Introduction to the Nexus Solutions Tools and its real-World case studies

Adriano Vinca

International Institute for Applied Systems Analysis

Workshop on the introduction of Integrated Assessment Modelling and understanding the multi-sectoral policy insights September 22 - 23, 2022

Centre for Water Informatics & Technology, LUMS, Lahore

Overview

- Introduction to Nexus concept and models
- NEST:
 - \Rightarrow What is it? Methods, use, data
 - \Rightarrow How to access and use it
- New MESSAGEix-Nexus module, the new NEST
- Our way forward

Climate-Land (food)-Energy-Water Nexus

1. WHEN IS CLEW NEXUS RELEVANT?

2. CURRENT GAPS AND LIMITATIONS

Electricity (🛢) Fossil fuels

(

Bio-energy

3. RECOMMENDATIONS TO FOSTER THE USE OF NEXUS TOOLS

WEL nexus modelling and open-source

- Recent boom of new models or interlinkages of existing models.
 Different scales, model configurations (soft link-integrated)
 - Regional assessment, e.g. CLEWS
 - Global analysis, e.g. MESSAGE-GLOBIOM, GAMS

nexus interactions among sectors. Higher uncertainty, difficult to assess: not enough studies to allow comparison, or very different models, not always well documented

- Open-source: code, software, data, analysis results
- Clear advantages of modelling and capturing

Sectoral gap – Theme gap

In average good balance in sectoral components

Simple macro-economic assumptions. Lack of socioeconomic aspects: inequality, individual/corporate choices, governance Stakeholder engagement → empirical models, ABMs

Vinca et al., 2021 Frontiers in Environmental Science

5

NExus Solutions Tools (NEST)

University of Victoria

The core model

NExus Solutions Tools (NEST)

Distributed Hydrology

Community Water Model (CWatM)

(Burek et al., 2018)

Infrastructure Planning

MESSAGEix

(Huppmann et al., 2018)

+ limints are imposed based on information from hydrolocial model

* exogenous

^ crop residues can be transported as solid biomass or converted in ethanol, technolgies not represented here

Land system

* exogenous.

? total available area for agriculture based on historical data

Potential applications of the model for policy analysis

- Impacts of reduced resource availability and alternative allocation schemes
- Influence of technology-specific penetration targets on multi-sector development
- Quantification of investments required to meet future demands
- Identification of feasible transformation pathways for achieving socio-environmental objectives
- Effects of cooperative / non-cooperative strategies across countries

Input data

million m3 per day

Mapping infrastructure, potentials and policies

- Power generation and Reservoirs (existing and planned)
- Transmission and road networks
- Groundwater pumping capacity
- Wind, PV and hydropower potentials
- Assessment of demands Installed Hydropower Capacity

- Land use and production maps
- Indus water treaty allocations
- Urban water transfers (e.g., Karachi)
 - Irrigation technologies local data

Shaping scenarios

Business-as-usual (or Baseline) with calibrated population, water, energy and crop demand

Projections based on SSP2 database and RCP6.0 climate assumptions

> Research question: what are the costs and implications to achieve SDG in the region?

> Identify sectors, parameters, constraints that can be changed to model specific policies or changes that address the research question

	BAU	SDG
Energy	NDC implementation	NDCs + GHG targets for carbon neutrality in 2050
Water treatment/ sanitation	Projection of current rates with GDP growth	Increased access: i.e Urban sanitation access 95%
Water efficiency	No measures	Limits water withdrawals for agriculture
Environmental flows	No policy	Satisfy minimum requirements at Indus Delta
Land	Projected trend of flood irrigation use	Diverse irrigation possibilities and crop shifts

Model application

Comparing baseline with preliminary SDG 6 + 7 + 13 scenario

Average yearly cross-sectoral energy, water and biomass flows

Low carbon tech and wastewater distribution and treatment. Use of more efficient, but costly irrigation technologies. Higher land requirements Less water used in agriculture Much more energy required for pumping, treating, water infrastructure, power plants

Average yearly costs for the entire basin (2020-2050)

Importance of integrated framework

- More efficient solution
- **Cost effective** ۲
- Take into account ulletsynergies

