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Abstract: Numerous semi- and fully-automatic algorithms have been developed for individual
tree detection from airborne laser-scanning data, but different rates of falsely detected treetops
also accompany their results. In this paper, we proposed an approach that includes a machine
learning-based refinement step to reduce the number of falsely detected treetops. The approach
involves the local maxima filtering and segmentation of the canopy height model to extract different
segment-level features used for the classification of treetop candidates. The study was conducted
in a mixed temperate forest, predominantly deciduous, with a complex topography and an area
size of 0.6 km × 4 km. The classification model’s training was performed by five machine learning
approaches: Random Forest (RF), Extreme Gradient Boosting, Artificial Neural Network, the Support
Vector Machine, and Logistic Regression. The final classification model with optimal hyperparameters
was adopted based on the best-performing classifier (RF). The overall accuracy (OA) and kappa
coefficient (κ) obtained from the ten-fold cross validation for the training data were 90.4% and 0.808,
respectively. The prediction of the test data resulted in an OA = 89.0% and a κ = 0.757. This indicates
that the proposed method could be an adequate solution for the reduction of falsely detected treetops
before tree crown segmentation, especially in deciduous forests.

Keywords: individual tree detection; airborne laser scanning; machine learning; Random Forest;
Extreme Gradient Boosting; artificial neural network; Support Vector Machine

1. Introduction

Remote-sensing technologies are used by foresters as common tools for collecting
geometric and radiometric information in order to improve forest management. Especially
in the last decades, LiDAR (Light Detection and Ranging), as a remote-sensing technology
that provides high spatial resolution, has rapidly progressed and showed great potential
for the measurement, mapping, or monitoring of forests [1].

An airborne laser scanner (ALS) system is a type of LiDAR system that is mounted
on an aerial platform. ALS systems are a widely used technology in forestry, given that
the collected data can be successfully used for 3D terrain model generation and tree height
determination in forested areas.

When using ALS point clouds, it is possible to detect single trees and determine the
characteristics of an individual tree, such as its height, location, and crown dimensions,
which can then provide accurate estimates for the stem volume and mean height at the
stand-level [2]. There have been numerous semi- and fully-automatic algorithms developed
in the last two decades for individual tree crown detection and delineation [3]. Hyyppä
et al. [2,4] started with Individual Tree Detection (ITD) in boreal forests by using ALS
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data. Afterwards, many authors developed ITD algorithms for coniferous, deciduous,
and mixed temperate forests [5–9]. Achieving high ITD accuracy still remains a challenge,
because many approaches that worked well on coniferous stands have demonstrated a
lower accuracy for deciduous or mixed forests. This is especially the case in complex forests
with high variation in tree spacing, age, or size, or when the tree crowns have a high degree
of overlap [3]. Therefore, the problems occurring during some ITD approaches are not so
trivial and multiple methods have been developed for this task which take into account
diverse forest conditions [10–13]. The performance of ITD approaches also depends on
object and point cloud characteristics. The object characteristics include the type of land
cover (e.g., tree species, crown shape, and stem density) [14], the site conditions (e.g.,
topography and type of terrain) [14], and the point cloud characteristics related to the type
of LiDAR sensor and mission parameters (e.g., flying height, scanning angle, scanning
mode, footprint size, and point density) [15,16].

ITD algorithms work either directly on point clouds, on rasterized point clouds in the
form of a Canopy Height Model (CHM), or by combining both datasets. The raster-based
methods use a CHM for their input that is interpolated or aggregated from a point cloud.
A CHM is often smoothed to minimize the occurrence of pits or spikes [17]. After that,
Local Maxima (LM) filtering using a fixed or variable-sized window is applied [2,6,18].
With point cloud-based ITD methods, the focus is on the exploitation of individual 3D
point measurements without transforming them into a raster [19,20]. There are also hybrid
algorithms that combine different types of geospatial data with some a priori assumptions,
e.g., on the expected crown size and stand density [21,22] or exploring some echo features
of full-waveform ALS systems [23,24].

Most current ITD techniques are still inefficient for dense and complex forests due to
high commission (falsely detected trees) and omission (reference trees not detected by the
algorithm) rates [25]. Treetops’ detection must be performed carefully because treetops that
are missing (false negative) or are falsely detected (false positive) will lead to the under-
or over-segmentation of tree crowns at a later stage [17,26]. Over-segmentation happens
when one tree crown is split into several clusters, while under-segmentation represents
several tree crowns merged into one cluster. Over-segmentation occurs more often in
deciduous forests [3], because mature deciduous trees have large height variations within
the crown topography [27]. Therefore, some authors have tried to prevent or minimize
under-segmentation and over-segmentation errors by using different methods [28–30].

Many authors performed different types of feature extraction based on ALS data,
such as geometric features [30–32], 3D shape-fitting features [23,33], neighborhood features
based on eigenvalues [34–36], and tree metrics [27,37,38]. Some of these features were used
to identify correctly segmented crowns of individual trees.

The related research was more focused on reducing the effect of segmentation errors
in order to evaluate the accuracy after the refinement [39–41]. This was performed mostly
without reporting the accuracy for the detection of erroneous segments, or solely noting
the percentage difference in the improvement achieved.

The most recent research is concentrated on the usage of machine learning (ML)
techniques for detecting individual trees [37] and the classification of delineated segments
into correctly segmented, over-segmented, or under-segmented categories [27,30]. Kathuria
et al. [37] developed an ITD algorithm based on an LM-filtering approach that selects
the optimal search radius from the ALS point cloud for the detected LM. They used
LiDAR-derived metrics from local neighbourhood data points as predictor variables. For
classification, they chose a logistic regression (LR) model made with simulated stands
and composed of individual trees and afterwards performed application testing on a real
Pinus radiata plantation. Dai et al. [30] classified segments into well-detected trees or those
over-segmented with 84% accuracy using the Support Vector Machine classifier. Nine
geometric features of crown segments were calculated and used as predictor variables
in the classification. Lisiewicz et al. performed comprehensive research dealing with
erroneous tree segments’ detection [27] and correction [42]. Lisiewicz et al. [27] invented
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a method to distinguish correct segments from erroneous ones resulting from the ITD
method based on a CHM. They tested three machine learning methods for classification:
Random Forest (RF), Support Vector Machine, and k-Nearest Neighbour (kNN), where RF
showed the best results. The groups of predictors were based on the segment geometry as
well as structural and intensity variables from the ALS point cloud. Lisiewicz et al. [42]
went two steps further, correcting the under-segmentation errors and merging segments
that were over-segmented with correct segments based on the specified conditions. Both
studies were conducted with the data collected from one of the most complex and diverse
forest in Poland.

