event between July and August 2015 

(Scharler et al., 2020). During a mouth breach event, the estuary 

opens to the ocean, which allows for system water renewal and flushing (removal of nutrient build up), salinity 

mixing, and estuarine species recruitment into the estuary (Froneman, 2018; Slinger et al., 2017). For this 

investigation, the mouth breach event serves as the single acute “system disturbance” during the study period. 

  

Figure 1: Location of uMdloti Estuary on the 

east coast of South Africa and proximity to 

the nearest city Durban, eThekwini 

Municipality. 
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2.2 Data collection & food web model construction 

Monthly in situ data were collected at three sites (lower, middle, and upper reaches) in uMdloti Estuary during 

2014 – 2016. Collected data included physicochemical data, phytoplankton concentration, microphytobenthos 

concentration, suspended particulate organic matter concentration, sedimented particulate organic matter 

concentration, and abundances of meiofauna, macrozoobenthos, and zooplankton. Using the in situ ecological 

data, together with empirical data from various published and grey literature, we constructed thirteen monthly 

food web models to capture temporal ecosystem function before and after the breach event. For technical 

details on food web model construction we refer the reader to Fath et al., 2007; and Scharler and Borrett, 2021. 

Briefly, each monthly food web model topology (structure) was first determined in terms of nodes (species or 

functional groups) and the trophic links between them. Additional links included egestive flows of material to 

detrital compartments, and boundary flows of respiration, imports, and exports. We parameterised the food 

web models by assigning ‘weights’ to each node and inequalities (lower and upper constraints) to each flow in 

terms of a thermodynamically-conserved model currency (in carbon units mgC·m−2 for node biomass, 

mgC·m−2·d−1 for flow inequalities) (Borrett et al., 2018; van Oevelen et al., 2010). In LIM modelling, it is 

recommended that inequalities are defined for flows rather than equalities to incorporate ecologically 

appropriate data variability (Hines et al., 2018; Robson et al., 2018; Scharler and Borrett, 2021; Waspe et al., 

2018). We included mass-balance equations for all living compartments 𝐶 = 𝑃 + 𝑅 + 𝑈 where input flows of 

each compartment (consumption (C) or gross primary production (GPP)) is equal to the sum of output flows 

from the compartment, namely production (P), respiration (R), and unused material/energy (U) (Fath et al 

2007). Final model structure in terms of number of living nodes, non-living nodes, externals, internal flows, and 

boundary flows are summarised in Table 1. 

Table 1: Food web model structure of uMdloti Estuary for the thirteen months included in the time series  

  

Date 
 Living 

Nodes 

 Non-Living 

Nodes 

 
Externals 

 Internal 

flows 

 Boundary 

flows 

Apr-15  28  2  33  295  62 

May-15  27  2  32  277  60 

Jun-15  29  2  34  300  64 

Aug-15  24  2  29  245  54 

Sep-15  30  2  35  339  66 

Oct-15  30  2  35  333  66 

Nov-15  28  2  33  293  62 

Dec-15  27  2  32  308  60 

Jan-16  31  2  36  362  68 

Feb-16  29  2  35  307  65 

Mar-16  28  2  33  275  62 

Apr-16  29  2  34  276  64 

Jun-16  24  2  29  216  54 
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2.3 Solving food web network solutions 

A popular software method of using LIM to calculate single network solutions and ensembles of plausible 

networks is with open-source R and R package LIM (v 1.4.6) (van Oevelen et al., 2010), and embedded R 

package limSolve (v 1.5.1+) (Soetaert et al., 2009). We first coded parameterised food web models into LIM 

declaration files using novel translation tools “autoLIM” (Gerber et al., n.d.).  

2.3.1 Single food web solutions 

Using the LIM declaration files with R packages limSolve (Soetaert et al., 2009) and LIM (van Oevelen et al., 

2010), we calculated three single food web solutions for each month using algorithms 1) Least Squares with 

Equalities and Inequalities (LSEI) (Haskell and Hanson, 1981) with the lsei() function, 2) Weighted Least 

Distance Programming with equality and inequality constraints (LDEI) (Lawson and Hanson, 1995, 1974) with 

the ldei() function, and 3) Central solution (Soetaert et al., 2009) with the xranges() function. 

2.3.2 Ensemble food web solutions 

To calculate ensembles of plausible food web networks per month, we used the LIM declaration files and a 

MCMC “mirror” algorithm via the xsample() function in R package LIM (Van den Meersche et al., 2009; van 

Oevelen et al., 2010). The default starting point for the “mirror” algorithm is estimated via LSEI, thereafter the 

algorithm iteratively samples the solution space based on a user-defined proposal distribution width (jump size) 

where each returned sample is one plausible food web solution. The mirror algorithm uses the inequalities of 

the solution space as reflection panes (Van den Meersche et al., 2009) to mirror the MCMC algorithm back into 

the solution space. Mirroring the MCMC algorithm back into the solution space reduces the possibility of high 

rejection rates and, therefore, is more efficient for high-dimensional problems such as food webs (Van den 

Meersche et al., 2009).  

In this study, we selected the default starting solution (LSEI) (Van den Meersche et al., 2009), a jump size of 

0.5 mgC·m−2·d−1, and 10,000 iterations. In food web studies, the number of iterations can vary from 1000 (Horn 

et al., 2017) to 200 million (Kelly et al., 2019), and jump size selection has been based on flow medians (Chaalali 

et al., 2015), or defaulted to an internally calculated jump size (Van den Meersche et al., 2009). For this study, 

we selected the jump size and number of iterations based on the need to balance sampling efficiency with 

computation time. To estimate if the solution space was well-sampled using the selected jump size and number 

of iterations, we used we used a combination of traceplots and running means plots to assess convergence of 

the marginal probability function of select flows to the target distribution of the solution space (Roy, 2020; 

Saint-Béat et al., 2020, 2013). 
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2.4 Ecological Network Analysis 

We applied Ecological Network Analysis (ENA) to the single food web solutions and the ensembles of plausible 

food web solutions using the get.ns() function in R package enaR (v.3.0.0) (Lau et al., 2017). The 

get.ns() function solves for many different ENA indicators (> 93 indicators), with each indicator describing a 

different aspect of the system. The inherent complexity of ecosystems and number of ENA indicators has led 

researchers (and practitioners) to focus on a few macro-scale indicators that consistently give impression of the 

system function and productivity, allow for comparison across systems or timescales, and can be potentially 

communicated in a meaningful way to ecosystem managers. In particular, we focus on three ecological 

indicators that have recently been recommended for policy inclusion (de Jonge and Schückel, 2021; Fath et al., 

2019; Safi et al., 2019) (Table 2).  

The first, Total System Throughflow (TSTflow), is an extensive measure of how much energy passes through the 

system, characterising the overall size and activity of the system (Patten, 1995). More productive systems have 

a higher TSTflow, which is also indicative of favourable conditions for primary production at the base of all 

ecosystems. The second indicator, Finn Cycling Index (FCI) (%) (Finn, 1980, 1976), is an intensive measure of 

the fraction of TSTflow that is cycled and shows how capable the system is at reusing a single unit of flow (Safi 

et al., 2019) (Table 2). Higher cycling can be interpreted as an indicator of stress (Odum, 1985; Pezy et al., 

2018; Scharler and Baird, 2005; Tecchio et al., 2015), but can also describe a system’s ability to self-sustain its 

function despite external perturbations (Saint-Béat et al., 2015). The Detritivory:Herbivory ratio (D:H) 

characterises the reliance of trophic level II (detritivores and herbivores) on primary producers (plant material) 

and/or detritus (dead organic matter) to fuel the food web (Latham, 2006; Ulanowicz and Kay, 1991) (Table 

2). A high D:H ratio indicates that detritus in that particular system is important for medium cycling such as 

carbon recycling, and can indicate system maturity (Odum, 1969). 

Table 2: The select system-level ecological network analysis (ENA) indicators used to describe ecosystem 

function 

Ecological Indicator  Abbreviation  Equation 

Total System Throughflow! 