SDG7 IND PAK 300 4 200 L 100 0 2050 2040 2020 2030 2040 2020 2030 2050 import wind

hydro

geothermal

multiple_SDG IND

solar rural gen. gas

nuclear

Sensitivity

baseline scenario, different SSPs, climate models and climate scenarios (RCP 2.6 and 6.0)

16

Water use:

Most noticeable differences among models and scenarios, rather than SSPs

Open-source tool

- CWaTM and MESSAGEix are open-source tools, accessible and well documented online (limitation on solvers)
- NEST has it's own documentation (Vinca et al., 2020, GMD) open Github repository, interactive scenario explorer
- Limitations: Availability vs accessibility/ user friendly. Data
- Different audience:

17

- \Rightarrow scientific: interest in data and model
- ⇒ policy makers: interested in interactive tools

Geoscientific Model Development

An interactive open-access journal of the European Geosciences Union

The Nexus Solutions Tool (NEST): An open platform for optimizing multi-scale energy-water-land system transformations

Adriano Vinca^[],², Simon Parkinson^{1,2}, Edward Byers^[], Peter Burek^[], Zarrar Khan³, Volker Krey^{1,4}, Fabio A. Diuana^{5,1}, Yaoping Wang¹, Ansir Ilyas⁶, Alexandre C. Köberle^{7,5}, Iain Staffell⁸, Stefan Pfenninger^[], Abubakr Muhammad⁶, Andrew Rowe², Roberto Schaeffer⁵, Narasimha D. Rao^[]^{10,1}, Yoshihide Wada^[]^{1,11}, Ned Djilali², and Keywan Riahi^[]^{1,12}

GitHub

https://github.com/iiasa/NEST

https://data.ene.iiasa.ac.at/nexus-basins/

http://vinca.shinyapps.io/indus_explorer

Access, download and run NEST

Prerequisites:

- GAMS with active license, R, (Rstudio recommended), download and install the *gdxrrw* R package from <u>here</u>
- Check paths: GAMS, R

- Download (or clone with Github) the folder from : <u>https://github.com/iiasa/NEST</u>
- 2. Unzip the folder
- 3. Open the R project and *multiple_scenario_new.r*
- 4. Define path: INDUS_IX_PATH (and restart Rstudio), update GAMS path in *basin_msggdx.r*)

5. RUN

	22	# Scenario names	
Ł	23	<pre>scens = c('baseline0', Scenario names</pre>	7
	24	'baseline',	
	25	'no_p1anned_hydro',	1
6	26	'baseline_coop',	'
	27	'no_hydro_EMI_res',	
	28	'SDG6') # no flood in HIST AGRECULTURE	
	29		
	30	# Data frame containing the various settings for each scenario	
	31	policy_settings.df = data.frame(scen_name = scens , stringsAsFactors = F) %>%	
	32	<pre>mutate(SSP = rep('SSP2', length(scens)),</pre>	
	33	climate_model = rep('en\$emble',]ength(scens)),POHCY OPTIONS	_
Г	34	climate_scenario = rep([rcp60], [ength(scens)),	
L	35	REDUCE_RUNOFF = rep(F, 'length(scens))',	
Г	36	$IND_TREAT = c(T, T, T, F, T, T),$	
L	37	$ENV_FLOWS = C(F, F, F, F, F, F, F),$	
Г	38	SDG6 = C(F, F, F, F, F, T), # SDG6	
L	39	EMISS = C(F, F, F, F, T, F), # GhG Emission	_
	40	SDG7 = C(F, F, F, F, F, F), # SDG7: solar/wind targe	t
	41	$GROUNDWAT = c(F, T, T, T, T, T, T), \qquad \# groundwater extraction$	b
	42	$CONSTRAINT_LAND = c(F, F, F, F, F, F, F), \# constraint available lan$	C
	43	CHANGE_FOOD_DEMAND =c(F,F,F,F,F,F,F), # change food <u>demaind</u> , cust	C
	44	$FIX_ELEC_IMPORT = c(F, T, T, T, T, T, T),$	
	45	$SMART_IRR_WATER = c(F, F, F, F, F, F),$	
	46	$RAINFED_LAND = C(T, T, T, T, T, T, T),$	
	47	NOT_PLANNED_HYDRO = $c(F, F, T, F, T, F)$,	
	48	$FULL_COOPERATION = C(F, F, F, T, F, F),$	
	49	$HIST_AGRICULTURE = c(T, T, T, T, T, T, T)$	
	50) %>%	
	51	<pre>gather(key,value,2:length(.))</pre>	

