

Creating Climate Resilience by Increasing Flexibility

Governmental Fiscal Performances after Hurricanes in CCRIF-Insured Countries

Qinhan Zhu¹, Stefan Hochrainer-Stigler¹, Alessio Ciullo²

1. International Institute of Applied Systems Analysis

2. Swiss Federal Institute of Technology in Zurich

Short-term Fiscal Shocks: Induced by Climate Disasters, Counteracted by Parametric Insurance

Caribbean and Central American

Caribbean Catastrophe Risk Insurance

countries suffer from hurricanes

- The short-term fiscal stress:
 - Damaged tax bases : Revenue ↓
 - Disaster relief
- : Expenditure ↑
- Liquidity gap
- : Debt ↑
- Fast financing sources are needed to counteract these fiscal shocks (World Bank Group. 2014)

Fig 1. Illustration of revenue loss (storm in Quarter 0)

Facility (**CCRIF**) provides fast payout for member countries hit by disasters

- As a parametric insurance, CCRIF payout is based on physical indices of the disaster (e.g., wind speed, precipitation etc.). Hence, the payout is made within a month after the disaster.
- Yet, the **effectiveness of CCRIF** on reducing fiscal shocks remain unclear

Did CCRIF successfully reduce the fiscal shocks caused by cyclones?

- When a cyclone hits a country, the shocks to fiscal variables could still be observed 4 quarters after the disaster.
- CCRIF payout **lowered** the loss of revenue, and **brought down** the reliance on debt

	Change of Revenue in Q0 (\$)	Change of Revenue in Q1 (\$)	Change of Revenue in Q2 (\$)	Change of Revenue in Q3 (\$)	Change of Revenue in Q4 (\$)	Sum
Every Thousand \$ damage	-9.41	-10.8**	-19.1	-4.23	8.42**	-2.38
Every Thousand \$ Payout	-389	-837***	491	2178***	11.4	1341
	Change of Debt in Q0 (\$)	Change of Debt in Q1 (\$)	Change of Debt in Q2 (\$)	Change of Debt in Q3 (\$)	Change of Debt in Q4 (\$)	Sum
Every Thousand \$	15.4***	42.2**	42.0***	43.9***	34.8***	175

How to test the effects of CCRIF

- Panel Autocorrelation regression model
- Quarterly fiscal data and hurricane damage estimated with CLIMADA (Bresch, D.N. et al., (2021))
- 19 CCRIF member countries from 1997 to 2018, 35 payout issuance

 The CCRIF fast payout accelerated economic recovery, hence functioning more than merely an external funding Every Thousand \$ -635*** -1537** -1857*** -1939*** -1646*** -7614 Payout

Tab 1. Impact of every thousand \$ hurricane damages and CCRIF payout on governmental revenue and debt each quarter (compared to baseline) after the disaster Ratio of fiscal variables/damages/payout to GDP were used in the model

Would CCRIF be equally effective should the losses become worse?

- The Storyline Approach is introduced to stress test the performance of CCRIF
- In each storyline as given in Table 2 and Figure 3, storms became stronger, more often, and caused more damages
- CCRIF would fail to provide sufficient payout so that the government could maintain its historical fiscal performance

	Time	Damage (billion \$)
	3rd quarter of 2017	12.87
History	3rd quarter of 2016	0

What is Storyline Approach

- Self-consistent unfolding of past events, or of plausible future events (Shepherd T.G. et al., (2018))
- Historical forecasts of past hurricanes are used to guarantee consistency
- Various RCPs and SSPs are considered when estimating damages under future climate and development scenarios

Policy indications

Tab 2. Damages of storms in various storylines (composition of each storyline given in Fig 2)

Fig 2. Downward counterfactuals of selected hurricanes

- CCRIF helped countries to meet their most pressing liquidity gap after storms
- CCRIF is not able to cover catastrophic damages in worse climate conditions
- Risk reduction measures have to be prioritised in climate change scenarios

References:

1. World Bank Group. 2014. Financial Protection Against Natural Disasters : An Operational Framework for Disaster Risk Financing and Insurance. Washington, DC. © World Bank. https://openknowledge.worldbank.org/handle/10986/21725 License: CC BY 3.0 IGO

2. Bresch, D. N. and Aznar-Siguan, G., 2021: CLIMADA v1.4.1: Towards a globally consistent adaptation options appraisal tool, Geosci. Model Dev., https://doi.org/10.5194/gmd-2020-151

3. Shepherd, T.G., Boyd, E., Calel, R.A. et al. Storylines: an alternative approach to representing uncertainty in physical aspects of climate change. Climatic Change 151, 555–571 (2018). https://doi.org/10.1007/s10584-018-2317-9