(mgC·m−2·d−1)  𝑇𝑆𝑇𝑓𝑙𝑜𝑤  

 
𝑇𝑆𝑇𝑓𝑙𝑜𝑤 =  ∑ 𝑇𝑖

𝑛
𝑖=1 , where 

𝑇𝑖
𝑖𝑛 =  𝑧𝑖 + ∑ 𝑓𝑗𝑖

𝑛
𝑗=1  ; 𝑇𝑖

𝑜𝑢𝑡 =  𝑦𝑖 + ∑ 𝑓𝑖𝑗
𝑛
𝑗=1  

At steady state, 𝑇𝑖
𝑖𝑛 =  𝑇𝑖

𝑜𝑢𝑡 =  𝑇𝑖 

Finn Cycling Index# (%)  𝐹𝐶𝐼  

 

𝐹𝐶𝐼 =  
∑ 𝑇𝑆𝑇𝐶𝑖

𝑇𝑆𝑇𝑓𝑙𝑜𝑤

∗ 100 

 

Detritivory:Herbivory Ratio$  𝐷𝐻  
𝐷𝐻 =  

∑ 𝐷𝑒𝑡𝑟𝑖𝑡𝑖𝑣𝑜𝑟𝑦

∑ 𝐻𝑒𝑟𝑏𝑖𝑣𝑜𝑟𝑦
 

 

References: !(Ulanowicz, 2004, 1986), #(Finn, 1980, 1976), $(Ulanowicz and Kay, 1991) 

From the ensemble network solutions, we further calculated nodal throughflow and nodal cycling to determine 

the contributions of each node to the system-level indicators of TSTflow and FCI. For each plausible food web, 

we calculated nodal throughflow with the enaFlow()function in R package enaR (Lau et al., 2017). We 

developed a custom function nodeCycle(), based on enaFlow()function, to calculate nodal cycling on one 

food web solution (Supplemental Information 1). We applied nodeCycle() over all plausible solutions using 

the base R function lapply().  
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2.5 Statistical Analysis  

2.5.1 Pairwise relationships 

We investigated temporal relationships between ecologically related flows and ecological indicators from each 

solution method through correlation methods, using each month as a sample point. For each of the single 

network solutions, we used the absolute value for each flow and ecological indicator per month. From the 

ensembles, we used the median value for each flow and ecological indicator as a representative point of the 

ensemble. Since we had a small sample size per group (n = 13), it was important to determine the distribution 

of the variables to determine an appropriate statistical test. For each solution type (central, LSEI, LDEI, 

ensembles), we evaluated the variables of interest for normality using the Shapiro-Wilks test for normality 

(Supplementary Material 2, Table SI2 1). Where the variables showed evidence of non-normality (p > . 05), we 

applied a log-transformation and again evaluated for normality. Based on the normalised values, we applied 

Pearson correlation analysis to determine relationships between the relevant variables per network solution 

type. We further compared the correlations between the solution types using Fisher’s z test. 

2.5.2 Comparison of ensembles 

Given the generally large number of samples (iterations), non-independence of samples, and commonly non-

normally distributed values (Scharler and Borrett, 2021), parametric statistical analyses are often not 

appropriate to compare ensemble ecological indicators between time steps (Niquil et al., 2020; Tecchio et al., 

2016). Parametric statistical tests will often return statistical significance, even if the actual differences are 

negligible (Tecchio et al., 2016). In food web modelling, an alternative to parametric statistical tests is Cliff’s 

Delta (Cliff, 1993), which is a non-parametric effect size measure (ESM) that has been successfully used in 

statistical comparisons of ENA indicators between unique time and spatial steps (Macbeth et al., 2011; Meddeb 

et al., 2019; Niquil et al., 2020; Tecchio et al., 2016; van der Heijden et al., 2020). For this study we compared 

select monthly ecological flows and indicator ensembles with Cliff’s Delta using the function cliff.delta()in 

R package effsize (v3.4.3) (Torchiano, 2020).  We considered pairwise comparisons to be significantly 

different if Cliff’s Delta was medium (0.33 ≥ |δ| < 0.474) or large (|δ| ≥ 0.474) (Table 3). 

Table 3: Cliff’s Delta values and magnitudes (Cliff, 1993; Macbeth et al., 2011) indicating statistical significance 

Cliff’s Delta  Magnitude  Indicative of significant differences? 

|δ| < 0.147  Negligible  No 

0.147 ≥ |δ| < 0.33  Small  No 

0.33 ≥ |δ| < 0.474  Medium  Yes 

|δ| ≥ 0.474  Large  Yes 
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3 Results 

3.1 Comparing network properties from single & ensemble solutions 

3.1.1 Flows 

For the select flows presented in this study (in units of mgC·m−2·d−1), the flow values calculated from the single 

solutions LDEI and LDEI generally reflect similar temporal patterns to the ensemble solution distributions, 

although often at the edges or extreme tails of the ensembles (Figure 2). The flow values calculated from the 

central solution also generally followed the ensemble trend but were often extreme underestimates or 

overestimates of the ensemble distributions (Figure 2, Table SI3 1). Single network solution values and 

ensemble distributions for flows Net Primary Production (NPP) and Total Herbivory tend to follow a seasonal 

pattern, with lower values in the winter months and higher values during the summer months (Figure 2, Table 

SI3 1). Total Detritivory calculated from single network solutions were generally low throughout the study time 

period, with moderate increases in Sep 2015 and during summer months February – March 2016 (Figure 2, 

Table SI3 1). However, Total Detritivory medians, calculated form ensemble medians, always reflected higher 

estimates in comparison to the single network solutions (Figure 2, Table SI3 1). Both ensemble and single 

network solutions indicate generally low Primary Producer Sink (primary producer material to detritus via 

egestive and mortality flows) throughout the study time period, with the lowest sinks occurring immediately 

after the system breach in August and September 2015 (Figure 2, Table SI3 1). 

3.1.2 Ecological Indicators 

For the select ecological indictors presented in this study, the single solutions and ensemble distributions show 

that uMdloti Estuary ecosystem during the drought period was generally characterised by a reliance on primary 

producers to fuel the food web, lower cycling, and seasonal summer increases in system activity (Figure 3). 

Immediately after the system disturbance (mouth breach), the Detritivory:Herbivory ratio (D:H) increased, and 

thereafter decreased once the mouth closed and remained closed (Figure 3). D:H values from single solutions 

LSEI and LDEI closely followed the D:H ensemble trend, often in the extreme ends of the distributions, whereas 

D:H values calculated from the central solution often overestimated the ensemble (May 2015, August 2015, 

September 2015, November 2015) (Figure 3, Table SI3 2). System cycling, characterised by Finn Cycling Index 

(FCI) (%) followed a similar trend to D:H, increasing in the months immediately after the system breach, and 

decreasing once the mouth closed and remained closed. The FCI calculated from the single network solutions 

often followed the same trends as the ensembles, except in the months immediately after the mouth breach, 

where single solutions tended to underestimate (August 2015) and overestimate (September 2015) the values 

from the ensemble distributions (Figure 3, Table SI3 2). System activity, characterised by Total System 

Throughflow (TSTflow) (mgC·m−2·d−1) showed seasonal temporal trends in ensemble distributions, increasing in 

summer months and decreasing in winter months (Figure 3, Table SI3 2). System activity calculated from single 

network solutions follows a similar seasonal trend as the ensemble distributions but were almost always in the 

lower tail thereof (Figure 3, Table SI3 2). 
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Figure 2: Density distributions of select flows (mgC·m−2·d−1) calculated on 10,000 plausible uMdloti Estuary food web networks per month, with lower (2.5 %) and upper (97.5 %) tails 

of the distribution highlighted in red and blue, respectively, and grey highlights 95 % confidence intervals of the ensemble means. Ensemble medians are indicated as black lines through 

the distributions. The same flows calculated from the single network solutions Least Distance with Equalities and Inequalities (LDEI), Least Squares with Equalities and Inequalities (LSEI), 

and the central solution (central) are plotted together with the ensemble distributions indicating their relative positions within the ensemble distributions. Dashed orange line indicates 

the system breach.
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Figure 3: Density distributions of select Ecological Network Analysis (ENA) indicators calculated on 10,000 plausible uMdloti Estuary food web networks per month, with lower (2.5 %) 

and upper (97.5 %) tails of the distribution highlighted in red and blue, respectively, and grey highlights 95 % confidence intervals of the ensemble means. Ensemble medians are 

indicated as black lines through the distributions. The same ecological indictors calculated from the single network solutions Least Distance with Equalities and Inequalities (LDEI), Least 

Squares with Equalities and Inequalities (LSEI), and the central solution (central) are plotted together with the ensemble distributions indicating their relative positions within the ensemble 

distributions. Dashed orange line indicates the system breach. 
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3.2 Frequency of extreme values calculated from single network 
solutions 

For each of the single network solutions (LDEI, LSEI, Central), we calculated the probability of finding a value 

of any flow or network indicator more extreme than the 95 % confidence intervals (CI) of the means of each 

ensemble (< 2.5 %, or > 97.5 %). Across all thirteen months, the central solution was less likely to calculate 

extreme Total Detritivory flow values (38.46 %) than LDEI and LSEI solutions (both 100 %). Further, the central 

solution was less likely to calculate extreme Primary Producer Sink flow values (61.54 %), than LDEI (92.31 %) 

and LSEI (76.92 %) solutions (Table 4). However, the central solution was more likely to calculate extreme 

Total Net Primary Production flow values (53.85 %) than either the LDEI (46.15 %) or the LSEI (38.46 %) 

solutions. Flow values of Total Herbivory calculated from LDEI solution were less likely extreme values (38.46 %) 

than those calculated from LSEI (61.54 %) and central (53.65 %) (Table 4). 

