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Abstract. Siberian forests are generally thought to have acted as an important carbon sink over 
recent decades, but exposure to severe droughts and fire disturbances may have impacted their 
carbon dynamics. Limited available forest inventories mean the carbon balance remains uncertain. 
Here we analyse annual live and dead above-ground carbon changes derived from low-frequency 
passive microwave observations from 2010 to 2019. We find that during this period, the carbon 
balance of Siberian forests was close to neutral, with the forests acting as a small carbon sink of 
+0.02+0.01

+0.03 PgC yr−1. Carbon storage in dead wood increased, but this was largely offset by a 
decrease in live biomass. Substantial losses of live above-ground carbon are attributed to fire and 
drought, such as the widespread fires in northern Siberia in 2012 and extreme drought in eastern 
Siberia in 2015. These live above-ground carbon losses contrast with ‘greening’ trends seen in leaf 
area index over the same period, a decoupling explained by faster post-disturbance recovery of leaf 
area than live above-ground carbon. Our study highlights the vulnerability of large forest carbon 
stores in Siberia to climate-induced disturbances, challenging the persistence of the carbon sink in 
this region of the globe. 
 

Siberia holds about 20% of the world’s forest areas 1, and the region has been exposed to rapid 
warming in recent decades 2. In response to warmer temperatures, a longer growing season 3 and 
widespread ‘greening’ seen by optical remote-sensing data 4,5 have been reported. These changes 
are generally interpreted as increases in above-ground biomass carbon (AGC) 6 and CO2 uptake 7,8, 
and the prevailing view is that Siberian forests have acted as a net sink for atmospheric CO2 during 
recent decades 9–13. 

However, the shift to a drier climate with an increasing frequency of wildfires 14 causing forest 
loss and degradation may have weakened the carbon sink of Siberian forests 15. Wildfires make up 
the largest proportion of forest loss in Siberia 16,17, causing significant carbon emissions (from live 
biomass and dead wood) 18 and already resulting in parts of Siberia emitting more carbon than is 
being captured 19,20. A divergence between the trends of warming and greening has also been 
observed in Siberia 21, with localized shifts to a negative relationship between temperature and 
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greenness indices, especially in drought-affected areas 22. Recent heatwaves and wildfire events in 
2010, 2012 and 2015 may change the carbon balance of the Siberian forest. 
In the recent decade, a direct spatially explicit quantification of the carbon budget of the Siberian 
forests is still lacking, with varying estimates of carbon fluxes (+0.5 to −0.4 PgC yr−1; positive values 
indicate net carbon increase in above-ground biomass) from forest inventories 23, dynamic global 
vegetation models 19,24 and atmospheric inversions 25,26. Observational forest monitoring data are 
scarce, given the lack of systematic forest inventories in this region 14,27. Greening trends are 
observed in the Siberian forests from optical satellite observations5, but the use of those indices at 
the high latitudes is complex 28. In particular, variations of greenness caused by sun angle 29 and 
shadow effects 30 cause large differences between satellite products 31, and greenness indices 
saturate even at moderate biomass in the high latitudes 28. These uncertainties impede a full 
understanding on how drought and wildfire influenced the spatial patterns of loss and post-
disturbance recovery of forest carbon. 

In this Article, we estimate wall-to-wall annual changes in the above-ground biomass carbon 
stocks, the sum of living biomass and dead wood, over Siberian forests from 2010 to 2019 (Fig. 1a). 
We present the following: (1) changes in regional AGC; (2) the relative contributions of wildfire and 
other forest-loss drivers to AGC loss; and (3) the decoupling between AGC and greenness trends. 
Spatially explicit live above-ground biomass carbon (AGClive) at 25 km spatial resolution was 
computed using L-band vegetation optical depth (L-VOD) from passive microwave observations, 
which is sensitive to the biomass of stems, branches and leaves and does not saturate even in dense 
forests 32. Moreover, L-VOD is not sensitive to the effects of sun illumination and atmosphere 
(aerosols, clouds), which limit the capabilities of optical observations at high latitudes 28. 
 

 
Fig. 1. Temporal variations in annual AGC and LAI over Siberian forests. a, The spatial distribution of 
AGClive in 2010 (n = 6,419). b, Annual values of AGCtot and AGClive stocks (n = 10) relative to those in 
2010, respectively. c,e, Corresponding changes in AGClive (c) and LAI (e) are shown for partly burned 
and unburned regions. d, Annual values of LAI (n = 10) relative to LAI in 2010. The ranges in b and c 
where represented by shading around the line show the minimum and maximum of above-ground 
carbon changes. The centre lines and the shading ranges in d and e represent the median values and 
one standard deviation. Annual fire-disturbed areas are indicated by the orange bar. 
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Above-ground carbon changes in the Siberian forests 

For the years 2010–2019, we found a net AGClive change in Siberia of−0.08−0.08
−0.08 PgC yr−1 (range 

from calibrations of L-VOD against six different static biomass maps; Fig. 1b). This net change 
represents a balance between regional and temporal gross gains (+0.29+0.29

+0.31 PgC yr−1) offset by on 
average larger gross losses (−0.37−0.39

−0.36 PgC yr−1). Western Siberia had a nearly neutral carbon 
balance, while East Siberia and the Far East forests showed net carbon losses (−0.03−0.03

−0.03 PgC yr−1 
and −0.05−0.05

−0.05 PgC yr−1, respectively) (Supplementary Fig. 1). 
Annual changes in AGClive reached maximum values (−0.74−0.72

−0.77 PgC) in 2011, mainly from East 
Siberia (−0.49−0.48

−0.50 PgC), and decreased steadily afterwards (Fig. 1b and Supplementary Fig. 1). 
During the drought and heatwave of summer 2012, Hansen et al.33 reported a forest area loss of 3.8 
× 104 km2 and record-breaking wildfires (1.2 × 105 km2) as monitored by the active fire data34 (Fig. 
1b). This event is associated with a change in AGClive of −0.48−0.50

−0.47 PgC that year, including 
−0.22−0.23

−0.22 PgC in East Siberia and −0.26−0.26
−0.26 PgC in the Far East (Supplementary Fig. 1). We found 

the largest decline in AGClive of the decade in 2015, a net change of −0.55−0.57
−0.54 PgC, of which 

−0.30−0.30
−0.30 PgC occurred in East Siberia (Supplementary Fig. 1c) and −0.22−0.22

−0.21 in the Far East 
(Supplementary Fig. 1e), partly attributed to extreme hot and dry conditions, 2015 being the hottest 
year on record since 1936 (Supplementary Fig. 2a) 35. 