As it can be seen, there is only a limited number of methods for correcting the results
of the ITD algorithms. Therefore, we believe there is room for improvement in terms of
the features that could be extracted from ALS data and ML techniques that could be used
for the classification of detected treetops. The hypothesis of this study is the assumption
that falsely detected treetops can be reduced by performing the classification of detected
treetops by using some of the ML methods on features extracted from ALS point clouds.

The aim of this study is to develop an effective ML method to refine the detected
treetops by reclassifying them into true and false detections based the information obtained
from the corresponding tree segments of an ALS point cloud. Four groups of features
were extracted to be used as predictor variables for classification: segment shape features,
eigenvalue-based features, shape-fitting features, and tree metrics. The most important
features were selected in order to perform a better separation between the true and false
detections of treetops. This study considered classification models based on five different
ML methods to identify the best-performing one for our study area: Random Forest (RF),
Extreme Gradient Boosting (XGB), Artificial Neural Network (ANN), the Support Vector
Machine (SVM), and Logistic Regression (LR). The classification has been performed for
the area of a mixed temperate forest with a complex topography in the north-eastern part
of Bosnia and Herzegovina.

2. Materials
2.1. Study Area

The study area (44◦42′40.8′′N 18◦38′12.7′′E) covers 270 ha of forests located in the
north-western part of the mountain Majevica in the north-eastern part of Bosnia and
Herzegovina (Figure 1). Size of study area is around 0.6 × 4 km spreading in north–south
direction. This area has hilly topography with significant elevation differences and steep
slope (330–600 m above mean sea level).

Forests prevailing across the study area are mainly deciduous with a few coniferous
forests. The major forest species in this part of the country include deciduous forests,
namely, beech (Fagus sylvatica) and sessile oak (Quercus petraea), and mixed forests of
deciduous and coniferous trees, specifically, beech and fir (Abies alba Mill.) forests with
spruce (Picea abies).

2.2. Forest Plots

Target forest species in the study area belonged to the deciduous forests of beech,
coniferous forests of fir with spruce, and mixed deciduous and coniferous forests, com-
prising beech and fir with spruce. A total of 20 circular sample plots with a diameter of
50 m were distributed throughout the study area as samples from the ALS point cloud.
Reference trees were collected manually in stereo mode, or by observing profile sections of
the ALS point cloud. Regarding this selection, 15 forest plots were deciduous, four were
coniferous, and one contained mixed forest (Figure 1).

The forest plots were split into training and testing groups so that 8 plots were desig-
nated for testing while locations of other 12 plots were used to train the machine learning
model. The test data contained five plots of deciduous forest, two plots of coniferous forest,
and one plot of a mixed forest (Figure 1). Forest plot identification and classification was
performed by visual interpretation of the orthophoto for this area, with ground-sampling
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distance of 5 cm. Categorization of the forest plots belonging to the test data was needed
for later classification accuracy assessment for each type of forest.

Figure 1. The study area with selected forest plots with the orthophoto in background.

2.3. ALS Data

The ALS data acquisition was performed at the end of January 2021 during the leaf-off
period using the discrete-return signal system Galaxy T1000 (Teledyne Geospatial, Toronto,
Canada) mounted on a fixed-wing aircraft. The system combines a 1000-kHz effective
ground measurement rate with a constant swath width and seesaw scanning pattern. Flight
was performed with an average flying height of 550 m above ground level, with 30% strip
overlap and maximum scanning angle of ±45◦. Generated point cloud has an average
point density of 192 pts/m2 of all returns and 85 pts/m2 of last returns, with vertical
and horizontal accuracy higher than 5 cm. This system can register up to 8 returns for
each emitted laser pulse. The point cloud was acquired with a mean footprint size of
15 cm diameter. In order to cover the whole area of interest, 24 individual flight strips
were performed.

The ALS data were received with the first, last, and intermediate returns for each laser
pulse recorded. The points were processed, georeferenced, and classified by the service
provider into ground and non-ground classes using Terrasolid TerraScan (Terrasolid, Helsinki,
Finland) software, which implements the active TIN model algorithm. This method filters
non-ground points based on the iterative-distance and iterative-angle method [43].

Point heights were normalized by subtracting the ground heights from the ALS heights,
thereby providing points with heights relative to the ground level. Ground heights for
each point were determined by linear interpolation using TIN model generated from points
belonging to the ground class. The ALS data corresponding to each forest plot, including a
10 m buffer around each plot, were clipped and used for all further calculations. Mentioned
buffer size was chosen in order to ensure that each tree crown is completely located inside
this buffered area for each tree measured inside the forest plot.
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2.4. Reference Tree Data

The reliability of reference tree locations is very important for ITD completeness and
accuracy [3]. Locations of the trees were not measured in the field, but collected manually,
through the digitization of a 3D point cloud by experienced operators. The field-measured
tree locations are often inaccurate due to the significant shift between the treetop and the
base of the tree that would arise because of the leaning trunk and highly inclined terrain.
This particularly happens when working with deciduous tree species. In addition, there is
a possibility of a bad tree location as a consequence of measurement unreliability due to the
weak GNSS signal that can occur under dense tree canopies. Since ITD algorithms detect
treetops, comparing this location with field-measured tree locations would not be suitable.

An inventory of all the trees (treetop locations and tree heights) inside the 20 forest
plots was carried out in the stereo mode (using active shutter glasses) by a single operator
with a high level of experience. Reference trees were also detected, where necessary,
by observing profile sections of the point cloud (Figure 2). Only dominant trees were
measured, whereas understory trees were not taken into account during digitization. This
photointerpretation was performed in the Trimble Inpho software. An example of reference
trees manually marked as a reference layer over point cloud is shown in Figure 2. A total
of 923 reference trees were identified in 20 forest plots, wherein 615 were deciduous and
308 were conifers.

Figure 2. Treetops of reference trees marked red in the profile section of forest plot.