Finn Cycling Index (FCI) values calculated from the LDEI and LSEI single network solutions were less likely to 

be extreme values outside of the 95 % confidence intervals of the ensemble means (both 38.46 %) than those 

calculated from the central solution (84.62 %) (Table 4). Total System Throughflow (TSTflow) calculated from 

LDEI and LSEI were always likely to be extreme values (100 %), whereas TSTflow calculated from the central 

solution were more likely to fall within the 95 % confidence intervals of the ensemble means than not (23.08 %) 

(Table 4). Detritivory: Herbivory Ratio (D:H) calculated from the LSEI solution were less likely to be extreme 

values (84.62 %) than those calculated from LDEI and Central solutions (both 92.31 %) (Table 4). 

Table 4: Frequency of flow and ecological indicator values calculated from the single network solutions: Least 

Distance with Equalities and Inequalities (LDEI), Least Squares with Equalities and Inequalities (LSEI), and the 

central solution (Central), to fall outside of the 95 % confidence intervals of the ensemble means over thirteen 

(13) months of analysis in uMdloti Estuary. Select flows (mgC·m−2·d−1) include Total Detritivory, Total Herbivory, 

Primary Producer Sink, and Total Net Primary Production. Select ecological indicators include Detritivory: 

Herbivory Ratio (D:H), Finn Cycling Index (FCI) (%), and Total System Throughflow (TSTflow) (mgC·m−2·d−1). 

Network Property LDEI   LDEI   Central 

Flows 
(mgC·m−2·d−1) 

Total Detritivory 100.00  100.00  38.46 

Total Herbivory 38.46  61.54  53.85 

Primary Producer Sink 92.31  76.92  61.54 

Total Net Primary Production 46.15  38.46  53.85 

ENA Indicators 

D:H 92.31  84.62  92.31 

FCI (%) 38.46  38.46  84.62 

TSTflow (mgC·m−2·d−1) 100.00   100.00   23.08 

  

mailto:permissions@iiasa.ac.at


www.iiasa.ac.at 

17 

 

We further investigated the bias of single solutions to either under- or overestimate flow and ecological indicator 

values outside the 95 % confidence intervals of the ensemble means. We considered an extreme 

underestimation to be less than the 2.5 % lower tail of the ensemble distribution, and an extreme overestimation 

to be above the 97.5 % upper tail of the ensemble distribution. We considered any value within 2.5 – 97.5 % 

of the ensembles to be equal to, or a likely representation of, the ensemble distribution (Kones et al., 2009).  

For the flows combined, we found that flow values calculated from any of the three single solutions were more 

likely to be underestimates of the ensembles (Figure 4).The flow values calculated from LDEI and LSEI solutions 

were more likely to be extreme underestimations of the ensembles (67.31 % and 69.23 %, respectively), than 

those calculated form the central solution (40.38 %) (Figure 4). The central solution was more likely to calculate 

flows within the 95 % confidence intervals of the ensemble means (48.08 %) than the LDEI and LSEI solutions 

(both 30.77 %) but was also more likely to overestimate the flow values (11.54 %) than either of the LDEI or 

LSEI solutions (1.92 % and 0 %, respectively) (Figure 4). 

We found a similar trend when we compared the likelihood of calculating extreme ecological indicator values 

from single solutions, where ecological indicator values calculated from the single solutions were more likely to 

be underestimates of the ensembles (Figure 4). The ecological indictors calculated from LDEI and LSEI solutions 

were more likely underestimations of the ensembles (74.36 % and 69.23 %, respectively), than those calculated 

from the central solution (46.15 %) (Figure 4). While ecological indicator values calculated from the central 

solution were more likely to be within the 95 % confidence intervals of the ensemble means (33.33 %) than 

the LDEI and LSEI solutions (23.08 % and 25.64 %, respectively), there was also a greater likelihood that the 

central solution would result in overestimates of ecological indictors (20.51 %). 

When looking at both flows and ecological indicators combined, we found that all three single solutions were 

most likely to result in underestimations of the ensembles (42.86 – 70.33 %) than to be within the 95 % 

confidence intervals of the ensemble means, or overestimate the ensembles (Figure 4). However, the central 

solution was more likely to result in flow and ecological indicator values that fall within the 95 % confidence 

intervals of the ensemble means (41.76 %) than the LDEI and LSEI solutions, but also was more likely to result 

in overestimations of the ensembles (15.38 %) (Figure 4). 
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Figure 4: Probability (%) of any of the select flows and ecological indicator values calculated with single network 

solutions Least Distance with Equalities and Inequalities (LDEI), Least Squares with Equalities and Inequalities 

(LSEI), and the central solution (Central), to be extreme underestimates of the ensembles (< 2.5 %), within 

the 95 % confidence interval (CI) of ensemble means (2.5 – 97.5 %), or extreme overestimates of the 

ensembles (> 97.5 %). 
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3.3 Pairwise relationships between ecologically related flows 

In food webs, there are ecologically related relationships between Net Primary Production (NPP), herbivory, and 

detritivory flows (Heymans et al., 2002). Net Primary Production is an indicator of the primary producer food 

availability to fuel the food web, either directly via trophic level II taxa consuming more primary producers 

(herbivory), or indirectly via primary producer die off to the detrital compartment, increasing detrital food 

resources and an increase in trophic level II feeding on detritus (detritivory) (Fath et al., 2019; Heymans et al., 

2002).  

We investigated if these ecologically related relationships are consistently reflected in the single and ensemble 

solutions over the study period, and whether each solution type provides statistically comparable relationships 

to one another (no significant differences). We found that for all network solution types, there is indeed a 

strong, positive correlation between primary producer food availability (Total Net Primary Production 

mgC·m−2·d−1) and Total Herbivory (mgC·m−2·d−1) in uMdloti Estuary during the study time period (Slope: .99 

– 1; p < .001, two-tailed) (Figure 5A). However this relationship, when derived from the central solution, is 

statistically significantly different to the relationship derived from the LDEI solution (Fisher’s z = 2.335, p < .05, 

two-tailed), and the relationship derived from the LSEI solution (Fisher’s z = 2.332, p < .05, two-tailed) (Table 

5). There were no significant differences between correlations derived from the central solution and the 

ensemble medians (p > .05, two-tailed), or between the ensemble medians and LDEI and LSEI solutions (p 

> .05, two-tailed) (Table 5). 

We further compared the relationship between primary producer food availability (Total Net Primary Production 

mgC·m−2·d−1) and Total Detritivory (mgC·m−2·d−1) derived from each solution type (Figure 5B). We found a 

moderate, positive correlation between these variables derived from the LSEI solution (Slope = .61, p = .026, 

two-tailed), and a strong, positive relationship when derived from the ensemble medians (Slope = .86, p < .001. 

two-tailed) (Figure 5B). We found no significant correlations between these variables when derived from the 

LDEI solution (Slope = .55, p = .051, two-tailed), or the central solution (Slope = .08, p = .784, two-tailed) 

(Figure 5B). When statistically comparing the correlations derived from each network solution type, we found 

a significant difference in the correlations derived from the central solution and ensemble medians (Fisher’s z 

= -2.683, p < .01, two-tailed) (Table 5). There were no significant differences between the correlations derived 

from the central solution to the LDEI and LSEI solutions (p > .05, two-tailed), or between the correlations 

derived from the ensemble medians and the LDEI and LSEI solutions (p > .05, two-tailed) (Table 5). 