Drought conditions persisted until 2017 over East Siberia, indicated by negative anomalies in 
soil moisture and Standardized Precipitation Evapotranspiration Index (SPEI) values (Supplementary 
Figs. 2c and 3–5). This persistent drought was associated with continuing large wildfires (6.1 × 104 
km2) in 2016 and in 2017 (4.1×104 km2) that contributed to the continuous decrease of AGClive in East 
Siberia during 2015–2017 (Supplementary Fig. 1c). During that period, a contrasting vegetation 
response emerged from optical time-series imagery, with positive anomalies shown by leaf area 
index (LAI) values (Supplementary Fig. 3–5). LAI had in fact maximum values during the dry and hot 
year of 2015 (Supplementary Fig. 6c), as documented by Bastos et al. 36. 

It is important to note here that AGClive losses in a given year due to stand-replacing fires do 
not cause only an instantaneous CO2 emission to the atmosphere, but also at first an increase of the 
carbon stocks of dead wood (for example, coarse woody debris (CWD)) followed by a lagged CO2 
emission from decaying CWD and litter pools 37. Such an increase in CWD carbon (CWDC) stocks 
following stand-replacing fires is of particular importance for Siberian forests 38, where the 
combustion completeness of live biomass can be as low as 10% (Supplementary Table 5), meaning 
that the rest is feeding the CWDC pools. Ignoring fine litter changes, we estimated carbon changes 
from above-ground CWD, separating previously accumulated CWDC before the beginning of the L-
VOD records in 2010 and the formation of new CWDC caused by stand-replacing fire and background 
mortality after 2010 (Methods and Supplementary Text). Then we calculated the total AGC (AGCtot) 
changes accounting for AGClive and CWDC (Fig. 1b). 

During 2010–2019, AGCtot shows a net change of +0.02+0.01
+0.03 PgC yr−1 (Fig. 1b), corresponding 

to a nearly neutral carbon balance, so that the large increase in carbon stocks of CWD (+0.10+0.09
+0.11 

PgC yr−1) has nearly offset the decrease of AGClive. Comparing decadal trends of AGCtot with AGClive, 
AGCtot had a small negative trend during 2011–2015 but a rapid increase during 2015–2019, whereas 
AGClive remained flat, ~0.8 PgC below its value in 2010 (Fig. 1b). Differences between the net changes 
in AGCtot and AGClive were observed mainly over East Siberia (+0.02+0.02

+0.02 PgC yr−1 versus −0.03−0.03
−0.03 

PgC yr−1) and Far East (−0.01−0.02
−0.01 PgC yr−1 versus −0.05−0.05

−0.05 PgC yr−1) (Supplementary Fig. 1). The 
gross carbon loss is lower for AGCtot (−0.33−0.34

−0.33 PgC yr−1) than for AGClive (−0.37−0.39
−0.36 PgC yr−1) due 

to carbon remaining in CWD after mortality. Spatially, the region-wide increase in the accumulation 
in carbon stocks of CWD (Fig. 2c) offset 31% of AGClive loss areas (Fig. 2b), resulting in 54% of the 
study area acting as a C sink during 2010–2019 (Fig. 2a). 
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Fig. 2. Spatial patterns of net changes in AGC, CWDC and LAI. a–d, Net changes in AGCtot (a), AGClive 
(b), CWDC (c) and LAI (d). e,f, Yearly changes in forest loss (e) and burned area (f) were estimated 
using the Hansen 33 and moderate-resolution imaging spectroradiometer datasets, respectively. WS, 
West Siberia region; ES, East Siberia region; FE, Far East region. (n = 6,419 for a–f). 
 

Carbon losses from forest loss and degradation  

The AGClive decrease in Siberian forests can be due to forest area loss from human-induced 
deforestation plus stand-replacing fires and other severe disturbances such as windstorms and 
massive insect outbreaks, and to ‘degradation’ processes that do not lead to forest area loss such as 
low-intensity fires, selective logging, fragmentation and edge effects, and partial mortality from 
moderate- and low-intensity disturbances such as droughts 39. The contributions of forest area loss 
and degradation to AGClive losses were separated within each 25 km grid cell using the method of 
Harris et al. 40 and Qin et al. 41. To do so, we used the Landsat forest area loss data from ref. 33 at 30 
m resolution, which means that small-scale forest area loss that is not resolved at this resolution is 
implicitly treated as degradation (Methods). Of the gross AGClive losses (−0.36−0.39

−0.36 PgC yr−1) during 
2010–2019, we attributed ~43% (−0.16−0.18

−0.14 PgC yr−1) to forest area loss and the remaining ~57% 
(−0.21−0.22

−0.21 PgC yr−1) to degradation, showing that degradation brings an even larger contribution 
than forest area loss. 

Over the forest area loss regions, we further separated the contributions of clearcut (forestry) 
and stand-replacing wildfires to gross AGClive loss. Stand-replacing fires (1.6 × 105 km2) covering ~60% 
of the forest-loss area contributed 62% (−0.10−0.11

−0.09 PgC yr−1) of the gross AGClive loss while other 
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stand-replacing processes (for example, clearcutting and massive insect outbreaks) contributed only 
~38% (−0.06−0.07

−0.06 PgC yr−1). 
We further investigated the impacts of wildfires on AGClive losses by considering L-VOD pixels 

(25 km) that are burned by wildfires over the whole of Siberia, thus considering all fires and not only 
the stand-replacing ones that coincide with forest area loss in ref. 33. ‘Unburned’ pixels were defined 
as those with an annual burned fraction lower than 1% during 2006–2019. The remaining grid cells 
were defined as partly burned regions (Methods and Supplementary Fig. 7). In those partly burned 
areas (3.1 × 106 km2) that cover ~78% of the study region, we found a net AGClive change of 
−0.06−0.07

−0.06 PgC yr−1 mainly over East Siberia (−0.03−0.03
−0.03 PgC yr−1) and the Far East (−0.04−0.04

−0.04 PgC 
yr−1) whereas AGClive changes in unburned pixels were close to zero (Fig. 1c). Over partly burned 
regions, the dynamics of biomass are enhanced, with gross AGClive losses (−0.28−0.27

−0.29 PgC yr−1) and 
gains (+0.21+0.21

+0.22 PgC yr−1) being four times larger than the net change (−0.06−0.07
−0.06 PgC yr−1). 