3. Methods
3.1. Methodology

The methodological framework developed for this research is shown in Figure 3.
First, CHM was generated, interpolated, and smoothed from the normalized ALS

heights. Treetop candidates were detected using well-established ITD method with LM-
filtering. These were used as seeds for deriving tree segments based on CHM. Treetop
candidates were then validated with the reference data into true and false detections. Later,
four groups of features for each segment were extracted. Class balancing and feature
selection were performed for better separation between true and false detections of treetops.
Selected features were used as a training data for classification using several ML methods.
Finally, a classification model from the best-performing method was applied on the test
data to distinguish true treetops from falsely detected ones and classification accuracy
assessment was performed.
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Figure 3. Methodological framework.

3.2. CHM Generation, ITD and Tree Crown Segmentation

The CHM with a grid size of 0.5 m was generated using procedure as described
in Khosravipour et al. [17]. All ALS points above 2 m that represent first returns for
each buffered forest plot were used for CHM generation. Pitfree CHM was created and
post-processed in order to smooth CHM and fill its empty pixels.

Treetop candidates were detected by using LM-filtering with fixed window size in the
shape of a square. This was performed using algorithm developed as described in Popescu
and Wynne [44]. Here, we always used a filtering window that was a step smaller for each
forest plot, which resulted in a greater number of treetop candidates. A treetop candidate is
an ALS point with the largest height in a certain neighborhood. ITD also creates a unique
identifier for each tree segment and assigns it as an attribute to each ALS point.

Algorithm developed by Silva et al. [8] was used for tree crown segmentation. This
algorithm works on a CHM only; therefore, tree crown segments have jagged pixel bound-
aries as a product of raster to vector conversion.

CHM generation, ITD, and tree crown segmentation was performed using R package
lidr [45,46] from R software environment (Version 4.1.1) [47] in RStudio (Version 1.4.1717)
as an integrated development environment for R.

3.3. Feature Extraction

Four groups of features were derived to be used in this work: tree metrics, segment
shape features, eigenvalue-based features, and shape-fitting features. Since the purpose of
this paper is to distinguish treetops of individual trees in the upper tree canopy, features
were calculated for all ALS points above half of the mean height of a forest plot.

3.3.1. Tree Metrics

Tree metrics represent descriptive statistics that are calculated for each of the segments
of ALS points using function stdmetrics in R package lidr [45,46], function CrownMetrics
implemented in R package rLidar [48], and by clipping the whole point cloud with segment
polygons and calculating metrics for each of the segments of ALS points using function
CloudMetrics in the software FUSION [49].

Tree metrics, together with a short description and the software used for their compu-
tation, are given in the Table 1.
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Table 1. Overview of the tree metrics.

Tree Metrics Description Software

N number of points in each tree segment

lidr

Area approximate actual area of a raster
Phabhm percentage of returns above mean height

Hentr entropy of height distribution—the normalized Shannon vertical
complexity index [50]

Phabx percentage of returns above x
Hpcum (x = 1, . . . ,9)

range = 1
cumulative percentage of return in the ith layer, according to Woods
et al. [51]

P (x = 1,2,3,4,5) th percentage of xth return

Hmin minimum height

rLidar

Hmax maximum height
Hmean mean height
Hmed median height
Hmod height mode

Hsd standard deviation of height distribution
Hvar height variance
Hcv coefficient of variation of height

Hskew skewness of height distribution
Hkurt kurtosis of height distribution

Hq (x = 1,5, . . . ,95,99) range = 5 xth percentile (quantile) of height distribution
Ewidth tree crown width in eastern direction
Nwidth tree crown width in northern direction

Diq interquartile distance

FUSION

Haad Average Absolute Deviation of height
Hmadmed median of the absolute deviations from the overall median
Hmadmod median of the absolute deviations from the overall mode

HL (x = 1,2,3,4) L-moments (λ1, λ2, λ3, λ4)
HLcv L-moments coefficient of variation τ2 = λ1/λ2

HLskew L-moments skewness τ2 = λ3/λ2
HLkurt L−moments kurtosis τ4 = λ4/λ2

Hcrr canopy relief ratio ((Hmean − Hmin)/(Hmax − Hmin))
Hsqmsq generalized means for the 2nd power (height quadratic mean)

Hsqmcube generalized means for the 3rd power (height cubic mean)
Hprofarea area under the height percentile profile or curve

3.3.2. Segment Shape Features

Segment shape features represent morphometric characteristics of segment polygons
calculated using function poly_metrics from R package uavRst [52]. These features repre-
sent some of the global shape measurements [53,54].

List of segment shape features is given in Table 2.

Table 2. Overview of the segment shape features.

Segment Shape Features Description

Lngt length—largest dimension of a polygon
Elng elongation—the ratio of the width and diameter of polygon

EccBB eccentricity-bounding box—ratio of the width and diameter of
bounding box of polygon

Solid solidity—the ratio of polygon area and area of the convex hull
EccEgn eigenvalue of eccentricity matrix

Rect rectangularity—the ratio of the area of the segment to the area of
its MBR

CircHar Haralick’s circularity of a shape
Convex convexity—the ratio of the eigenvalues (inertia axis)
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3.3.3. Eigenvalue-Based Features

Eigenvalue-based features were determined using function stdshapemetrics from R
package lidr [45,46] implemented as described in Lucas et al. [55]. This set of features, as
well as additional parameters especially used for this research, describe the distribution of
points of a neighborhood in space [34–36,56].

Mentioned features (linearity, planarity, and sphericity), as well as some additional
features (anisotropy, curvature, omnivariance, eigentropy, and the sum of eigenvalues),
were computed for each segment of ALS points using the formulas given in Table 3.

Table 3. Overview of the eigenvalue-based features.

Eigenvalue-Based Features Description

EgnLrg largest eigenvalue e1
EgnMdm medium eigenvalue e2
EgnSml smallest eigenvalue e3

Lnr linearity (e1 − e2)/e1
Plnr planarity (e2 − e3)/e1
Sph sphericity e3/e1

Anstr anisotropy (e1 − e3)/e1
Curv curvature e3/(e1 + e2 + e3)

Omnivar omnivariance 3
√
(λ1λ2λ3)

Eigentr Eigen entropy—(e1 ln(e1) + e2 ln(e2) + e3 ln(e3))
Eigensum sum of eigenvalues e1 + e2 + e3

3.3.4. Shape-Fitting Features

Module ZonalFit of the software system OPALS (Orientation and Processing of Airborne
Laser-scanning data) was used for the calculation of features based on fitting the second
order polynomial surface to the points belonging to the tree segment [57,58]. Minimum,
maximum, median, and RMS of point residuals were estimated using a strict least-squares
adjustment, followed by a robust estimation, in order to eliminate outliers (features with
robquad in their name).