We compared the relationship between primary producer food availability (Total Net Primary Production 

mgC·m−2·d−1), and how much primary producers contributes to detrital food availability via egestive and 

mortality sinks (Primary Producer Sink mgC·m−2·d−1), derived from each solution type (Figure 5C). We found 

significant moderate, positive relationships derived from solution type LDEI (Slope = .73 p = .004) and LSEI 

(Slope = .79, p = .001), but no significant relationships derived from the central solution (Slope = -0.15, p 

= .633) or ensemble medians (Slope = .32, p = .288) (Figure 5C). However, when statistically comparing the 

correlations between network solution types, we found that only the central solution correlation was significantly 

different to the LDEI solution correlation (Fisher’s z = 2.424, p < .05, two-tailed) and the LSEI correlation 

(Fisher’s z = 2.744, p < .01, two-tailed), but not significantly different to the ensemble median correlation (p 
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> .05, two-tailed) (Table 5). Furthermore, the correlations between LDEI, LSEI, and ensemble medians were 

not statistically different (p > .05, two-tailed) (Table 5). 

Finally, we compared the relationships between the contribution of primary producers to detrital food availability 

(Total Primary Producer Sink mgC·m−2·d−1) and Total Detritivory (mgC·m−2·d−1) (Figure 5D). None of the 

correlations derived from each solution type showed any significant relationships between these variables (p 

> .05, two-tailed), and there were no differences between the correlations derived from each solution type (p 

> .05, two-tailed) (Table 5). 
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Figure 5: Pearson Correlations between ecological flows in uMdloti Estuary derived from single solutions (LDEI, LSEI, Central) and ensemble medians (n = 13). A) Total Net Primary 

Production (mgC·m−2·d−1) and Total Herbivory (mgC·m−2·d−1), B) Total Net Primary Production (mgC·m−2·d−1) and log-scaled Total Detritivory (mgC·m−2·d−1), C) Total Net Primary 

Production (mgC·m−2·d−1) and log-scaled Total Primary Producer Sink (mgC·m−2·d−1), D) log-scaled Total Primary Producer Sink (mgC·m−2·d−1) and log-scaled Total Detritivory 

(mgC·m−2·d−1). Slope indicates the correlation coefficient, p-values indicate the significance of the correlation coefficient (two-tailed, significant if p < .05). 
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Table 5: Fisher (1925) and Zou (2007) sample estimates (r1.jk, r2.hm), Fisher’s (1925) z-score and p-value, and Zou (2007) 95 % confidence intervals for each 

correlation between select flows and ecological indicators, between respective network solution methods (LDEI, LSEI, Central, Ensemble Medians). Flows include Total 

Net Primary Production (NPP), Total Herbivory (Herbivory), Total Detritivory (Detritivory), and Primary Producer Sink (ppSink). Ecological Network Analysis (ENA) 

indicators include Total System Throughflow (TSTflow), Detritivory:Herbivory ratio (D:H), and Finn Cycling Index (FCI). Statistical significance is indicated at levels p 

< .05 (*), p < .01 (**), p < .001 (***). 

  LDEI / Central   LDEI / Ensemble Median   LDEI / LSEI 

 Estimate   Conf. intervals  Estimate   Conf. intervals  Estimate   Conf. intervals 

Correlations r1.jk r2.hm z p lower upper  r1.jk r2.hm z p lower upper  r1.jk r2.hm z p lower upper 

log(D:H) ~ log(FCI) 0.886 0.742 0.999 0.318 -0.147 0.570  0.886 0.747 0.976 0.329 -0.150 0.561  0.886 0.886 -0.002 0.998 -0.246 0.245 

log(D:H) ~ TSTflow -0.025 -0.084 0.133 0.895 -0.731 0.824  -0.025 -0.579 1.420 0.155 -0.211 1.177  0.886 0.886 -0.002 0.998 -0.246 0.245 

log(FCI) ~ TSTflow -0.050 -0.076 0.057 0.954 -0.757 0.798  -0.050 -0.072 0.049 0.961 -0.760 0.795  -0.025 -0.048 0.052 0.959 -0.760 0.797 

log(ppSink) ~ log(Detritivory) -0.087 0.032 -0.266 0.790 -0.870 0.683  -0.087 -0.078 -0.022 0.983 -0.784 0.769  -0.050 -0.053 0.007 0.994 -0.776 0.781 

NPP ~ Herbivory 0.999 0.992 2.335 < .05* 0.001 0.027  0.999 0.998 0.871 0.384 -0.002 0.007  -0.087 0.058 -0.326 0.744 -0.891 0.662 

NPP ~ log(Detritivory) 0.550 0.084 1.194 0.233 -0.294 1.111  0.550 0.858 -1.489 0.136 -0.868 0.096  0.550 0.613 -0.211 0.833 -0.671 0.535 

NPP ~ log(ppSink) 0.734 -0.146 2.424 < .05* 0.155 1.411   0.734 0.319 1.356 0.175 -0.185 1.042   0.734 0.793 -0.320 0.749 -0.509 0.346 

                     
  LSEI / Central   LSEI / Ensemble Median   Central / Ensemble Median 

 Estimate   Conf. intervals  Estimate   Conf. intervals  Estimate   Conf. intervals 

Correlations r1.jk r2.hm z p lower upper  r1.jk r2.hm z p lower upper  r1.jk r2.hm z p lower upper 

log(D:H) ~ log(FCI) 0.886 0.742 1.001 0.317 -0.147 0.571  0.886 0.747 0.978 0.328 -0.150 0.561  0.742 0.747 -0.023 0.981 -0.458 0.446 

log(D:H) ~ TSTflow -0.048 -0.084 0.081 0.936 -0.749 0.805  -0.048 -0.579 1.368 0.171 -0.229 1.160  -0.084 -0.579 1.288 0.198 -0.256 1.132 

log(FCI) ~ TSTflow -0.053 -0.076 0.050 0.960 -0.760 0.795  -0.053 -0.072 0.042 0.967 -0.763 0.792  -0.076 -0.072 -0.009 0.993 -0.780 0.774 

log(ppSink) ~ log(Detritivory) 0.058 0.032 0.060 0.952 -0.757 0.799  0.058 -0.078 0.305 0.760 -0.670 0.884  0.032 -0.078 0.245 0.807 -0.691 0.863 

NPP ~ Herbivory 0.999 0.992 2.332 < .05* 0.001 0.027  0.999 0.998 0.868 0.385 -0.002 0.007  0.992 0.998 -1.464 0.143 -0.026 0.002 

NPP ~ log(Detritivory) 0.613 0.084 1.405 0.160 -0.209 1.157  0.613 0.858 -1.278 0.201 -0.774 0.132  0.084 0.858 -2.683 < .01** -1.355 -0.182 

NPP ~ log(ppSink) 0.793 -0.146 2.744 < .01** 0.250 1.458   0.793 0.319 1.676 0.094 -0.082 1.091   -0.146 0.319 -1.068 0.285 -1.118 0.374 
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3.4 Pairwise relationships between ecologically related indicators 

We compared pairwise relationships (correlations) of ecological indicators, understood as ecologically related, 

derived from each solution type to establish each solution type’s representation of ranges of ecological input 

data. Ecological indicators Detritivory:Herbivory Ratio (D:H) and Finn Cycling Index (FCI) are understood to be 

related as an increase in detritivory (and resultant increase in D:H) has been shown to increase the overall 

cycling (characterised by FCI) of a system (Odum, 1969) (Figure 6A). In our study, we found statistically 

significant positive linear relationships between D:H and FCI in all single solution and ensemble solution 

networks (Slope: 0.74 – 0.89, p < .05, two-tailed) (Figure 6B), in agreement with the expected linear trend. 

The relationships derived from LDEI and LSEI solutions were identical (Slope = .89, p < .001, two-tailed) (Figure 

6B). The relationship derived from the central solution (Slope = .74, p = .004, two-tailed) and the ensemble 

medians (Slope = .75, p = .003, two-tailed) were similar, with the central solution showing a greater variance 

and range than the ensemble median (Figure 6B). However, none of the correlations between solutions methods 

were statistically different from one another (p > .05, two-tailed) (Table 5). 

 

Figure 6: A) Generalized linear relationship between ecological indicators Detritivory:Herbivory ratio (D:H) and 

Finn Cycling Index (FCI), B) Pearson correlations between Ecological Network Analysis (ENA) indicators D:H 

and FCI in uMdloti Estuary derived from single network solutions (LDEI, LSEI, Central) and ensemble medians. 