Overall, gross AGClive losses of partly burned pixels were 2.8 times larger than the loss from stand-
replacing fires (−0.10−0.11

−0.09 PgC yr−1). This result shows that the Landsat forest-loss data do not 
capture small-scale forest-loss patches burned by fires and/or that the droughts and many ground 
fires of low intensity lead to AGClive losses even though they do not cause stand replacement 42. 

Simultaneous biomass losses and greening trends 

We addressed whether greening trends observed by LAI can be linked with carbon uptake over 
the Siberian forests. For the period 2010–2019, AGClive decreased significantly (P < 0.01) (Fig. 1b) 
while LAI increased, but non-significantly (P > 0.05) (Fig. 1d). The difference between these trends 
occurred mainly in wildfire-affected L-VOD pixels, where the LAI values were relatively constant while 
AGClive decreased (Fig. 1c,e).  

Net AGClive changes showed a low spatial agreement with LAI changes at 25 km resolution: net 
changes were of the same sign over 54% of the grid cells, but 37% had negative net AGClive changes 
and positive changes in LAI (Fig. 2b,d). Considering the spatial trends in AGClive stocks and LAI, 48% of 
the areas with negative AGClive trends (Supplementary Fig. 8b) showed an LAI-derived greening trend 
(Supplementary Fig. 8d). Specifically, 80% of the areas with a negative AGClive trend and an LAI 
greening trend matched the fire-disturbed areas (Fig. 2f). These results suggest that in fire-affected 
areas, LAI recovers more quickly than fire-related C losses. 

To illustrate the differences between post-fire AGClive and LAI trajectories, we selected one L-
VOD pixel (Fig. 3) that experienced 26% of forest loss during the 2010–2019 period and 53% of 
burning in 2012 (Fig. 3c). AGClive and LAI both declined sharply in 2012, and AGClive did not recover in 
subsequent years, in line with the slow recovery of AGClive after fires in boreal forests 43,44, aggravated 
by the 2015–2017 subsequent drought. As illustrated by 30 m Landsat images, the obvious forest 
losses in 2016 (Fig. 3e) against a dense forest (Fig. 3d) in 2011 can be observed in the central region 
of the 25 km grid cell. By contrast, LAI showed a rapid recovery to pre-fire levels in 2018, only six 
years after the 2012 massive burning event. 
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Fig. 3. Interannual variation of AGClive, LAI and hydrological indices for a single 25 km grid cell. 

a–c, AGClive and LAI (a), soil moisture anomalies and SPEI (b) and forest loss and burn area fraction (c) 
of the 25 km grid cell (central latitude, 58.7° N; longitude, 96.4° W). d,e, Landsat/Copernicus images 
(at a spatial resolution of 30 m) acquired in 2011 (d) and 2016 (e) within the 25 km grid cell (SMOS 
pixel). 

 
We then further generalized the study of post-fire AGClive and LAI recovery for a larger area by 

calculating AGClive and LAI changes across all pixels that burned by more than 10% during the study 
period and burned only once, to avoid confounding effects of multiple fires (Method). This selection 
returned 184 pixels covering 0.11 million km2, related mainly to wildfires in 2012 (31.9%) and 2016 
(17.9%), the majority in larch-dominated forests (76.2%) (Supplementary Fig. 9). Both AGClive and LAI 
decreased after wildfires, and the differences between pre- and post-fire values were significantly 
correlated with the burned fraction (P < 0.01, Fig. 4a), which can also be observed from different tree 
taxa (for example, pine (Fig. 4b) and larch (Fig. 4c)). 
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Fig. 4. The responses of AGClive and LAI to wildfire. a–c, The AGClive and LAI losses (%) caused by fire 
relative to pre-fire AGClive and LAI for the whole of Siberia (n = 184) (a), pine (n = 14) (b) and larch (n = 
144) (c). Error bars are one standard deviation from the mean. d–f, The AGClive and LAI recoveries (%) 
for the whole of Siberia (d), pine (e) and larch (f). g–i, Recovery of AGClive and LAI in response to 
wildfire for the pixels with a burned fraction of 10–40% (n = 154) (g), 40–70% (n = 28) (h) and >70% 
(n = 2) (i). The centre lines and the shading ranges represent the mean values and one standard 
deviation, respectively. 

 
Both AGClive and LAI continued to decrease in the first post-fire year (Fig. 4d); thereafter, a 

quick recovery was observed for LAI while AGClive continued to decrease, reaching its minimum five 
to six years after the fire event. Seven years after wildfires, LAI had fully recovered to its pre-fire 
value while AGClive was ~11% below its pre-fire level. Similar evidence was observed from pine (Fig. 
4e) and larch forests (Fig. 4f) under a series of burned fractions (Fig. 4g–i). These results show that 
post-fire AGClive recovery is much slower than LAI recovery, explaining the decoupling of LAI and 
AGClive trends over Siberian forests during the recent ten years. 
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Implications for boreal carbon balance 

Boreal forests of Siberia were estimated to be a carbon sink over the past decades from 
inventory data analysis and short-wave microwave data, which are prone to saturate with biomass 
6,13,37. Our observations for the recent decade show that the carbon balance of this region is close to 
neutral. Comparison of our estimates (2010–2019) with the synthesis of forest inventory data (1990–
2007) 37 suggests that the relative contribution of live biomass and dead wood to the net C sink has 
changed in the recent decade. Both live biomass (+0.07 PgC yr−1) and dead wood (+0.10 PgC yr−1) 
were inferred to be C sinks during 2000–2007 in ref. 37, but our results for 2010–2019 revealed that 
the live biomass pool decreases (−0.08 PgC yr−1). On the contrary, carbon stocks in CWD made a 
major contribution to the total C sink (+0.10 PgC yr−1), in line with ref. 37 (+0.10 PgC yr−1 for 2000–
2007). 