Table 4 gives an overview of shape-fitting features determined using this software module.

Table 4. Overview of the shape-fitting features.

Shape-Fitting Features Description

Minquad minimum of residuals fitting points to polynomial surface
Maxquad maximum of residuals fitting points to polynomial surface
Medquad median of residuals fitting points to polynomial surface
RMSquad RMS of residuals fitting points to polynomial surface

Minrobquad robust minimum of residuals fitting points to polynomial surface
Maxrobquad robust maximum of residuals fitting points to polynomial surface
Medrobquad robust median of residuals fitting points to polynomial surface
RMSrobquad robust RMS of residuals fitting points to polynomial surface

3.4. Data Balancing and Feature Selection

Several steps were performed in order to reduce the number of variables and balance
the classes in the dataset.

Due to the unbalanced number of trees in each class, generation of additional entities
for minority class of falsely detected treetops was performed using SMOTE-based algorithm
ADAptive SYNthetic sampling approach for imbalanced learning (ADASYN) [59]. SMOTE,
Synthetic Majority Oversampling Technique, is an oversampling technique that synthesizes a
new minority instance between one minority instance and its K nearest neighbors.

To select the most important predictor variables, we first eliminated highly correlated
variables and then applied the Genetic Algorithms (GA) feature selection method. For the first
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step, Pearson correlation matrix was determined for the whole set of predictor variables.
After that, predictor variables that had high pair-wise correlation were systematically
removed. To select a subset of the most relevant features, we used the wrapper method of
feature selection via Genetic Algorithms (GA) by calculating RF importance criterion. GA
method belongs to a family of evolutionary algorithms based upon genetic evolution [60].
Feature selection based on GA performs supervised binary search of the predictor space
using a genetic algorithm. Binary sequences are used to represent the inclusion or exclusion
of a feature as genome. Their fitness is evaluated by accuracy of a certain classifier using
repeated n-fold cross validation on each iteration.

For this methodology, we used 10-fold cross validation evaluated by accuracy of an RF
classifier. In this case, for the first round, nine tenths of the data are used in the search while
the remaining tenth is used to estimate the external performance. An external estimate
provides better assessments because it is not used by the search, while internal estimation
of the performance eventually overfits the subsets of the data.

3.5. Treetops Class Labelling

Calculated features were assigned to the treetop candidate that belongs to the tree
segment (Figure 4). Labels specifying whether detected LM represents true or false treetops
determined by comparison with reference trees (location proximity and height differences)
are assigned to the treetop candidate. Following the strategy proposed by Reitberger
et al. [23], we considered the state of treetop to be true if (1) the distance between the treetop
candidate and the reference tree is smaller than 60% of the mean tree distance within the
forest plot and (2) if the height difference between the treetop candidate and the reference
tree is less than 20% of the top height of the plot. After this procedure, it was found that
training data had 611 true and 343 false treetops while test data contained 289 true and
139 false treetops, which indicates a tree detection accuracy of 68% for the test data.

Figure 4. Tree segments with detected treetops.

3.6. Classification Method Selection

In order to determine which method best suits and achieves highest accuracy, five
machine learning (ML) methods were compared: Random Forest, Extreme Gradient Boosting,
Artificial Neural Network, Support Vector Machine, and Logistic Regression.

Random Forest (RF) is an ensemble-based machine learning algorithm used for classi-
fication and regression [61]. It uses multiple decision tree classifiers to vote for the most
popular class. Each tree is built by using the bootstrap aggregation (bagging) method
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where, to grow each tree, a random selection is made from the examples in the training set.
Another ensemble method based on RF that adds randomization to the whole process is
Extremely Randomized Trees (ERT) [62]. The main difference between these methods is in the
selection of cut points to split the nodes. RF chooses the optimum split while ERT chooses
it randomly so that ERT forest contains trees that are more variable, but less correlated than
the RF forest. More details on ERT method can be found in Geurts et al. [62].

Extreme Gradient Boosting (XGB) is one of the widely popular boosting approaches that
uses decision tree as a base estimator. The basic idea of boosting is to create/add models
to an ensemble by considering the behavior of other models. In this way, on a model-
by-model basis, iterative improvement (boosting) of the ensemble is carried out. XGB
was developed by Chen and Guestrin [63], and it is a regularized extension of traditional
boosting ensemble techniques, which makes it less prone to overfitting.

Artificial Neural Network (ANN) is a computational learning system that learns by using
interconnected layers of small units called nodes. These are distributed across an input
layer, single or multiple hidden layers, and an output layer. Nodes are linked to each other
and associated with a particular weight and threshold. Once the output of a single node
crosses its specified threshold, that particular node is activated, and its data are transmitted
to the next layer in the network. In this study, feed-forward neural network with a single
hidden layer algorithm is used for classification [64]. This is the simplest type of artificial
neural network where connections between the nodes do not form a cycle or loop [65].

Support Vector Machine (SVM) is a supervised machine learning technique based on
minimization principle, proposed by Cortes and Vapnik [66]. The algorithm aims to
determine a classification hyperplane in order to split the data into a predefined number of
classes. The split is performed using optimal maximum margin, with points on the margins
called ‘support vectors’ pertaining to structural risk minimization. Kernel representations
offer a solution to locating complex hyperplanes between classes [66,67]. The commonly
used types of SVM kernels for classification include: linear, polynomial, radial basis
function (RBF), and sigmoid [68].

Logistic Regression (LR) is a fundamental method that builds a logistic model [69] to
find the probability of whether an event is occurring or not (the “odds” of an event), based
on a given dataset of independent variables. It takes a linear combination of features and
applies a nonlinear sigmoidal function. LR belongs to the class of generalized linear models,
which are described in detail by Nelder and Wedderburn [70].

3.7. Accuracy Assessment

Average performance metrics for training data were estimated using 10-fold cross
validation with 10 repeats. Performance metrics for test data were determined by training
the model with training data and performing prediction of classes for each feature in the
test data. Accuracy of classification using best-performing classifier was assessed using the
confusion matrix and performance metrics: overall accuracy (OA), Kappa coefficient (κ),
producer’s accuracy (PA), and user’s accuracy (UA) [71]. The reason why these metrics
were used is due to the possibility to compare the results with those from other authors
who used the same metrics in their research. We will also perform data balancing so that it
will not be a problem if the used metrics are insensible to imbalanced datasets.