Slope indicates the correlation coefficient, p-values indicate the significance of the correlation coefficient (two-

tailed, significant if p < .05). (n = 13). 

We summarise the rest of the ecological indicator pairwise comparisons in Supplementary Material 4 (Figure 

SI4 1) as correlations between the ecological indicators (D:H vs FCI, FCI vs TSTflow) derived from each solution 

type were not significant (p > .05, two-tailed), nor were these correlations statistically different between solution 

types (p > .05, two-tailed) (Table 5).  
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3.5 uMdloti Estuary temporal ecosystem function 

While the focus of this study is to determine methodology differences between single network solutions and 

ensemble solutions, ecological indicators are only useful if they can be meaningfully compared across spatial 

and temporal scales (Kones et al., 2009). As single network solutions do not allow for statistical comparisons, 

we have used the LIM-MCMC derived ecological indicators for the temporal comparison of uMdloti ecosystem 

function during drought conditions.  

3.5.1 System-level function 

Under drought conditions experienced during the study period, the uMdloti estuary ecosystem showed a 

consistently low ensemble median Detritivory:Herbivory ratio (D:H, < 1.08) except for the months August 2015 

(1.36) and September 2015 (1.17) immediately after the mouth breach (Figure 7). As an ensemble, D:H was 

significantly greater in August and September 2015 as compared to the other months (Cliff’s |δ| > 0.474, Figure 

9). Ensemble distributions also showed an increased variance of D:H in August 2015 immediately after the 

breach (Figure 7). The increase in D:H during August 2015 may be explained by the decline in primary producer 

food availability, characterised by Total Net Primary Production (mgC·m−2·d−1), and subsequent decline in total 

herbivory flows (mgC·m−2·d−1) (Figure 8). 

System cycling, characterised by Finn Cycling Index (FCI), was consistently low for all months (< 10 %), except 

for the months immediately after the system breach (August 2015: 20.02 %, September 2015: 16.17 %) where 

cycling was much greater (Cliff’s |δ| > 0.474, Figure 9). Ensemble distributions of FCI during closed mouth 

conditions immediately after the mouth breach in August and September 2015 show an increased variance as 

compared to months before the system breach, and months after September 2015 as the mouth state closed 

and remained closed (Figure 9). 

System activity, characterised by Total System Throughflow (TSTflow, mgC·m−2·d−1), followed a seasonal trend, 

with higher metabolic activity during the warmer summer months (Figure 7). The seasonal system activity may 

be explained by the Total Net Primary Production (mgC·m−2·d−1), where primary producers are more productive 

during summer months with longer daylight hours (Figure 8). There was no statistically significant change in 

system activity immediately after the breach (June 2015 and August 2015, Cliff’s |δ| = 0.2, Figure 9). 
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Figure 7: Temporal variation of uMdloti Estuary ecosystem function characterised by Ecological Network Analysis 

(ENA) indicators Detritivory: Herbivory Ratio (D:H), Finn Cycling Index (FCI), and Total System Throughflow 

(TSTflow). Lower and upper box boundaries represent 25th and 75th percentiles, respectively. Lower and upper 

error lines represent ± 1.5 * IQR (Interquartile Range). Line inside the box represents the median. Filled circles 

indicate outliers outside of. Dashed orange line indicates the system breach. (n = 10,000). 

 

Figure 8: Temporal variation of select monthly food web flows (mgC·m−2·d−1) in uMdloti Estuary. Lower and 

upper box boundaries represent 25th and 75th percentiles, respectively. Lower and upper error lines represent 

± 1.5 * IQR (Interquartile Range). Line inside the box represents the median. Filled circles indicate outliers 

outside of. Dashed orange line indicates the system breach. (n = 10,000). 
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Figure 9: Variation in monthly ecosystem functioning of uMdloti estuary, characterised by flows (mgC·m−2·d−1) 

Total Detritivory, Total Herbivory, Primary Producer Sink, and Total Net Primary Production, and Ecological 

Network Analysis (ENA) indicators Finn Cycling Index (FCI), Detritivory: Herbivory Ratio (D:H), and Total System 

Throughflow (TSTflow). Pairwise Cliff’s Delta δ magnitudes compared between months (x axis indicates Group 

1, y axis indicates Group 2) indicate the degree of variation between months. Red indicates a strong increase, 

blue indicates strong decrease, white indicate no variation (n = 10,000). Absolute values of Cliff’s δ are 

considered significant if ≥ 0.33. 
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3.5.2 Node-level function 

Under drought conditions, uMdloti Estuary ecosystem activity was driven by nodal activity of detrital 

compartments suspended particulate organic carbon (susPOC) and sedimented particulate organic carbon 

(sedPOC), as well as primary producing microalgae (Phytoplankton and Microphytobenthos), and Oligochaeta 

(Figure 10). Immediately after the system breach, there was a decline in the nodal activity contributions from 

freshwater taxa Corbicula fluminalis (O. F. Müller, 1774), Bulinus sp. (O. F. Müller, 1781), and Chironomidae, 

but an increase in nodal activity contributions from estuarine taxa, most notably polychaeta Sabellidae, calanoid 

copepod Pseudodiaptomus hessei (Mrázek, 1894) and bivalve Brachidontes virgiliae (Barnard, 1984) (Figure 

10). After the system breach and prolonged mouth closure, the system activity was more dominated by 

freshwater taxa than estuarine taxa, except for B. virgiliae which persisted activity within the system despite 

freshwater conditions (Figure 10). 

During months before the system breach, system cycling was driven by the nodal cycling of Oligochaeta, 

Rotifera, and freshwater Chironomidae (Figure 11). In August 2015 immediately after the breach, there were 

increased contributions to total cycling from estuarine zooplankton, specifically from P. hessei, B. virgiliae, and 

freshwater/estuarine Diplostraca (Figure 11). At the same time, contributions to system cycling from 

Chironomidae, Oligochaeta, and Rotifera rapidly declined. After the mouth closed and remained closed, system 

cycling once again was attributed to the nodal cycling of freshwater taxa rather than estuarine taxa (Figure 11).  
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Figure 10: Mean nodal throughflow contribution (%) to Total System Throughflow (mgC·m−2·d−1) in uMdloti Estuary ecosystem over thirteen (13) months (n = 10,000). 

Error bars indicate ± 1 SD. Orange dashed line indicates system disturbance (mouth breach). 
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Figure 11: Mean nodal contributions (%) to Total System Cycling (mgC·m−2·d−1) in uMdloti Estuary ecosystem over thirteen (13) months (n = 10,000). Error bars 

indicate ± 1 SD. Orange dashed line indicates system disturbance (mouth breach). 
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4 Discussion 

4.1 Can ensemble solutions provide more robust estimates of 
ecosystem function than single solutions? 

4.1.1 Ecological indicators derived from single network solutions 

In Linear Inverse Modelling (LIM) problems, the single network solutions Least Distance with Equalities and 

Inequalities (LDEI) and Least Squares with Equalities and Inequalities (LSEI) are used to solve the simplest 

(parsimonious) solution (Soetaert et al., 2009; van Oevelen et al., 2010). LSEI is used to calculate a single 

solution for overdetermined LIM problems (number of independent equations > number of unknowns), whereas 

LDEI is used to calculate a single solution for underdetermined LIM problems (number of independent equations 

< number of unknowns) (Soetaert et al., 2009; van Oevelen et al., 2010). Theoretically, if a system is 

underdetermined (as is often the case in food web LIM problems), LSEI and LDEI should return the same value 

(van Oevelen et al., 2010). In this study, we found evidence that for most months, the network solutions solved 

with LSEI and LDEI, and analysed with ENA, returned very similar ecological indictor values, but not identical 

(Figure 2, Figure 3).  

The slight differences in the ecological indicator values could be because of the calculation of the ecological 

indicators from the network solutions, and not necessarily of the network solutions themselves. From the 

comparisons of extreme flow value estimates from single solutions (Table 4), it is immediately obvious that in 

this study, the LDEI and LSEI solutions return different flow values (otherwise they would be equally likely to 

return extreme flow estimates). Therefore, we can infer that in this study, the LDEI and LSEI solutions did not 

produce identical network solutions, which is in contrast with van Oevelen et al., 2010. Further work is then 

required on 1) the causes of the differences between LDEI and LSEI network solutions, and 2) how these 

differences may or may not propagate themselves in the calculation of ecological indicators. 