*ISIMIP Output data from Global Hydrological Models - <u>https://www.isimip.org/</u> **GLOBIOM – Global Biospehere Management model - <u>https://iiasa.github.io/GLOBIOM/</u>

Approach: MESSAGEix-GLOBIOM IAM

Climate policy

SDG measures

- FoodHeathy (EAT-Lancet) diet, reduce food wasteWaterEfficiency improvements, environmental flow
constraints, piped water access, wastewater
treatment
- Energy Maximized electrification, phase-out traditional bio, cooling gap

Life on land Protected natural land (>30%)

Based on: Doelman et al. 2022, MESSAGE-ACCESS, Van Vuuren et al., 2019, Parkinson et al., 2019, Frank et al., 2021, Hasegawa et al., 2015, Pastor et al., 2019 Climate impacts RCP 2.6, 6.0

- Hydrology: Precipitation pattern/runoff, groundwater intensity
- Crop Yield changes
- Renewable energy
- Cooling/heating demand
- Desalination potential
- Power plant cooling capacity

<u>Based on:</u> ISIMIP 2b (Frieler et al. 2017),Byers et al., 2018, Gernaat et al., 2021 etc.)

2.6 W/m² target

NAVIGATE

Approach – Climate Impacts

Climate impact	Approach	IMAGE	MESSAGEix-GLOBIOM
Renewable supply (wind, PV, CSP, hydro, bioenergy)	Different costs supply curves based on 0.5x0.5 grid calculations [Gernaat, et al. 2021]	Yes	Yes, hydropower only
Heating / cooling demand	Impact via population weighted HDD, CDD based on 0.5 x 0.5 grid [Byers, et al. 2018]	Yes	Yes
Water availability	Runoff and groundwater recharge from LPJmL calculated at 0.5 x 0.5 grid (ISIMIP 2b) [Frieler et al., 2017]	Yes	Yes
Crop yields	IMAGE: Crop yield change due to climate change calculated in LPJmL on 0.5 x 0.5 grid [Schaphoff et al., 2018] MESSAGE-GLOBIOM: Crop yields from [Byers et al., 2018] are used in the GLOBIOM model.	Yes	Yes
Power plant cooling & desalination potential	Power plant cooling: van Vliet 2016 Desalination: specific analysis	No	yes

Scenario	Climate Forcing (W/m ²)	SDGs	Impacts
SSP2-noCF	6.0	No additional effort	Frozen to 2020
SSP2-CF	6.0	No additional effort	
SSP2-SDG-noCF	6.0	2 ZERO RINGER SUSSEE C GLANWATER AND SAMURATOR C GLANWATER C GLAN	Frozen to 2020
SSP2-SDG-CF	6.0	2 ZEO HINGER	
SSP2-26-SDG-CF	2.6 3100 81	2 HERRER SSSSS SSSS S	
SSP2-26-CF	2.6 3100 2	No additional effort	

SSP2 – Middle of the Road Socio Economic Pathway **CF – Climate Feedback**

Access MESSAGEix-Nexus (in progress)

GitHub code

MESSAGEix

https://github.com/iiasa/message ix

MESSAGEix-GLOBIOM model

https://github.com/iiasa/message-ix-models/

documentation

https://docs.messageix.org/en/stable/

https://docs.messageix.org/projects/models/ en/latest/

Upcoming work - Flexibility across scales

MESSAGEix (Global)

Downscale/Prototype (existing method)

MESSAGEix-Country

Updated country scale model with water representation as in global model

Add water-nexus to the country model

NEST Indus (Basin)

Improve existing model structure to be flexible to other regions in future

Bottom-up approach/sub-catchment level

MESSAGEix-Nexus (National/Basin)

