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Integration of climate impacts in policy analysis

Different approaches:

1.

Top-down economic assessments of climate
impacts, e.g. damage functions, SCC

Sectoral assessment of biophysical impacts: eg,
crop Yields and food production, power plant
capacity and cooling potential, energy poverty
due to heat

Multi-sectoral approach assessing
economic implications and feedbacks
across sectors: water, energy, land policy
analysis with Integrated Assessment Model
(MESSAGEix-GLOBIOM).
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Figure 2. Estimates of the Impact of Climate Change on the Global Economy
This figure shows a compilation of studies of the aggregate impacts or damages of
global warming for each level of temperature increase (dots are from Tol 2009).
The solid line is the estimate from the DICE-2013R model. The arrow is from the
[PCC (2007a). [impacts_survey.xlsx]



Multiple sectors and multiple policy objectives

Climate policy SDG measures
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Food Heathy (EAT-Lancet) diet, reduce food waste

Water Efficiency improvements, environmental flow
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2.6 W/m? target constraints, piped water access, wastewater
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Energy Maximized electrification, phase-out traditional bio,
cooling gap

Life on land Protected natural land (>30%)
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* Hydrology: Precipitation pattern/runoff,
groundwater intensity

* Crop Yield changes

* Renewable energy

* Cooling/heating demand

* Desalination potential

* Power plant cooling capacity

Based on: ISIMIP 2b (Frieler et al. 2017 ),Byers et al., 2018,

Gernaat et al., 2021 etc.)



Climate impacts considered

- Hydrology: Precipitation pattern/runoff,

groundwater intensity
(LPImL, ISIMIP2b )

 Crop Yield changes

Limitations & challenges:

(EPIC model, Jagermeyr et al., 2021) Understanding causalities in
- Renewable energy potential complex systems
(Gernaat et al., 2021 Nature Climate Change) Spatial and temporal scale
. Cooling/heating demand Uncertainty from different
(Mastrucci et al., 2021, Climatic Change) sources

- Power plant cooling capacity
(van Vliet et al., 2016, Nature Climate Change)




Climate Feedbacks: Electricity mix and CO, emissions

Change in electricity generation due to
climate feedbacks (avg 2030-2080)
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updates

Cooling access and energy requirements for adaptation
to heat stress in megacities

12 000 estimated annual
deaths from heat waves Alessio Mastrucci'© - Edward Byers'© . Shonali Pachauri'©® - Narasimha Rao®'( .

Bas van Ruijven'®

WHO, 2014

68% world population projected
to live in urban areas by 2050

UN-HABITAT, 2020

=g | %\‘ |1| v
8% people in hottest world regions - ‘\mul‘_&f‘ r“ |
possess air-conditioning (AC) Estimated co;)imggap ge

IEA, 2018
3.40 Billion people: .

~1 billion people living in slums Middle to high risk "

UN-HABITAT, 2018 (SeforALL, 2019, Chilling Prospects)

Photo: Alessio Mastrucci



Cooling gaps scenarios

Assess future cooling gaps and associated minimum energy requirements
for megacities in the global South.

2015 ‘ 2050 2015 ‘ 2050

Future scenarios:

e Socio-economics: SSP1-3 5
o Climate futures: 1.5°C, 2.0°C, 3.0°C
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Decent living energy thresholds
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- Floorspace : 10m2/cap (min 30m2/household)
- Comfort threshold: 26°C
- AC operation: 4 hours daily
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Cooling gaps in 2015 and in 2050 under SSP1-3 in different regions of
the global South. Mastrucci et al., 2021



Methods: MESSAGEix-Buildings framework

Climatic data

Climatic data: GDP projections Population U/R GDP projections
EWEMBI — Lange, CDD Building characteristics (archetypes)
2016 Operation schedules

Spatially gridded data Efficiency coefficients

CHILLED
Cooling energy

Population data:
Hoornweg & Pope,
2017
City-level projections

Slum development

AC access
model

ekl demand

GDP data: AC access Final energy demand AC/fans Slum population

Murakami & Need for AC (at least 5 days)
Yamagata, 2019

Spatially gridded data

by archetype

Aggregation

Gap calculation
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Cooling gaps in megacities