We attributed the widespread AGClive losses to drought and wildfire events, supporting 
previous findings that heatwaves together with wildfire events have affected the AGC balance of 
Siberian forests 27. Net negative AGClive changes revealed by L-VOD are confirmed by another high-
frequency VOD product (Methods and Supplementary Figs. 10 and 11) and are supported by a recent 
carbon estimate using optical datasets and high-frequency VOD45 (Supplementary Fig. 12). Our 
results are also consistent with simulations of vegetation models that projected net changes in 
AGClive of −0.05−0.05

−0.05 PgC yr−1 for different greenhouse gas emission scenarios between 2000 and 
2025 46. Note that our estimated carbon sources are larger than those of Xu et al. 45 over the whole 
study region (−0.08 versus −0.03 PgC yr−1 for ref. 45): West Siberia (+0.01 versus +0.01 PgC yr−1 for ref. 
45), East Siberia (−0.03 versus +0.005 PgC yr−1), Far East (−0.05 versus −0.04 PgC yr−1). This difference 
was observed mainly over the fire-disturbed regions of East Siberia, where Xu et al. 45 found a carbon 
sink in contrast to our results of carbon losses. This could be attributed partly to the fact that the 
optical data used in the estimates of Xu et al. 45 could not detect the carbon losses over fire-disturbed 
regions, supported by our results showing that no simple relationship exists between greening as 
measured from optical vegetation indices and changes in AGClive. 

Boreal greening expresses an increase in vegetation productivity and an associated gross land 
carbon uptake as inferred from satellite records 6,8 and forest inventories 37. Our results highlight the 
lagged recovery of AGClive compared with photosynthetic activity 47,48 in Siberian forests due to their 
different responses to wildfire events, implying that AGClive losses induced by wildfire events can be 
synchronous with post-fire greening. This complex recovery pathway of Siberian forests exemplifies 
that caution should be taken when interpreting greening trends as carbon sinks without the use of in 
situ data to corroborate conclusions. 

Our estimates of gross loss of AGClive (−0.16−0.18
−0.14 PgC yr−1) resulting from forest loss for 2010–

2019 are higher than the 20 yr (2000–2019) average gross loss of −0.09 PgC yr−1 reported by Harris et 
al. 49, suggesting that the flux from gross forest loss increased in the recent ten years. This can be 
attributed mainly to the 111% increase of forest loss in 2010–2019 (2.7 × 105 km2) compared with 
2000–2009 (1.3 × 105 km2) as detected by the dataset of Hansen et al. 33, albeit with some caution 
when comparing the forest-loss dataset of ref. 33 between different periods. For the 2010 decade, we 
estimated a live gross carbon loss four times higher than that estimated by Harris et al. 49 over 2000–
2019 (−0.37−0.39

−0.36 PgC yr−1 versus −0.09 PgC yr−1). The estimates of Harris et al. 49 do not distinguish 
areas of complete canopy removal from partial disturbances and may thus neglect the degradation-
induced carbon losses (for example, from selective logging, mortality associated with droughts, 
insect outbreaks or understory fires). Similarly, gross AGClive gains as estimated by L-VOD for the 2010 
decade were higher than those estimated by Harris et al. 49 (+0.29+0.29

+0.31 PgC yr−1 versus +0.24 PgC 
yr−1). Harris et al. 49 reported forest gains only as transition probabilities from non-forest to forest 
across the period. Notably, AGClive gains reported by Harris et al. 49 do not include the post-
disturbance AGClive recovery and AGClive gains resulting from vegetation dynamics (for example, the 
encroachment of trees and shrubs into grasslands or increases in tree density in undisturbed forests). 

Considering that full AGClive recovery during post-disturbance succession may require several 
decades as found at site scale 50, at a regional scale 51 and at a continental scale from our results, 
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attention should be paid to preventing disturbances and enhancing the potential for boreal forest 
restoration and reforestation. Implementing timely management strategies with a strong focus on 
preventing natural disturbance and enhancing forest resilience is thus pivotal as a means to preserve 
the boreal regions as a durable carbon sink. 

 

Methods 

Siberian forest regions 

Our study region was located in the Siberian forest regions, consisting of West Siberia 
(49.67°–66.14° N, 59.38°–89.82° E), East Siberia (49.08°–67.12° N, 79.09°–121.82° E) and Far 
East (43.13°–69.66° N, 105.74°–179.89° E) regions (the three geographic regions refer to ref. 
52). To identify tree cover and canopy height, we used the MOD44B v.6 Vegetation 
Continuous Fields yearly product in 2010 53 and the Geoscience Laser Altimeter System 
forest canopy height product in 2005 54, respectively, which were aggregated to 25 km 
spatial resolution to match the spatial resolution of the Soil Moisture and Ocean Salinity 
(SMOS) data by averaging pixels. To identify land cover, we also used the 500 m moderate-
resolution imaging spectroradiometer (MODIS) land-cover map provided by Broxton et al. 55, 
which was aggregated to 25 km resolution by dominant class within each 25 km grid cell. 
‘Dominant’ refers to the class that has the largest number of 500 m native-resolution pixels 
within each 25 km grid cell. The forest regions (Fig. 1a) were defined as tree cover > 15% and 
canopy height > 5 m using the aggregated 25 km Vegetation Continuous Fields and forest 
canopy height products, respectively. We masked non-forest SMOS pixels dominated by 
‘closed shrublands’, ‘open shrublands’, ‘woody savannahs’, ‘savannahs’, ‘urban and built-up’, 
‘snow and ice’, ‘water’, ‘grasslands’ and ‘barren or sparsely vegetated’ using the aggregated 
25 km MODIS land-cover map. Pixels dominated by the ‘wetland’ land cover were also 
masked as L-VOD is underestimated when the observation footprint contains substantial 
open water bodies. Further, accounting for the availability of AGClive derived from L-VOD, our 
study area in Siberia covers ~4.0 × 106 km2 (Fig. 1a). Our analysis focused on AGClive and CWD 
and did not assess changes in other carbon stocks (for example, litter or soil organic matter). 