In this study, flow and ecological indicator values calculated from single solution networks (LSEI, LDEI, Central) 

are often outside of the 95 % confidence intervals of the ensemble means (Figure 4), indicating that these 

solutions reflect extreme values that are not representative of the ensembles. We determined that generally, 

ecological indicators calculated from single network solutions tend to be underestimations of the ensembles 

(Figure 4). The underestimation in LSEI and LDEI solutions may lie in the algorithm tendency to solve network 

solutions from a corner of the Euclidean solution space, at the intersection of the inequality constraints (Van 

den Meersche et al., 2009). These extreme values at the edge of the solution space may not be fair 

representations of the empirical food web energy flows (Diffendorfer et al., 2001; Kones et al., 2006; Niquil et 

al., 1998). In agreement with our study, previous studies comparing parsimonious estuarine food web solutions 

to LIM-MCMC derived ensemble distributions have found that the parsimonious solution is often significantly 

smaller than the mean ensemble solutions (Kones et al., 2009). In contrast to the similar ecological indicator 

values derived from parsimonious LSEI and LDEI solutions, the flow and ecological indicator values derived 

from the central solutions are often largely different from LSEI and LDEI solutions (Figure 2, Figure 3). As the 

central solution is calculated from the means of the input inequalities (Soetaert et al., 2009), we can infer that 

the central solution may sample a more central, or ecologically representable region of the solution space as 
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compared to the LSEI and LDEI solutions from the edges of the solution space. However, the central solution 

is also more likely to overestimate ensemble values than the LDEI or LSEI solutions (Figure 4). We therefore 

recommend exercising caution when using the central solution as a single network solution, as it is still not 

representative of the ensembles.  

Regardless of whether a single solution under- or overestimates ensemble flow and ecological indicator values, 

ecological interpretations based on extreme values may not be representative of the empirical system. In an 

ecosystem management context, management decisions based on extreme outliers describing ecosystem 

function would not consider the uncertainty of the actual system function, potentially having no effect or the 

opposite effect of the management intention. 

4.1.2 Ecological indicators derived from ensemble network solutions 

In this study, the ensembles showed more realistic and robust estimates of ecosystem function within ecological 

constraints, as compared to the extreme estimates often returned by single network solutions (Figure 3, Figure 

4). Ensemble methods preserve the inherent variability of the ecological data, and therefore introduce 

uncertainty in the model outputs describing ecosystem function that may be more representative of the 

empirical system (Hines et al., 2018; Waspe et al., 2018). From an ecosystem management perspective, the 

ensembles provide more information in terms of range of potential ecosystem function, therefore decision 

makers may find it more comfortable (or appropriate) to make decisions based on this information, rather than 

the limited information provided by single network solutions, which themselves often describe extreme 

ecological states.  

In addition, the variance within ensembles can be used to detect important shifts in system behaviour due to 

external perturbations (Tecchio et al., 2016; Tomczak et al., 2013). In this study, Finn Cycling Index (FCI) 

ensemble variance increased in August 2015 and September 2015 immediately after a system disturbance 

(mouth breach) (Figure 3). The shift in system function was not detected for August 2015 by any of the three 

single network solutions (LSEI, LDEI, central), and in September 2015 all the single network solutions 

overestimated the ensemble FCI (Figure 3). As ecosystem management policy often deals with disturbance 

events, the ensemble solutions that can detect these disturbances has potential relevance for decision makers. 

Ensembles of food web solutions further allow for robust statistical comparison of ecosystems across time and 

space (Figure 9), whereas comparisons between single network solutions are often limited to descriptive studies 

(Guesnet et al., 2015).  
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4.2 Temporal comparison of uMdloti ecosystem function 

Under drought conditions experienced during the study, the generally low Detritivory:Herbivory Ratio (D:H) 

exhibited by uMdloti Estuary (Figure 7) ecosystem indicates that the system is primarily reliant on primary 

produces (microalgae) to fuel the food web (de Jonge and Schückel, 2019). The reliance on primary producers 

indicates that the systems may be less resilient to disturbances affecting the primary producers. The increased 

D:H immediately after the breach indicates a system shift towards detritivory, perhaps as a response to a lack 

of primary producers that had been flushed out during the breach. Previous research has shown that an increase 

in D:H may result from disturbances to the system (de Jonge and Schückel, 2019; Niquil et al., 2014; Schückel 

et al., 2015). Previous work has also found positive relationships between D:H and primary producer food 

resource availability (Chrystal and Scharler, 2014). Alternatively, an increase in primary producer food resources 

could contribute to the detrital pool via sinks due to die off. The increase in detrital food resources could lead 

to an increase in detritivory, leading to an overall increased D:H ratio (Heymans et al., 2002). In uMdloti, the 

increase in D:H after the breach may be because of the decreased primary producer food availability, hence 

the systems shift towards detritivory (Figure 8).  

The generally low temporal cycling of uMdloti Estuary is indicative of a system that is dependent on external 

inputs of material/energy to maintain function (de Jonge et al., 2019). uMdloti Estuary and its river courses 

receive treated waste effluent from three wastewater treatment works (WWTW) which supplies a constant 

trickle of nutrients into the system (Brooker and Scharler, 2020). The increase in system cycling immediately 

after the system disturbance (breach event) is in agreement with previous literature suggesting that a change 

in FCI can indicate a system disturbance (Tecchio et al., 2016). However, cycling is also an indicator of how 

well the system can rely on itself to maintain function despite external disturbances (Saint-Béat et al., 2015). 

Given the persistently low cycling of this system, we suggest that uMdloti Estuary ecosystem is generally less 

resilient to external perturbations, as it relies on boundary inputs to maintain its function (Figure 7). 

Seasonal trends of uMdloti Estuary system activity can be related to natural temperature variability, which may 

lead to a change in ecosystem function (de la Vega et al., 2018). Previous research of the Brouage mudflat, 

France, showed that system activity was greater during warmer months due to increased metabolic activity 

(Leguerrier et al., 2007). Changes in ecosystem function can be related to natural or anthropogenically-induced 

perturbations in physical, chemical, and biological perturbations (Le Guen et al., 2019), therefore, we cannot 

make the assumption that changes in system activity are only related to temperature. To better understand the 

effects of external perturbations on system activity, future research could include investigating the quantitative 

relationships between seasonal physical drivers, such as temperature, to better elucidate the causes of changes 

in system activity. 

Ecosystem level indicators are often calculated as aggregated values of nodal activity. We can therefore 

interrogate the node level ecological indicators to explain the variances displayed in the ecosystem level 

ecological indicators. Interrogating the node level indicators allows us to go “back to the field” to tie overall 

system function with the underlying biology of the system components. By investigating nodal throughflow, we 

found that uMdloti Estuary system activity is dominated by detrital and primary producing nodes (Figure 10). 

This finding is in agreement with previous research suggesting that system activity in food web systems is often 

concentrated in the detrital and primary producing nodes (Borrett, 2013).  
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Through investigating individual nodal contributions to system cycling, we found that the increased system 

cycling immediately after the mouth breach was due to increased cycling activity by estuarine taxa (Figure 11). 

The breach event led to recruitment of estuarine taxa into the estuary, in turn, the increased estuarine taxa 

diversity within the estuary. The high nodal cycling exhibited by the estuarine taxa contributed to an overall 

increase in system level cycling immediately after the breach. This highlights the importance of estuarine species 

diversity in maintaining system cycling. A system with higher cycling provides a potential buffer against system 

changes due to external disturbances such as wastewater pollution and climate change. From an ecosystem 

management perspective, it may be desirable to manage ecosystems in a way that increases system cycling, 

thereby increasing the system’s ability to self-sustain its function despite global change-induced perturbations 

(Saint-Béat et al., 2015). In our study, we showed that system cycling increases with an increase in estuarine 

taxa diversity immediately after the mouth breach. Natural mouth breach frequency is an important factor in 

maintaining ecosystem function (Froneman, 2018). The mouth breach frequency is dependent on rainfall and 

degree of freshwater abstraction from the estuary and river components. While managers cannot control 

exogenous disturbances such as drought, managers can manage the level of water abstraction from the system 

to increase the frequency of natural mouth breaching events.  
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4.3 Limitations of ensemble methods in ecological modelling 

4.3.1 LIM-MCMC algorithm parameter selection 

The range of sampled food web solutions is dependent on how well the Euclidean space is sampled via the LIM-

MCMC algorithm. LIM-MCMC algorithms sample the solution space (within ecologically relevant constraints) 

based on algorithm parameters, namely the initial (starting) point, the proposal width (jump size), and iterations 

(number of solutions). If the solution space is well-sampled, the solutions will return a range of multiple plausible 

solutions that are more representative of the input data variability, reflecting a greater range of potential flow 

configurations. In contrast, a poorly sampled solution space results in multiple plausible food web solutions that 

are not representative of the input data variability (Figure 12). High dimensional datasets, such as food webs, 

often require larger jump sizes and iterations to solve an adequate number of ecologically representative 

solutions (Nemeth and Fearnhead, 2021; Waspe et al., 2018). However, the selection of algorithm starting 

point, jump size, and iterations to sample adequately the solution space is case-study dependent, therefore 

there are no set recommendations (van Oevelen et al., 2010; Waspe et al., 2018). Regardless of the food web 

model, the selection of the LIM-MCMC parameters should not be arbitrary, but rather be selected as to 

adequately sample the solution space within a reasonable computation time. 