4. Results
4.1. Data Balancing and Feature Selection Results

As it was explained in Section 3.4, data were balanced using the SMOTE-based algo-
rithm ADASYN. This algorithm is implemented as the function ADAS in the R package
smotefamily [72]. The number of nearest neighbors (K) from the majority class used dur-
ing oversampling process was five. After the data-balancing process was performed, the
number of synthesized records for the minority class (false treetops) was 296. It was found
that class balancing increased the OA almost 5% when using the 10-fold cross validation
repeated 10 times (Figure 5).
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Figure 5. Comparison of OA for the RF model before and after data balancing. The median is
shown as black dot in the box, while first and third quartiles define the box. The whiskers define the
minimum and maximum of the data while outliers are shown as blue circles.

In order to remove the predictor variables with a high correlation, a Pearson correlation
matrix was determined for the whole set of predictor variables. Highly correlated variables
were determined by using the function findCorrelation from the R package caret [73], which
calculates the mean absolute correlation for each variable.

After that, the predictor variables that had a pair-wise correlation higher than 0.8 were
removed. With this step performed, 37 predictor variables remained for further processing.

A feature selection based on GA was performed using the function gafs from the R
package caret [73], which is based on the R package GA [74]. In this research, the fitness
of the binary sequences was evaluated by the accuracy of an RF classifier using 10-fold
cross validation repeated five times on each iteration. The parameters chosen for GA were
100 generations with 20 populations per generation, a crossover probability of 0.8, and a
mutation probability of 0.1. The aim of the subset selection was to maximize the internal
accuracy while the best iteration was chosen by maximizing the external performance
achieved using the RF classifier.

The final subset selection was chosen at iteration 76, which yielded an external per-
formance of 91.6% in terms of the OA and 0.832 for κ (Figure 6). There were 23 predictor
variables selected at this iteration: N, Hentr, Phabhm, Phabx, Hq1, Hq5, Hpcum9, P2th,
P3th, P5th, Hmod, Hmadmed, HL3, HL4, and Hprofarea from the group Tree metrics;
Maxquad, Medquad, Minrobquad, Maxrobquad, Medrobquad, and RMSrobquad from
the group Shape-fitting features; and EccEgn and Rect belonging to the group Segment
shape features.

4.2. Optimal Hyperparameters Tuning

Optimal hyperparameter tuning was performed using training data by performing a
separate grid search for each classification method. A 10-fold cross validation was repeated
10 times for the classification model’s training. OA was used as a measure of model
performance given by the grid search combination of each classifier. The optimization of
the classification models was performed using the R package caret [73].

The optimal hyperparameter values obtained by tuning the machine learning models,
as well as the respective R packages, are given in the Table 5.

4.3. Machine Learning Method Selection

When comparing the accuracy achieved by different classifiers on the training data, it
may be noted that RF, XGB, ANN, and SVM outperformed LR (Figure 7).



Remote Sens. 2022, 14, 5345 12 of 21

Figure 6. Feature selection using GA with 100 iterations. Red dots represent external performance
estimates while blue dots are estimates of mean internal performance of each iteration.

Table 5. Optimal hyperparameters for each machine learning algorithm and libraries used.

Algorithm Optimal Hyperparameters Method/R Package

RF

splitrule = extratrees
ntree = 2000

min.node.size = 1
mtry = 4

num.random.splits = 3

Extremely Randomized
Trees/ranger [75]

XGB

nrounds = 1500
max_depth = 4

eta = 0.1
gamma = 0

xgboost [76]

ANN size = 36
decay = 0.2

polynomial kernel/kernlab
[77,78]

SVM
degree = 3
scale = 1
C = 0.1

feed-forward with single
hidden layer/nnet [79]

LR family = binomial glm/caret [80]

Figure 7. Comparison of Overall Accuracy (OA) and kappa coefficient (κ) achieved by different
classifiers on the training data.
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The same ranking of the mentioned classifiers was obtained when the trained model
was applied to the test data, as seen in Table 6.

Table 6. Accuracy results of each classifier when predicted on test data.

Classifier OA [%] κ

RF 89.0 0.757
XGB 88.8 0.750
ANN 84.1 0.657
SVM 82.5 0.625
LR 74.1 0.431

In the end, only RF gives an OA of over 90% and a κ of over 0.8 when using cross
validation on the training data, as well as the highest accuracy when this model was
applied on test data. Therefore, this classifier was chosen to distinguish between true and
false treetops.

4.4. Classification Results

The OA and κ for the RF classifier obtained from the ten-fold cross validation applied
to the training data were 90.4% and 0.808, respectively. When predicting the test data, it
was possible to achieve an OA = 89.0% and κ = 0.757. The optimized parameters used for
the RF model were splitrule = extratrees, ntree = 2000, min.node.size = 1, and mtry = 4. The
calculated OA, κ, PA, and UA for the test data are shown in Table 7.

Table 7. The confusion matrix and performance metrics of the RF classification based on the test
dataset comprising 8 forest plots.

Plot Type Pred/Ref True False UA

Mixed
(all 8 plots)

true 257 15 94.5%
false 32 124 79.5%
PA 88.9% 89.2% OA= 89.0%; κ = 0.757

When splitting the predicted test data into plots that belong to different forest types
(deciduous, coniferous, and mixed), we obtained results shown in Table 8.

Table 8. The confusion matrix and performance metrics of the RF classification based on the test
dataset with plots separated into deciduous, coniferous, and mixed forests.

Plot Type Pred/Ref True False UA

Deciduous (5 plots)
true 113 7 94.2%
false 14 46 76.7%
PA 89.0% 86.8% OA = 88.3%; κ = 0.730

Coniferous (2 plots)
true 118 6 95.2%
false 17 71 80.7%
PA 87.4% 92.2% OA = 89.2%; κ = 0.772

Mixed (1 plot)
true 26 2 92.9%
false 1 7 87.5%
PA 96.3% 77.8% OA = 91.7%; κ = 0.769

4.5. Variable Importance

Feature selection was performed in order to reduce the number of data used. This
shortened the processing time needed for classification, without sacrificing the significant
performance of the model related to the accuracy achieved. After that, it was important to
assess the importance of each variable participating in the classification.
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The importance measure represents the node impurities from the splitting procedure
applied to the variables, averaged over all trees. The node impurity was measured by the
Gini measure. The Mean decrease in Gini is a measure of how much the Gini impurity
metric is reduced by a variable for each class. It was chosen as a measure of importance
since it was also used during GA feature selection. The scaled variable importance based
on the Mean decrease in Gini measure is produced and plotted. The importance for only
15 predictor variables, out of the 23 selected ones for the final RF model, is given in Figure 8.