Benchmark maps of AGClive density 

Fan et al. 32 used four pantropical static AGClive benchmark maps for calibrating the L-
VOD/AGClive relationship. In this Article, we used three of the most recent global static 
AGClive benchmark maps (Supplementary Fig. 13a–c) to calibrate L-VOD (Supplementary Fig. 
13d), including the global maps provided by Saatchi et al. 56, http://cci.esa.int/biomass and 
Santoro et al. 57, hereafter referred to as the ‘Saatchi’, ‘CCI’ and ‘GlobBiomass’ maps, 
respectively. The Saatchi map used in the present study is an updated version that 
represents AGClive circa 2015 58. The CCI and GlobBiomass maps used in the present study 
correspond to the years 2017 and 2010, respectively. The original units of above-ground 
biomass density (Mg ha−1) were converted to AGClive density (MgC ha−1) by multiplying the 
original values by a factor of 0.5 (ref. 59). All AGClive maps were aggregated to 25 km spatial 
resolution to match the spatial resolution of the SMOS data by averaging AGClive pixels 
within the SMOS grid cells. 

SMOS-IC soil moisture and L-VOD 

Several studies have combined datasets from both forest inventory plots and remote 
sensing to generate spatial maps of forest above-ground biomass estimates at multi-year 
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time frames 56,60,61 based on canopy height estimates from the Geoscience Laser Altimeter 
System lidar (light detection and ranging) sampling strips and vegetation indices from optical 
images (MODIS). However, these global maps are generally static (available for one or a few 
years only). The recently developed L-VOD AGClive dataset is one of the major satellite-based 
data sources for adding a temporal dynamic to these maps that allows monitoring 
interannual changes of AGClive at the global scale.  

The L-VOD AGClive data were derived using the L-VOD product, which is developed 
using the SMOS-IC algorithm in version 2 62,63 designed by INRAE (Institut National de la 
Recherche Agronomique) on the basis of the SMOS satellite images. As in ref. 32, the root 
mean square error (RMSE) between the measured and simulated brightness temperatures 
(referred to as RMSE-TB) associated with the SMOS-IC product was used to filter out 
observations affected by radio frequency interference, which perturbs the natural 
microwave emission from Earth’s surface measured by passive microwave systems. We 
excluded daily observations, influenced by radio frequency interference effects, for which 
RMSE-TB was larger than 6 K. Monthly L-VOD and soil moisture from June to September 
were produced as the medians of all high-quality ascending and descending L-VOD retrievals 
with more than four valid observations per month. Robust estimates of annual L-VOD and 
soil moisture were then obtained as the averages of the monthly products (June–
September); pixels that have at least one missing month within one year (June–September) 
were filtered out in this study. The annual changes in precipitation and SMOS soil moisture 
are quite consistent over the West Siberia, East Siberia and Far East regions (Supplementary 
Fig. 2), adding confidence in the quality of the simultaneous retrievals of SM and L-VOD from 
the SMOS observations over Siberia. 

L-VOD-retrieved AGClive 

The method used here to compute annual AGClive from yearly L-VOD is the same as the 
one used in ref. 32, where it is described in detail. AGClive was computed from L-VOD on the 
basis of an empirical calibration function (equation (1)) using gridded reference AGClive 
datasets: 

𝐴𝐴𝐴𝐴𝐴𝐴𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 = 𝑎𝑎 × 𝑉𝑉𝑉𝑉𝑉𝑉𝑏𝑏     (1) 

where a and b are two best-fit parameters (Supplementary Table 1) and VOD is the yearly L-
VOD data. As in ref. 32, we used the year 2011 for calibrating equation (1) (the year used for 
calibration proved to have very little impact on the calibrated curves). An illustration of the 
calibrated relationships between L-VOD and AGClive based on the GlobBiomass, Saatchi and 
CCI maps is given in Supplementary Fig. 14. We converted the yearly L-VOD map into maps 
of yearly AGClive density (MgC ha−1) for 2010–2019 using equation (1). Regional AGClive stocks 
were obtained by multiplying the L-VOD-derived AGClive density by the area of the 
corresponding L-VOD pixels. 

The AGClive benchmark maps contain uncertainties and biases, and no single map can 
be considered fully reliable 64,65. The L-VOD map matched different benchmark maps of 
above-ground living carbon in the study region (Supplementary Fig. 14). We used all the 
different maps to fit equation (1) for the global scale and for Siberia separately 
(Supplementary Fig. 14). Six calibrations of equation (1) were thereby obtained 
(Supplementary Table 1). Note that the calibrated relationships between L-VOD and the 
benchmark maps were consistent both at the global scale and for Siberia alone 
(Supplementary Fig. 14), showing that the statistical relationship between L-VOD and 
vegetation carbon stocks is robust over different regions of interest. Moreover, the general 
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relationship between the reference map and the annual L-VOD map was stable between 
individual years. In addition, the net AGClive changes from 2010 to 2019 estimated by the 
relationship calibrated on the basis of the live AGC benchmark maps and annual L-VOD were 
very similar between individual years (Supplementary Fig. 15). 

We used all the six calibrations to create six maps of AGClive stocks. We used the 
median of these six maps to calculate yearly AG AGClive Clive maps during 2010–2019. The 
minima and maxima were also reported as they provide estimates of the uncertainty 
associated with the retrieved AGClive estimates used in this study and that relates to 
systematic errors in the reference biomass maps 32.  

Fan et al. 32 have done an extensive analysis of the uncertainties associated with 
AGClive and AGClive changes, including (1) internal uncertainties associated with the L-VOD 
derived AGClive estimates and (2) external uncertainties associated with the errors in the 
reference biomass maps used to calibrate L-VOD from equation (1). Fan et al. 32 showed that 
external uncertainties were strongly dominant over the internal uncertainties and that 
combining both of them, the total relative uncertainties associated with AGClive and the 
AGClive changes are on the order of 20–30%. 