In this study, we selected the default starting solution (LSEI) (Van den Meersche et al., 2009) for the LIM-

MCMC algorithm. The initial LSEI solution often returns solutions from the corner of the solution space, which 

may result in food web solutions that reflect more extreme, and less likely ecological estimates. Therefore, the 

LSEI solution we used as a starting point may not necessarily be the most efficient, nor the most appropriate 

starting point algorithm. Instead, we can find alternative starting points that are more appropriate for ecological 

LIM problems. In our study, we found that the central solution was less likely to result in extreme ecological 

indicator values than the LSEI or LDEI solutions (Figure 4). The central solution is calculated from the means 

of the input data constraints (Soetaert et al., 2009) and may allow the LIM-MCMC algorithm to begin sampling 

the solution space in a more central region, rather than near the edges of the solution space (Van den Meersche 

et al., 2009; van Oevelen et al., 2010). In future studies, the central solution may offer a better starting point 

for the LIM-MCMC sampling algorithm, possibly returning less extreme, and more ecologically representative 

solutions given the ecological input constraints.   
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Figure 12: Schematic of three-dimensional space and Markov Chain Monte Carlo (MCMC) sampler, showing how 

well the solution space can be sampled based on jump size and the number of iterations. The ‘goal’ is to sample 

the solution space adequately. (A) MCMC sampler with a small jump size, and a small number of iterations (B) 

MCMC sampler with a small jump size and a larger number of iterations (C) MCMC sampler with a larger jump 

size and a small number of iterations (D) MCMC sampler with a larger jump size and a larger number of 

iterations.  
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4.3.2 LIM-MCMC Sampling Adequacy 

There are no a priori tests to determine the sampling adequacy of the LIM-MCMC algorithm with the selected 

parameters. Instead, the performance of the LIM-MCMC algorithm (i.e., how well the solution space was 

sampled) is evaluated from the sampled solutions. In food web studies, the quality of the multiple plausible 

solutions has been evaluated by calculating the coefficient of variance (CoV) of each flow (mean of the flow 

divided by the standard deviation) to determine ‘convergence’ of each flow value mean and standard deviation 

(good CoV < 1) (Bell et al., 2017; de Jonge et al., 2020; Durden et al., 2017; van Oevelen et al., 2011). More 

broadly, model quality has been assessed as the convergence of the mean and standard deviations of each flow 

to a stable value (Saint-Béat et al., 2020, 2013; van der Heijden et al., 2020). 

Markov Chain Monte Carlo (MCMC) convergence diagnostics may be more applicable to food web models but 

have yet to be incorporated in the broader ecological modelling research. The definition of the MCMC 

‘convergence’ differs from the ‘convergence’ definition (CoV) previously used in food web studies. With MCMC 

convergence diagnostics, the solution space is considered well-sampled once the sampling chain posterior 

distribution P(x) approaches ‘convergence’ with the target distribution of the solution space Q(x) (Hogg and 

Foreman-Mackey, 2018; Mengersen et al., 1999; Roy, 2020; van Ravenzwaaij et al., 2018). MCMC convergence 

can be visually assessed via traceplots  (Hogg and Foreman-Mackey, 2018; Roy, 2020; Van den Meersche et 

al., 2009)., autocorrelation plots (Roy, 2020), and running mean plots (Roy, 2020; Saint-Béat et al., 2020, 

2013). In addition to visual MCMC convergence diagnostics, a suite of convergence diagnostics are available to 

test various attributes of MCMC convergence (Plummer et al., 2020). No one convergence diagnostic is best, as 

each convergence diagnostic estimates convergence in a different method (Mengersen et al., 1999). Therefore, 

it is recommended that multiple convergence diagnostics are used to assess MCMC convergence (Hogg and 

Foreman-Mackey, 2018). For this study, future work includes using statistical MCMC convergence diagnostics 

to quantitatively determine how well the ensemble food web solutions represent the ecological constraints.  
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5 Conclusions 

In this study, we found that ensemble network solutions that include the ecological variability of input data 

introduces uncertainty of ecosystem function in uMdloti Estuary, and therefore may offer more robust estimates 

of temporal ecosystem function in uMdloti Estuary than single solution networks. We found that ensemble 

solutions can detect shifts in ecosystem function after a disturbance event (mouth breach), which has potential 

ecosystem management relevance. From an ecosystem management perspective, more robust inferences of 

ecosystem status through ensemble methods, together with the advantage of statistical comparisons, may 

enhance data-driven decision making and contribute toward good ecosystem management practices. The next 

steps of this research are to investigate the communication of ensemble uncertainty in a practical and 

meaningful way for inclusion in ecosystem assessments and management. Through ensemble solutions, we 

determined that during drought conditions uMdloti Estuary ecosystem relies on primary producers rather than 

detritus to fuel the food web. The ecosystem further displays low cycling except immediately after a mouth 

breaching event and has higher metabolic activity during warmer summer months. When we consider these 

ecological interpretations together, we can infer that uMdloti ecosystem shows a decreased capacity to maintain 

system function during drought conditions and is therefore more vulnerable to further perturbations. We found 

that following a mouth breaching event the system responded by increasing overall cycling to potentially 

maintain its overall activity. At a nodal level, the recruitment of estuarine taxa into the estuary after the breach 

may have led to an increase in system cycling. Knowing which species are most involved in contributing energy 

flow and cycling should be a priority to maintain healthy ecosystem functioning. As ecosystem properties cannot 

be directly managed, connecting ecosystem-level information to nodal information can provide insight into how 

the system components (nodes) can be managed in a way to improve overall system function. The next steps 

of this research are to investigate how tangibly manageable system components, such as biomass, are 

connected to overall system function, and therefore which ecological indicators may be most meaningful to 

managers trying to maintain the flow of ecosystem services.  
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Supplementary Information 1 

nodeCycle.R 

nodeCycle: calculate nodal cycling in one network  

@author Gemma Gerber  
@references Fath, B. D., Borrett, S. R. 2006. A Matlab function for Network Environ Analysis. Environ. Model. 

Softw. 21, 375-405. 

@param x a network object. This includes all weighted flows into and out of each node.  
@param zero.na LOGICAL: should NA values be converted to zeros?  

@importFrom network get.vertex.attributes  
@importFrom MASS ginv  

@export nodeCycle 

 
nodeCycle <- function(x, zero.na = TRUE) { 
  Flow <- t(as.matrix(x, attrname = "flow")) 
  "%v%" <- function(x, attrname) { 
    network::get.vertex.attribute(x, attrname = attrname) 
  } 
  input <- x %v% "input" 
  n <- nrow(Flow) 
  I <- diag(1, nrow(Flow), ncol(Flow)) 
  T. <- apply(Flow, 1, sum) + input 
  GP <- Flow / T. 
  G <- t(t(Flow) / T.) 
 
  if (zero.na) { 
    GP[is.na(GP)] <- 0 
    G[is.na(G)] <- 0 
    GP[is.infinite(GP)] <- 0 
    G[is.infinite(G)] <- 0 
  } # zero.na = TRUE argument in enaFlow 
 
  NP <- MASS::ginv((I - GP)) 
  rownames(NP) <- colnames(NP) <- colnames(GP) 
  N <- MASS::ginv((I - G)) 
  rownames(N) <- colnames(N) <- colnames(G) 
  tol <- 10 
  N <- round(N, tol) 
  p <- as.matrix(rep(1, n), nrow = n) 
  dN <- diag(N) 
  node_cycle <- ((dN - p) / dN * T.) 
  rownames(node_cycle) <- rownames(Flow) 
  node_cycle_return <- as.data.frame(t(node_cycle)) 
  node_cycle_return 
} 
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Supplementary Information 2 

Table SI2 1: Shapiro-Wilks test for normally distributed data, with n representing the number of samples, W is 

the Shapiro-Wilks statistics, and p-values indicate the probability of statistical significance (two-tailed). 