Figure 8. The importance of selected variables expressed by scaled Mean decrease in Gini measure.

As it can be seen from Figure 8, the highest importance is given to the number of
points belonging to each segment (N), followed by the predictor variables belonging to
the group of shape-fitting features (Medquad and Medrobquad), and then the predictors
belonging to the group of tree metrics (Hentr, Hprofarea, Phabx, Hpcum9), which were
mixed with predictors from the group of segment shape features (Rect and EccEgn).

5. Discussion
5.1. The ITD Strategy and the Resulting Accuracy Improvements

The LM-filtering window was 1 m smaller than the optimal size for each forest plot in
order to generate more treetop candidates. This was performed to ensure that all the trees
within a plot contained the local maxima and to eliminate falsely detected treetops with our
refinement method. Thus, we avoided under-segmentation later on, which happens when
some of the treetop candidates are missing. Therefore, there is no need to define another
class when LM were not detected, meaning that the corresponding segment contains
more than one tree (under-segmentation). As the ITD accuracy for the test data was 68%,
our improvement method increased the OA by 21%. However, the ITD results achieved
were within the parameters set to generate a larger number of treetop candidates. When
optimally parameterized, this ITD method reliably provides fewer treetop candidates,
resulting in a higher OA. For LM-filtering, that would mean using a variable-sized window
or a fixed-sized window with an optimal size. Persson et al. [9] managed to correctly detect
71% of the trees with one of the first automated tree extraction methods using a CHM
generated from ALS data. The tree detection accuracy results were 70% for the dominant
trees in heterogeneous forests in Pitkänen et al. [81]. Yu et al. [82] achieved an ITD accuracy
of 69% for tree detection in various forest conditions (different forest densities, ages, site
types, and tree species). Kaartinen et al. [83], in their international comparison of ITD
results using ALS, found that manual processing can be used to find 70% of trees.
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5.2. Machine Learning Method Selection

The XGB, ANN, and SVM classifiers showed to be just slightly inferior when compared
to RF (Figure 7), but there are no significant differences between these methods (median
OA for RF was 90.4%, for XGB it was 88.8%, for ANN it was 88.0%, and for SVM it was
85.6%, while their median κ values were 0.808, 0.776, 0.759, and 0.712, respectively). When
comparing the performance of the mentioned classifiers on the test data (Table 6), it can
be seen that the same ranking of the mentioned classifiers was obtained but with a bigger
gap between the first two and last three. XGB showed almost the same level of accuracy in
its performance as RF, but for XGB, much more computation time was needed for model
training. It is also possible that ANN was overfit because of the large number of hidden
units, so SVM may perform better than this classifier in some other case. An interesting
finding in this research is that XGB and ANN were competitive with RF or even more
suitable algorithms than SVM, considering that the researchers usually find that RF and
SVM provide more advantageous results for ALS and other remote-sensing classification
tasks [27,30,84–86].

5.3. Classification Results

In this research, we achieved high values for OA and κ when using the RF classifier
with the ERT option. The OA obtained from the ten-fold cross validation applied to the
training data was 90.4% and the κ was 0.808, whereas the prediction performed on the test
data resulted in an OA = 89.0% and κ = 0.757.

There have been several studies dealing with the classification of tree segments using
SVM classifiers [27,30]. They achieved similar results using SVM in terms of classification
accuracy as we did in our study. Therefore, our results also confirmed that SVM continues
to be a good benchmark method for classification because it has also outperformed RF in
some cases of tree species classification [87,88].

In an approach based on an LR classifier developed by Kathuria et al. [37], it was found
that LR yields a better OA in comparison with the RF-modelling technique (95% for RF
and 98% for LR). We found that RF and other algorithms performed much better than the
LR classifier, but a direct comparison of the results between the studies is difficult because
our analysis was run on a complex, natural, and mostly deciduous forest while theirs was
applied to a Pinus radiata coniferous plantation. Another reason why their OA values are
so high could be the model’s training on simulated stands composed of individual trees
derived from ALS point cloud data. Furthermore, the methodologies differ in several
aspects. In our study, we used zonal statistics to calculate the features for tree segments
belonging to each LM, while they used focal statistics in their method. Their approach also
included feature selection based on a backward selection method with Akaike information
criterion (AIC) [89], while we applied GA feature selection.

Lisiewicz et al. [27] tested several ML methods (RF, SVM, and kNN) to distinguish
correct segments from erroneous ones resulting from the ITD method based on a CHM.
With the RF classifier, they achieved high accuracy for the training (OA = 87.0% and
κ = 0.794) and test data (OA = 85.3% and κ = 0.641). In our approach, we were more
oriented towards separating the correct from the erroneous treetops, using the information
obtained from the appropriate tree segments, while in their study, they tried to distinguish
errors in a more comprehensive manner (correct-, over-, and under-segmentation) in order
to identify all possible segmentation error scenarios. In our study, we achieved a higher
accuracy for the training data with the RF approach based on ERT [62].

The accuracy results achieved for the test data from Lisiewicz et al. [27] are not
comparable to ours because they used cross validation on the test dataset, while we
performed the usual train/test split and then used the trained model for the prediction
of the test data. The study area they used for research is also a natural forest, but with a
higher proportion of coniferous than deciduous trees. The ALS data for our study were
collected for mostly deciduous forests during the leaf-off season, which makes treetop
detection more complicated. In addition, for classification, we used different features that
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were based on the shape of the tree segments, eigenvalues, the shape fitting of the points to
a polynomial shape, and LiDAR-derived tree metrics. Unlike them, we did not compute
or use any of the intensity variables because a proper radiometric correction of intensity
data must be performed before any kind of analysis [90,91]. We had a similar approach
with respect to removing highly correlated variables, but we additionally performed a
feature selection using GA. In our study, we also used a class-balancing method based on
the SMOTE algorithm, which increased accuracy by almost 5%.

To the best of our knowledge, XGB and ANN have never been used for this type of
classification problem, and here it has been shown that XGB gives similar results as RF.