At large scale (global and Siberia regions), the cross-validation results showed high 
correlation (r) values and low RMSE values in the AGClive estimates by comparing the six 
AGClive estimates with the respective reference maps (Supplementary Table 2). This suggests 
that there is no obvious regional bias between the reference datasets and the AGClive 
estimates for the three continents. Moreover, the 95% bootstrap confidence interval of the 
AGCtot estimates retrieved using each set of calibrated parameters is small, indicating that 
the internal uncertainties caused by sampling errors are small (Supplementary Table 2). 

AGCtot  

Here, ignoring soil, branch and fine litter changes, AGCtot is defined as the sum of 
AGClive estimated by L-VOD and dead AGC (for example, total CWDC (CWDCtot)), accounting 
for the net change of live and dead AGC in terrestrial ecosystems at temporal and spatial 
scales: 

𝐴𝐴𝐴𝐴𝐴𝐴𝑡𝑡𝑡𝑡𝑡𝑡  =  𝐴𝐴𝐴𝐴𝐴𝐴𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙  +  𝐴𝐴𝐶𝐶𝑉𝑉𝐴𝐴𝑡𝑡𝑡𝑡𝑡𝑡    (2) 

Over Siberian forests, CWDCtot is driven mainly by the background mortality and forest 
disturbances (for example, wildfire, wind storm and drought). The carbon loss from CWDCtot was 
determined using decomposition and consumption by fires 14. This decomposition rate is low because 
of the low temperature and short growing season 66 relative to tropical forests. Stand-replacing fire is 
the main cause of natural tree die-off in Siberia 16,67, increasing the carbon stock of CWD (including 
dead standing and fallen trees) but meanwhile consuming CWDC. More specifically, the carbon loss 
from CWDCtot was assumed to be induced by decomposition and combustion by stand-replacing fire. 
Here, the CWDCtot fuels were from (1) mortality of trees caused by stand-replacing fire (CWDstand-

replacing), (2) the initial accumulation for years before 2010 (CWDinitial) and (3) the mortality of trees 
caused by annual background mortality (CWDbackgroundmortality). 

Thus, CWDCtot was calculated as: 

𝐴𝐴𝐶𝐶𝑉𝑉𝐴𝐴𝑡𝑡𝑡𝑡𝑡𝑡  =  𝐴𝐴𝐶𝐶𝑉𝑉𝑠𝑠𝑡𝑡𝑠𝑠𝑠𝑠𝑠𝑠−𝑟𝑟𝑙𝑙𝑟𝑟𝑙𝑙𝑠𝑠𝑟𝑟𝑙𝑙𝑠𝑠𝑟𝑟  +  𝐴𝐴𝐶𝐶𝑉𝑉𝑙𝑙𝑠𝑠𝑙𝑙𝑡𝑡𝑙𝑙𝑠𝑠𝑙𝑙  + 𝐴𝐴𝐶𝐶𝑉𝑉𝑏𝑏𝑠𝑠𝑟𝑟𝑏𝑏𝑟𝑟𝑟𝑟𝑡𝑡𝑏𝑏𝑠𝑠𝑠𝑠𝑏𝑏𝑡𝑡𝑟𝑟𝑡𝑡𝑠𝑠𝑙𝑙𝑙𝑙𝑡𝑡𝑏𝑏  (3) 

The detailed calculation of CWDCtot is given in Supplementary Text. 
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Vegetation and climate variables 

Annual burned fraction. The MOD14A2 active fire product (MODIS/Terra Thermal Anomalies 
and Fire 8-Day L3 Global 1 km v.006) is an eight-day composite containing the maximum value of the 
individual pixel classes that are in each 1 km grid cell over the eight-day period 34 (the newer 6.1 
version is available from https://lpdaac.usgs.gov/products/mod14a2v006/). Each MOD14A2 file 
consists of two layers (a fire mask and associated quality information). We first identified the good-
quality observations (nominal and high confidence) of MOD14A2 active fire, then we generated 
annual active fire maps including all pixels where active fire occurred in a year (each 1 km pixel was 
assumed to be completely burned) during 2010–2019. Annual burned fraction was calculated at the 
resolution of SMOS as the proportion of the summed areas of active fire (assuming that each 1 km 
pixel was completely burned) within each 25 km grid cell. 

MODIS LAI product. We used the MODIS LAI product (the MCD15A2H, v.6, level 4), which is an 
eight-day composite dataset with 500 m pixel size 68. High-quality LAI data from June to September 
during 2010–2019 were aggregated to an annual composite at 25 km spatial resolution by averaging 
from their original resolution to match the SMOS grid. 

Forest loss. We used the ‘yearloss’ forest area loss map33 to calculate forest-loss rates. Forest 
loss was defined as a stand-replacement disturbance or a change from a forest to a non-forest state. 
Each 30 m pixel in the yearloss Landsat data was labelled with a loss year representing the loss of 
forest (defined as tree higher than 5 m) cover detected primarily during 2000–2019. Here, forest 
percentage loss rates during the study period 2010–2019 were calculated at the resolution of SMOS 
grid as the proportion of the summed areas of forest loss (detected by the yearloss map) within each 
SMOS grid cell (~25 km). Note that forest-loss product 33 represents temporal or permanent loss of 
tree cover after disturbances (wildfire or clearcutting). 

Stand-replacing wildfires product. This product from van Wees et al. 69 estimates areas where 
forest loss overlaps with fire detection (burn area or active fires) at a spatial resolution of 500 m. Its 
definition of wildfire-related forest loss includes any sequence between fire and forest loss, including 
simultaneous occurrence of fire and forest loss (for example, wildfire), fire followed by forest loss 
(for example, tree mortality after fire damage) and forest loss followed by fire (for example, burning 
of slash after felling, which mostly happens in the same year as the felling). Here, annual stand-
replacing fire fraction was calculated at the resolution of SMOS as the proportion of the summed 
areas of stand-replacing fire within each SMOS grid cell (~25 km).  