The way forward

Summary of Key Challenges & Recommended Actions

Scope & Definition		Methodology		Application		Future Directions
Key Challenges		Key Challenges		Key Challenges		Key Challenges
Vague definition can be barrier to applications Restrictive definition could hamper developments	*	Lack of access to nexus data across sectors and scales is an issue Numerous methodologies without a comparison framework	:	Limited explicit nexus implementation in practice Lack of nexus metrics & policy instruments Lack of communication between science, policy & public	:	Inertia & existing siloed structure of institutions Tradeoffs between sectors & stakeholders Short terms of policymakers Lack of training & public awareness
Recommended Actions		Recommended Actions		Recommended Actions		Recommended Actions
Establish nexus community of practice Establish online platform to maintain, curate and share nexus knowledge Hold expert workshops to discuss scope & definition Maintain evolving nexus definitions & scope on nexus platform		Create open-source central nexus data repository with standardized data units Organize inter-model comparison with controlled case studies Online dashboard to communicate inter-model results to public		Maintain nexus success stories and failures in online platform to promote applications Establish clear nexus metrics and reporting mechanisms to be used by funders and governments as well as for impact and project assessments		Maintain list of short and long- term nexus challenges and goals with corresponding links to relevant actions, data, case studies and knowledge on the nexus platform

Kahn et al., 2022, Frontiers in Environmental Science

Main conclusions

- Integrated analysis gives more complete answers than single sector assessments
- Difficult to compare/validate results: More multi-model intercomparison is needed; Need for more shared common assumptions in modelling community (like SSP, SDG for water and land)
- Open-source, where to focus our efforts: code, data or interactive tools?
 - ⇒ Scientists: data, well documented code/software
 - ⇒ Policy makers: simplified interactive models, results visualization explorers

Thank you very much for your attention!

For more detail about the model, scenarios and results:

Geoscientific Model Development

nature

sustainability

An interactive open-access journal of the European Geosciences Union

The Nexus Solutions Tool (NEST): An open platform for optimizing multi-scale energy-water-land system transformations

Adriano Vinca^[]^{1,2}, Simon Parkinson^{1,2}, Edward Byers^[], Peter Burek^[], Zarrar Khan³, Volker Krey^{1,4}, Fabio A. Diuana^{5,1}, Yaoping Wang¹, Ansir Ilyas⁶, Alexandre C. Köberle^{7,5}, Iain Staffell⁸, Stefan Pfenninger^[]⁹, Abubakr Muhammad⁶, Andrew Rowe², Roberto Schaeffer⁵, Narasimha D. Rao^[]^{10,1}, Yoshihide Wada^[]^{1,11}, Ned Djilali², and Keywan Riahi^[]^{1,12}

https://doi.org/10.1038/s41893-020-00654-7

Check for updates

Adriano Vinca (IIASA) vinca@iiasa.ac.at

frontiers in Environmental Science REVIEW published: 02 July 2021 doi: 10.3389/fenvs.2021.691523

Transboundary cooperation a potential route to sustainable development in the Indus basin

Adriano Vinca ^{1,2}², Simon Parkinson ^{1,2}, Keywan Riahi ^{1,2,3}, Edward Byers ^{1,1}, Afreen Siddiqi^{4,5}, Abubakr Muhammad⁶, Ansir Ilyas⁶, Nithiyanandam Yogeswaran⁷, Barbara Willaarts ¹, Piotr Magnuszewski ¹, Muhammad Awais ^{1,2}, Andrew Rowe² and Ned Djilali ^{2,8}

Climate-Land-Energy-Water Nexus Models Across Scales: Progress, Gaps and Best Accessibility Practices

Adriano Vinca^{1,2*}, Keywan Riahi¹, Andrew Rowe² and Ned Djilali²

¹International Institute for Applied Systems Analysis, Laxenburg, Austria, ²Institute for Integrated Energy Systems, University of Victoria, Victoria, BC, Canada

Back up slides

Multiple objective scenario: water use

Mostly nuclear replacing fossil fuel, cooling technologies with low water consumption (e.g. air cooling)