Classification Results Depending on the Forest Type

Table 8 showed that almost all the plots with different forest types gave an accuracy
greater than 80%, except for UA regarding falsely detected treetops in deciduous forest
plots and PA concerning falsely detected treetops in plots of mixed forest. The highest
performance was achieved on the mixed forest plot. The reason for this result could be
the small number of features in the forest plot, especially those belonging to the class of
falsely detected treetops. Even one feature migrating from one class to another can highly
influence the resulting accuracy.

It can be noticed that the classification accuracy performed on the deciduous plots was
slightly lower than on the coniferous ones (Table 8). This has always been the case in the
research conducted so far because a large number of studies have proven that the detection
of individual trees and their delineation in coniferous forests is much more successful, as
coniferous species have, in most cases, a clearly defined tree crown shape [92]. However,
herein, the deciduous and coniferous plots had very similar results. Another important
parameter is that forest plots usually contain dominant deciduous trees (birch), which were
well-separated.

5.4. Variable Importance

The number of points in each tree segment (N) is an important variable due to the size
of the tree. If a local maximum is detected for a tree segment area and the segmentation
algorithm performs well, then the number of points for deciduous trees would have great
significance. If there are several LM for a single tree crown, then non-treetop points would
usually be falsely detected as treetops for that parts of the tree that usually represent tree
branches [5]. When this predictor variable is not used in the training data, the OA obtained
from ten-fold cross validation for the training data decreases by 2%. Kathuria et al. [37]
also used the number of points that are above 2 m height as a predictor variable and they
selected this to be an important non-correlated variable for the final model.

One of the most important predictor variables is the entropy of height distribution: the
normalized Shannon vertical complexity index (Hentr). The entropy of height distribution
is a measure for quantifying diversity and it is based on the number and frequency of
species present [50]. This tree metric is applied to quantify the diversity and the evenness
of the elevational distribution of ALS points. It, therefore, provides a good differentiation
between a part of the tree resulting from over-segmentation and the correct segment
covering the entire tree crown. When this predictor variable was omitted from the training
data, the OA obtained from the ten-fold cross validation for the training data decreased
by 1.5%.

Some features from a group of shape-fitting features (Medquad and Medrobquad)
proved to be valuable for the classification based on the importance value. The median
values of fitting a polynomial shape to the point cloud of a segmented tree canopy (first
without and then with robust estimation for eliminating outliers) were ranked as second
and third, respectively, when the predictor variables were ranked by their importance. In
this case, if the whole tree is well-segmented, then the absolute median value of residuals
from fitting a polynomial shape to the point cloud is greater than the value of the over-
segmented part of the tree. One of the possible reasons is that the polynomial shape more
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adequately fits the points relating to a part of the tree than the points belonging to the whole
tree due to the “peaky” distribution of points. This is an important conclusion because
previous studies have not used this group of features for this kind of classification. When
these shape-fitting features were not used in the training data, the OA obtained from the
ten-fold cross validation for the training data decreased by 0.6%.

It is interesting to notice that the features from the group of eigenvalue-based fea-
tures were not recognized as important for classification, so they were removed during
feature selection.

Further studies may investigate refinement performance when working with UAV
Laser-Scanning (ULS) data. This acquisition technique produces point clouds with a higher
point density and, therefore, existing ITD algorithms would produce many more treetop
candidates due to the much more detailed canopy surface. The problem of reducing
the number of falsely detected treetops would be an even bigger challenge. The related
future work would also be oriented towards determining additional features that could be
useful for better classification, such as multispectral or full-waveform ALS data. Another
task may be collecting more training data in order to be able to experiment with training
data reduction procedures. This could lead to determining an optimal training/testing
data ratio.

6. Conclusions

In this study, we presented an effective method to differentiate true and falsely detected
treetops based on the information obtained from corresponding delineated tree segments of
ALS point cloud data. The tree metrics, shape-fitting, eigenvalue-based, and segment shape
groups of features were calculated for each tree segment in order to be used as predictor
data for the ML model’s training. A SMOTE-based algorithm was used for data balancing
and GA for feature selection. Five ML methods were tested for this classification, namely,
RF, XGB, ANN, SVM, and LR, wherein the best-performing classifier was RF. The OA and
κ obtained from the ten-fold cross validation of the training data were 90.4% and 0.808,
respectively. When performing the prediction of the test data, it was possible to achieve an
OA = 89.0% and a κ = 0.757.

One of the key steps for achieving this accuracy was ADASYN’s balancing of the data
classes, which increased the OA by almost 5%. This experiment showed that the most
important features for achieving this accuracy are the number of points in each segment
(omitting this feature lowered the OA by 2%), the entropy of height distribution (omitting
this feature lowered the OA by 1.5%), and the median values of fitting a polynomial shape
to the point cloud (omitting these features would lower the OA by 0.6%).

When the classification results were assessed separately for each forest type, the
OA was 88.3% for the deciduous forest plots predicted from the test data, 89.2% for the
coniferous forest plots, and 91.7% for the forest plot that contained trees belonging to mixed
forest types.

Further studies may investigate refinement performance when working with UAV
Laser-Scanning (ULS) data. Another task would be testing additional features from other
sources of data, such as multispectral or full-waveform ALS data.
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42. Lisiewicz, M.; Kamińska, A.; Kraszewski, B.; Stereńczak, K. Correcting the Results of CHM-Based Individual Tree Detection
Algorithms to Improve Their Accuracy and Reliability. Remote Sens. 2022, 14, 1822. [CrossRef]

43. Axelsson, P. DEM Generation from Laser Scanner Data Using Adaptive TIN Models. Int. Arch. Photogramm. Remote Sens. 2000, 33,
110–117.

44. Popescu, S.C.; Wynne, R.H. Seeing the Trees in the Forest. Photogramm. Eng. Remote Sens. 2004, 70, 589–604. [CrossRef]
45. Roussel, J.-R.; Auty, D.; Coops, N.C.; Tompalski, P.; Goodbody, T.R.H.; Meador, A.S.; Bourdon, J.-F.; de Boissieu, F.; Achim, A.