SPEI-12. SPEI-12 refers to the droughts at a 12-month timescale, provided from the global SPEI 
database (https://spei.csic.es/) 70. SPEI is amulti-scalar index frequently used to quantify drought and 
is based on a climate–water balance. As opposed to some existing indices of climatological drought, 
SPEI incorporates multiple climatological factors, including precipitation and temperature, which is 
imperative for assessing the influence of climate change on drought. 

Tree species map. Tree species map 71 has a spatial resolution of 200 m. The product was 
aggregated to 25 km resolution by dominant species within each SMOS grid cell. The dominant 
species is the species that has the largest number of 200 m native-resolution pixels within each 
SMOS grid cell. The tree species over the study region included pine (14%), spruce (2%), fir (2%), 
larch (63%), juniper (6%), oak (1%), birch (11%) and maple (1%). In addition, the tree species used for 
the calculation of AGClive/LAI recovery are birch, maple, larch, spruce and pine (Supplementary Fig. 
9).  

VODLPDR. VODLPDR at a high-frequency band (X-band) is provided by the global land parameter 
data record (LPDR) 72, which is sensitive to the canopy biomass water content and saturates in 
densely vegetated areas faster than low-frequency L-VOD but much less than optical indices 73. High-
quality VODLPDR from June to September during 2010–2019 was used to calculate the yearly VODLPDR. 

Greening trend was evaluated on the basis of the Theil–Sen test, which is used to determine 
the trend direction, while the Mann–Kendall test was used to assess the statistical significance of the 
trends, regarding trends as significant when P < 0.05. 
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Net gains/losses in AGC. Net changes in AGC were calculated as the difference in AGC 
between two years. For example, net changes in AGC during 2010–2019 were calculated as the AGC 
in 2019 minus that in 2010. A positive net AGC change indicates net gain (sink) in AGC, while a 
negative net AGC change indicates net carbon losses (source).  

Gross changes in AGClive were calculated by cumulating positive/negative changes in AGClive for 
consecutive years from 2010 to 2019, respectively. 

Gross AGClive loss caused by forest loss and forest degradation. The gross AGClive loss (Gross 
AGC loss) in a grid cell is controlled by forest area loss (Gross AGC lossforest loss), forest degradation 
(Gross AGC lossdegradation) and other mechanisms (Gross AGC lossothers) such as non-forest biomass 
decreases (equation (4)). We conducted a simple estimate of forest loss versus degradation within 
each SMOS grid cell using the method proposed by Harris et al. 40 and Qin et al. 41. First we calculated 
the gross AGClive loss in each 25 km grid cell. Second, we multiplied the gross forest area loss 
(calculated using Hansen et al. 33) during 2011–2019 by the AGClive density in 2010 to estimate 
separately the contribution from forest loss to gross AGClive loss (equation (5)). The difference 
between gross AGClive loss and this forest loss (Gross AGC lossforest loss) contribution is attributed to 
degradation (equation (6)) 

𝐴𝐴𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺 𝐴𝐴𝐴𝐴𝐴𝐴 𝑙𝑙𝐺𝐺𝐺𝐺𝐺𝐺𝑓𝑓𝑡𝑡𝑟𝑟𝑙𝑙𝑠𝑠𝑡𝑡 𝑙𝑙𝑡𝑡𝑠𝑠𝑠𝑠 ≅ ∑(𝐴𝐴𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺 𝑓𝑓𝐺𝐺𝐺𝐺𝑓𝑓𝐺𝐺𝑓𝑓 𝑎𝑎𝐺𝐺𝑓𝑓𝑎𝑎 𝑙𝑙𝐺𝐺𝐺𝐺𝐺𝐺) × 𝐴𝐴𝐴𝐴𝐴𝐴𝑠𝑠𝑙𝑙𝑠𝑠𝑠𝑠𝑙𝑙𝑡𝑡𝑏𝑏   (5) 

𝐴𝐴𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺 𝐴𝐴𝐴𝐴𝐴𝐴 𝑙𝑙𝐺𝐺𝐺𝐺𝐺𝐺𝑠𝑠𝑙𝑙𝑟𝑟𝑟𝑟𝑠𝑠𝑠𝑠𝑠𝑠𝑡𝑡𝑙𝑙𝑡𝑡𝑠𝑠 ≅  𝐴𝐴𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺 𝐴𝐴𝐴𝐴𝐴𝐴 𝑙𝑙𝐺𝐺𝐺𝐺𝐺𝐺 − 𝐴𝐴𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺 𝐴𝐴𝐴𝐴𝐴𝐴 𝑙𝑙𝐺𝐺𝐺𝐺𝐺𝐺𝑓𝑓𝑡𝑡𝑟𝑟𝑙𝑙𝑠𝑠𝑡𝑡 𝑙𝑙𝑡𝑡𝑠𝑠𝑠𝑠   (6) 

The gross AGClive loss by forest area loss (Gross AGC lossforest loss) was further separated into 
contributions of stand-replacing wildfires (Gross AGC lossstand-replacing fire) and other factors (for 
example, clearcutting and severe drought that suppress forests) to AGClive losses. Stand-replacing fire 
areas during the study period 2011–2019 were calculated as the proportion of the areas of stand-
replacing fire within each SMOS grid cell (~25 km). Second, we multiplied the AGClive loss from stand-
replacing fires leading to forest loss: 

𝐴𝐴𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺 𝐴𝐴𝐴𝐴𝐴𝐴 𝑙𝑙𝐺𝐺𝐺𝐺𝐺𝐺𝑠𝑠𝑡𝑡𝑠𝑠𝑠𝑠𝑠𝑠 − 𝐺𝐺𝑓𝑓𝑟𝑟𝑙𝑙𝑎𝑎𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 𝑓𝑓𝑟𝑟𝐺𝐺𝑓𝑓 ≅ ∑(𝐴𝐴𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺 𝑎𝑎𝐺𝐺𝑓𝑓𝑎𝑎𝐺𝐺𝑠𝑠𝑡𝑡𝑠𝑠𝑠𝑠𝑠𝑠−𝑟𝑟𝑙𝑙𝑟𝑟𝑙𝑙𝑠𝑠𝑟𝑟𝑙𝑙𝑠𝑠𝑟𝑟 𝑓𝑓𝑙𝑙𝑟𝑟𝑙𝑙) × 𝐴𝐴𝐴𝐴𝐴𝐴𝑠𝑠𝑙𝑙𝑠𝑠𝑠𝑠𝑙𝑙𝑡𝑡𝑏𝑏  (7) 