Statistical significance is indicated at levels < .001 (***), < .0.1 (**), and < .05 (*). 

  
LDEI   LSEI   Central   Ensemble Median 

Network Property n W p  n W p  n W p  n W p 

Detritivory: Herbivory Ratio (D:H) 13 0.771 < .01**  13 0.829 < .05*  13 0.694 < .001***  13 0.717 < .001*** 

Finn Cycling Index (FCI) 13 0.673 < .001***  13 0.752 < .01**  13 0.701 < .001***  13 0.683 < .001*** 

Total System Throughflow (TSTflow) 13 0.972 0.916  13 0.94 0.454  13 0.94 0.451  13 0.944 0.506 

Total System Cycling (TSTc) 13 0.711 < .001***  13 0.833 < .05*  13 0.703 < .001***  13 0.69 < .001*** 

log(D:H) 13 0.871 0.054  13 0.892 0.102  13 0.878 0.067  13 0.889 0.094 

log (FCI) 13 0.967 0.854  13 0.905 0.156  13 0.954 0.662  13 0.953 0.637 

log (TSTc) 13 0.95 0.595  13 0.929 0.332  13 0.919 0.243  13 0.917 0.226 

Total Herbivory 13 0.939 0.438  13 0.944 0.515  13 0.953 0.644  13 0.957 0.712 

Total Detritivory 13 0.891 0.101  13 0.859 < .05*  13 0.741 < .01**  13 0.802 < .01** 

Total Net Primary Production  13 0.935 0.391  13 0.94 0.463  13 0.955 0.671  13 0.954 0.666 

Primary Producer Sink 13 0.749 < .01**  13 0.953 0.646  13 0.946 0.543  13 0.943 0.494 

log (Detritivory) 13 0.961 0.769  13 0.908 0.173  13 0.889 0.096  13 0.944 0.505 

log (Primary Producer Sink) 13 0.973 0.923   13 0.947 0.555   13 0.9 0.135   13 0.942 0.489 
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Supplementary Information 3 

Table SI3 1: Median flow values calculated from ensembles of 10,000 plausible food web solutions per month for uMdloti Estuary, compared to the flow values derived 

from the single network solutions Least Distance with Equalities and Inequalities (LDEI), Least Squares with Equalities and Inequalities (LSEI), and the central solution 

(Central). 

    
Total Net Primary Production 

(mgC·m−2·d−1) 
  Total Herbivory (mgC·m−2·d−1)   Total Detritivory (mgC·m−2·d−1)   Primary Producer Sink (mgC·m−2·d−1) 

Date  Ensemble 
Median 

LDEI LSEI Central  Ensemble 
Median 

LDEI LSEI Central  Ensemble 
Median 

LDEI LSEI Central  Ensemble 
Median 

LDEI LSEI Central 

Apr-15  367.70 275.89 259.04 370.69  432.75 297.48 276.26 424.27  333.57 65.74 75.95 63.00  99.63 24.65 34.46 29.92 

May-15  355.49 278.72 261.06 79.36  404.57 296.72 278.94 88.74  288.59 78.44 92.54 267.47  78.98 22.80 33.72 279.13 

Jun-15  162.23 133.31 123.23 128.96  191.45 140.50 131.95 168.49  220.31 31.35 35.77 30.31  50.25 14.59 20.52 70.05 

Aug-15  116.43 64.94 62.17 38.88  160.91 68.55 64.18 41.25  209.65 54.38 57.56 91.51  44.63 15.40 15.38 26.37 

Sep-15  323.07 164.93 156.18 116.61  394.06 174.14 159.50 120.15  456.10 227.05 239.49 362.14  30.25 3.14 6.81 8.92 

Oct-15  277.44 206.99 196.34 252.93  348.14 216.54 210.37 262.50  303.38 66.09 91.16 169.08  85.94 16.36 27.71 52.08 

Nov-15  253.68 250.04 239.49 25.97  316.84 267.76 260.10 55.69  247.89 69.85 110.44 220.66  126.62 20.40 36.80 389.68 

Dec-15  307.10 329.02 304.73 443.15  360.44 343.02 332.54 456.51  279.81 68.36 85.68 166.17  150.84 37.04 51.65 49.78 

Jan-16  408.40 469.46 439.27 626.36  470.52 486.69 474.76 647.50  303.28 65.00 87.95 172.17  197.03 70.08 92.83 149.78 

Feb-16  687.74 557.42 531.41 694.14  743.05 577.61 563.01 836.15  497.88 198.20 227.00 181.88  79.31 51.76 74.13 17.88 

Mar-16  636.96 480.77 460.93 419.08  704.04 524.96 470.99 459.61  505.03 301.20 329.78 509.90  118.31 34.72 42.31 51.72 

Apr-16  503.79 436.57 412.04 477.07  577.69 465.05 437.56 582.48  320.04 90.73 115.01 91.56  192.10 47.46 69.54 139.72 

Jun-16   206.41 191.99 179.20 262.97   274.55 209.37 191.83 312.73   214.26 42.12 52.99 39.78   149.16 29.48 37.98 44.53 
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Table SI3 2: Median ecological indicator values calculated from ensembles of 10,000 plausible food web solutions per month for uMdloti Estuary, compared to the flow 

values derived from the single network solutions Least Distance with Equalities and Inequalities (LDEI), Least Squares with Equalities and Inequalities (LSEI), and the 

central solution (Central). 

    Detritivory: Herbivory Ratio (D:H)   Finn Cycling Index (FCI) (%)   
Total System Throughflow (TSTflow) 

(mgC·m−2·d−1) 

Date  Ensemble 
Median 

LDEI LSEI Central  Ensemble 
Median 

LDEI LSEI Central  Ensemble 
Median 

LDEI LSEI Central 

Apr-15  0.77 0.22 0.27 0.15  6.08 0.05 0.05 0.01  1996.21 926.18 921.72 1184.73 

May-15  0.67 0.26 0.33 3.01  5.01 0.05 0.05 0.09  1778.23 932.41 938.46 1248.46 

Jun-15  1.09 0.22 0.27 0.18  6.30 0.06 0.05 0.01  1091.69 481.66 483.73 632.19 

Aug-15  1.36 0.79 0.90 2.22  20.02 0.10 0.10 0.08  1014.10 310.35 311.09 357.48 

Sep-15  1.17 1.30 1.50 3.01  16.17 0.26 0.26 0.30  2084.75 1099.06 1111.09 1349.29 

Oct-15  0.76 0.31 0.43 0.64  7.50 0.08 0.07 0.04  1689.41 785.17 819.10 1120.48 

Nov-15  0.78 0.26 0.42 3.96  3.53 0.03 0.03 0.08  1510.49 872.60 929.97 1412.15 

Dec-15  0.74 0.20 0.26 0.36  3.37 0.01 0.01 0.01  1737.21 1062.12 1092.82 1452.96 

Jan-16  0.66 0.13 0.19 0.27  4.68 0.02 0.02 0.00  2184.55 1561.69 1599.76 2043.51 

Feb-16  0.64 0.34 0.40 0.22  9.29 0.08 0.07 0.08  3092.38 2029.91 2067.47 2308.05 

Mar-16  0.73 0.57 0.70 1.11  5.74 0.07 0.07 0.05  3039.13 1982.57 1979.00 2499.90 

Apr-16  0.54 0.20 0.26 0.16  3.21 0.03 0.02 0.01  2312.40 1415.04 1441.31 1705.99 

Jun-16   0.78 0.20 0.28 0.13   4.34 0.02 0.02 0.02   1307.61 662.71 668.56 855.18 
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Supplementary Information 4 

 

Figure SI4 1: Correlation matrices showing Pearson correlation coefficients of relationships between ecological flows and indicators derived from uMdloti Estuary network single solutions 

A) Least Squares with Equalities and Inequalities (LSEI), B) Least Distance with Equalities and Inequalities (LDEI), C) Central solution, and D) ensemble medians. The crosses in each 

block indicate no statistical significance (p > .05, two-tailed). 
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