LidR: An R Package for Analysis of Airborne Laser Scanning (ALS) Data. Remote Sens. Environ. 2020, 251, 112061. [CrossRef]
46. Roussel, J.-R.; Auty, D.; De Boissieu, F.; Meador, A.S.; Bourdon, J.-F.; Demetrios, G.; Steinmeier, L.; Adaszewski, S. lidR: Airborne

LiDAR Data Manipulation and Visualization for Forestry Applications; Version 4.0.1; R Core Team: Vienna, Austria, 2022.
47. R Core Team R. A Language and Environment for Statistical Computing; R Foundation for Statistical, Computing: Vienna, Austria,

2022. Available online: https://www.R-project.org/ (accessed on 21 June 2022).
48. Silva, C.A.; Crookston, N.L.; Hudak, A.T.; Vierling, L.A.; Klauberg, C.; Cardil, A.; Hamamura, C. rLiDAR: LiDAR Data Processing

and Visualization; Version 0.1.5; R Core Team: Vienna, Austria, 2022.
49. McGaughey, R.J. FUSION/LDV: Software for LIDAR Data Analysis and Visualization; Version 4.40; US Department of Agriculture,

Forest Service, Pacific Northwest Research Station, University of Washington: Seattle, WA, USA, 2022.
50. Shannon, C.E. A Mathematical Theory of Communication. Bell Syst. Tech. J. 1948, 27, 379–423. [CrossRef]
51. Woods, M.; Lim, K.; Treitz, P. Predicting Forest Stand Variables from LiDAR Data in the Great Lakes—St. Lawrence Forest of

Ontario. For. Chron. 2008, 84, 827–839. [CrossRef]
52. Detsch, F.; Meyer, H.; Möller, F.; Nauss, T.; Opgenoorth, L.; Reudenbach, C.; Environmental Informatics Marburg. uavRst:

Unmanned Aerial Vehicle Remote Sensing Tools; Version 0.5.5. Available online: https://mran.microsoft.com/snapshot/2019-02-
21/web/packages/uavRst/index.html (accessed on 21 June 2022).

http://doi.org/10.1080/01431161.2013.779398
http://doi.org/10.1016/j.rsase.2021.100690
http://doi.org/10.1109/JSTARS.2014.2331276
http://doi.org/10.1016/j.isprsjprs.2015.10.002
http://doi.org/10.1016/j.isprsjprs.2018.08.010
http://doi.org/10.14358/PERS.78.11.1275
http://doi.org/10.1007/s00138-006-0064-9
http://doi.org/10.5194/isprsannals-II-3-181-2014
http://doi.org/10.1080/00049158.2016.1153770
http://doi.org/10.3390/f9120759
http://doi.org/10.1080/2150704X.2019.1658237
http://doi.org/10.1016/j.isprsjprs.2015.08.004
http://doi.org/10.3390/rs12040661
http://doi.org/10.3390/rs14081822
http://doi.org/10.14358/PERS.70.5.589
http://doi.org/10.1016/j.rse.2020.112061
https://www.R-project.org/
http://doi.org/10.1002/j.1538-7305.1948.tb01338.x
http://doi.org/10.5558/tfc84827-6
https://mran.microsoft.com/snapshot/2019-02-21/web/packages/uavRst/index.html
https://mran.microsoft.com/snapshot/2019-02-21/web/packages/uavRst/index.html


Remote Sens. 2022, 14, 5345 20 of 21

53. Rosin, P.L. Computing Global Shape Measures. In Handbook of Pattern Recognition and Computer Vision; World Scientific: Singapore,
2005; pp. 177–196, ISBN 978-981-256-105-3.

54. Haralick, R.M. A Measure for Circularity of Digital Figures. IEEE Trans. Syst. Man Cybern. 1974, SMC-4, 394–396. [CrossRef]
55. Lucas, C.; Bouten, W.; Koma, Z.; Kissling, W.D.; Seijmonsbergen, A.C. Identification of Linear Vegetation Elements in a Rural

Landscape Using LiDAR Point Clouds. Remote Sens. 2019, 11, 292. [CrossRef]
56. Hoppe, H.; DeRose, T.; Duchamp, T.; McDonald, J.; Stuetzle, W. Surface Reconstruction from Unorganized Points. SIGGRAPH

Comput. Graph. 1992, 26, 71–78. [CrossRef]
57. Pfeifer, N.; Mandlburger, G.; Otepka, J.; Karel, W. OPALS—A Framework for Airborne Laser Scanning Data Analysis. Comput.

Environ. Urban Syst. 2014, 45, 125–136. [CrossRef]
58. Mandlburger, G.; Otepka, J.; Karel, W.; Wagner, W.; Pfeifer, N. Orientation and Processing of Airborne Laser Scanning Data

(OPALS)—Concept and First Results of a Comprehensive ALS Software. In Proceedings of the Laser Scanning 2009, IAPRS, Paris,
France, 1–2 September 2009; Volume XXXVIII. Part 3/W8.

59. He, H.; Bai, Y.; Garcia, E.A.; Li, S. ADASYN: Adaptive Synthetic Sampling Approach for Imbalanced Learning. In Proceedings of
the 2008 IEEE International Joint Conference on Neural Networks (IEEE World Congress on Computational Intelligence), Hong
Kong, China, 1–8 June 2008; pp. 1322–1328.

60. Mitchell, M. An Introduction to Genetic Algorithms; Complex Adaptive Systems; A Bradford Book: Cambridge, MA, USA, 1996;
ISBN 978-0-262-13316-6.

61. Breiman, L. Random Forests. Mach. Learn. 2001, 45, 5–32. [CrossRef]
62. Geurts, P.; Ernst, D.; Wehenkel, L. Extremely Randomized Trees. Mach. Learn 2006, 63, 3–42. [CrossRef]
63. Chen, T.; Guestrin, C. XGBoost: A Scalable Tree Boosting System. In Proceedings of the 22nd ACM SIGKDD International

Conference on Knowledge Discovery and Data Mining, San Francisco, CA, USA, 13 August 2016; Association for Computing
Machinery: New York, NY, USA, 2016; pp. 785–794.

64. Ripley, B.D. Pattern Recognition and Neural Networks; Cambridge University Press: Cambridge, UK, 1996; ISBN 978-0-521-71770-0.
65. Schmidhuber, J. Deep Learning in Neural Networks: An Overview. Neural Netw. 2015, 61, 85–117. [CrossRef]
66. Cortes, C.; Vapnik, V. Support-Vector Networks. Mach. Learn. 1995, 20, 273–297. [CrossRef]
67. Kebede, T.A.; Hailu, B.T.; Suryabhagavan, K.V. Evaluation of Spectral Built-up Indices for Impervious Surface Extraction Using

Sentinel-2A MSI Imageries: A Case of Addis Ababa City, Ethiopia. Environ. Chall. 2022, 8, 100568. [CrossRef]
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