Losses of AGClive and LAI resulting from the immediate effect of fire in selected pixels. 
Wildfire-related losses of AGClive and LAI were investigated over selected burned pixels. Fire 
recurrence affects community development and landscape diversity. Post-wildfire dynamics depend 
on the interval of wildfire recurrence, and forests affected by recurrent wildfires in a short period will 
have a different behaviour from those affected by a single wildfire 74. In this study, we focused on 
selected burned pixels that were burned only once. Selected pixels were determined from two 
conditions: (1) burned only once during 2010–2019 with the burned area fraction larger than 10% in 
the fire year and (2) burned area fraction less than 1% in the unburned years during 2006–2019 using 
the MOD14A2 product. 

Taking AGClive as an example, forest AGClive losses (%) were calculated by the maximum pre- 
and post-fire AGClive difference (year before fire minus fire year or fire year plus 1), relative to pre-fire 
AGClive (see equation (8)). The timing of the fire influenced which year was selected: fires early in the 
season had the largest impact in the year of the fire, whereas late-season fires had the largest impact 
during the following year. One hundred eighty-four pixels were selected following the defined 
selection criteria as: 

𝐴𝐴𝐴𝐴𝐴𝐴𝑙𝑙𝑡𝑡𝑠𝑠𝑠𝑠 (%) = 𝑏𝑏𝑠𝑠𝑚𝑚(𝐴𝐴𝐴𝐴𝐴𝐴𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 − 𝐴𝐴𝐴𝐴𝐴𝐴𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝,   𝐴𝐴𝐴𝐴𝐴𝐴𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 − 𝐴𝐴𝐴𝐴𝐴𝐴𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝+1)
𝐴𝐴𝐴𝐴𝐴𝐴𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝

     (8) 

where AGCloss is the live AGC losses resulting from the immediate effect of fire. AGCprefire, AGCfire and 
AGCfire+1 are the AGClive stocks in the one year before wildfire, the wildfire year and the one year after 
wildfire, respectively. LAI forest losses were also computed from equation (8) by substituting ‘AGC’ 
with ‘LAI’. 

AGClive and LAI recovery in the post-wildfire period. Post-fire AGClive and LAI recovery in the 
Siberian forests were studied by analysing the selected burned pixels. The AGClive time series of these 
selected pixels were first shifted to align the fire years of all fires considered (Supplementary Fig. 16). 
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‘Relative year zero’ is the fire year, negative values are pre-fire years (for example, ‘−1’ year means 
one year before fire) and positive values are post-fire years (for example, ‘2’ year means the second 
year after fire). Then, at the ith year after fire, the recovery ratio (Recoveryi (%)) is calculated from 
pre-fire live AGC (AGC−1) and live AGC at ith year in the post-fire period (AGCi) using equation (9). 
Thus, the recovery ratio for each year was plotted in Fig. 4 in the main text as the AGClive recovery 
trajectory. Forest recovery trajectory was also estimated from LAI following the same method. 

𝑅𝑅𝑓𝑓𝑟𝑟𝐺𝐺𝑅𝑅𝑓𝑓𝐺𝐺𝑅𝑅𝑙𝑙 = 𝐴𝐴𝐴𝐴𝐴𝐴𝑝𝑝
𝐴𝐴𝐴𝐴𝐴𝐴−1

 × 100%,−1 ≤ 𝑟𝑟 ≤ 9     (9) 

Uncertainties associated with the vegetation indices The pixels with a burned fraction larger 
than 10% were selected to calculate the AGClive/LAI response to wildfire events. Although our results 
suggested that wildfire is the main reason for the divergent response between AGClive and LAI during 
2010–2019, the heatwave events that cause wildfires in the Siberian ecosystem also cause 
degradations due to water stress and mortality. So the AGClive/LAI changes that we computed within 
the selected pixels could be attributed to both climate (drought and heatwave) and fires. It is difficult 
to identify and separate the relative contributions of climate and fire in the AGClive/LAI changes due 
to the coarse spatial resolution (~25 km) of the L-VOD-derived AGClive. Similarly, due to this coarse 
spatial resolution, we failed to separate pixel-scale carbon gains and losses due to deforestation, 
regeneration, livestock pressure, conservation, fires and other events 73. A detailed description of the 
uncertainties associated with the AGClive product was summarized in ref. 32.  

LAI uncertainties include the limitations of data availability caused by the low temporal 
sampling frequency (a few days to a few weeks) of the MODIS data, which also introduces temporal 
scale-dependent effects that may be magnified in Arctic systems. 

For example, if, due to cloud or aerosol effects, most MODIS observations over one pixel are 
available in June for year Y and in September for year Y + 1, it is difficult to interpret the changes in 
LAI between years Y and Y + 1. Are these changes due to greening or disturbances or to natural 
phenological effects? In addition, the greening/browning trends of LAI can vary owing to a suite of 
intrinsic (for example, sensor design or quality flagging algorithms), extrinsic (for example, 
atmospheric conditions, sun angle or snow cover) and biological factors 28. 

Data availability 

L-VOD and soil moisture data from this study are freely available from the SMOS-IC website 
(https://ib.remote-sensing.inrae.fr/). AGCtot, AGClive and CWDC products are freely available from 
https://doi.org/10.11888/Terre.tpdc.272842. The Saatchi biomass map is available upon request 
from Dr. S. Saatchi (sasan.s.saatchi@jpl.nasa.gov). Tree species maps are available upon request 
from D. Schepaschenko (schepd@iiasa.ac.at) or from 
http://webarchive.iiasa.ac.at/Research/FOR/forest_cdrom/english/for_prod_en.html. Additional 
data used in the paper are publicly available, with their locations provided in the respective 
references. 
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