Degree days (1000 DD)

WRT 2015
= GDP and Degree-days: drivers of cooling
access and gaps -
= Demand generally higher in demand in SSP1 = -
(larger urban population) but larger gap in =~ = =
SSP3, especially in AFR and SAS regions
= Three city clusters: e .
- AFR and SAS (except India), MEA, PAS: gaps .. — .
increase in all scenarios
- SAS (India) changes in gaps strongly depend - o
on different SSPs
- Other cities: gaps decrease in all scenarios o -
a S BT e © °C
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Energy requirements

Universal AC access

= Most cities will experience increase in energy
requirements due to population growth and
temperature increase.

= Cities with higher cooling requirements are
mostly located in AFR and SAS.

= Different socio-economics will largely impact
energy requirements, especially in AFR and
SAS, and often to a larger extent than
different climate futures.
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Conclusions

Cooling gap will persist
in 2050, at least

215 (ssp1) to 364 (ssp3)
million people (in most
exposed megacities)

Limitations

-Uncertainty analysis

Energy requirements for
universal access to basic
cooling will be influenced
by socio-economics to a
larger extent than climate
futures
from 201 PJ/yr (SSP3) to

247 PJ/yr (SSP1) under a 2.0°C
scenario.

-Costs of cooling systems and interventions

-Behaviour and thermal comfort thresholds

-Urban heat island effect
12

Two city hotspot archetypes:

-Heat stress hotspots:

population growing faster than
income growth, with large cooling

gaps

-Cooling energy hotspots:
income growing rapidly, with stark
energy demand growth
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Climate Feedback: hydrology, runoff, groundwater

Large hydrological uncertainties
with pronounced regional
differences

Impacts on SDG 6 (water access)
& SDG 2 (sustainable food
production)

value (km3/yr.)

<R

Runoff data from LPJmL, ISIMIP2b (gfdl-esm2m, hadgem?2-es, ipsl-cm5a-Ir climate models)
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Climate Feedback: Crop yields

Maize Wheat
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Regional productivity time series for maize (e) and wheat (f) stratified for the four major Koeppen—Geiger climate
zones (temperature limited, temperate/humid, subtropical and tropical). From Jagermeyr et al., 2021, Nature Food

11: Crop yield change (%)
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Climate Feedback: AC cooling demand and gap

AC cooling demand and gap in 2050

Cooling demand is likely to increase. South Asia and Africa have large % of
population with not adequate cooling (Gap: unmet demand). Different
climate affects GMT and CDD

SDG-> interactions with SDG 7, energy access, higher energy
requirements for RCP 6.0

Climate Feedback: Desalination potential
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Desalination potential projections, global, SSP2 Desalination potential depends on governance capacity and water stress

km3fyear
[ [7%) e (%]
(=] (=] (=] =
(=] (] (] (=)
1

—

(=]

=
1

2020 2040 2060 2080

rcp 2p6 — Gp0 — no_climate

« Regression analysis: log_desal ~ log_gdp + gov + log_wsi + log_coast
« Increased desalination need/potential
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Climate Feedback: Hydropower potential

Some regions benefit, some regions show declining potential

SDG- Both benefits and trade-off with SDG 7 and SDG 13

Hydropower




Climate Feedback: Hydropower potential

Some regions benefit, some regions show declining potential

Adaptation—> expand hydro switch to other energy sources
SDG-> Both benefits and trade-off with SDG 7 and SDG 13

Hydropower global cost curve by climate scenario Climate Impact on hydropower capacity factor
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Climate Feedback: Thermal power plant cooling

Cooling capacity factor reductions from van Vliet et al. (2021) water availability and thermal pollution

Climate Impact on Thermal cooling capacity factor
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TWh/yr

Electricity generation mix and water supply (all sectors)

No climate change impacts or feedbacks

Electricity generation mix w/o climate feedback
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Climate Feedback results: Electricity generation mix

Climate impact in electricity generation
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