

Amazon forest responses to projected climate change, elevated CO₂ and biodiversity loss

Dr. Florian Hofhansl, Research Scholar, Biodiversity, Ecology, and Conservation (BEC) Research Group, Biodiversity and Natural Resources (BNR) Program, International Institute for Applied Systems Analysis (**IIASA**)

Annual Meeting of the British Ecological Society (BES), 18 - 21 December 2022, Edinburgh, Scotland

Response of tropical rainforest to global CO₂ emissions

Simulation by NASA's Goddard Space Flight Center

The simulation illustrates plumes of carbon dioxide in the atmosphere that swirl and shift as winds disperse the greenhouse gas away from its sources.

- <u>Spatial differences</u>: in CO₂ levels between the northern and southern hemispheres
- <u>Temporal oscillations</u> in global carbon dioxide concentrations as the metabolism of plants changes with the growing season
- <u>Diurnal fluctuations</u> reflect the photosynthetic assimilation during the day/night cycle

Tropical forests provide crucial ecosystem services

Tropical forests contribute greatly to the terrestrial C sink and provide multiple ecosystem services:

- 50% of global carbon cycle
- 30% of global water cycle
- 25% of fossil fuel emissions
- 20% of oxygen production

Tropical forest species diversity:

- 390 billion trees
- 16,000 tree sp.
- Biomass accumulates C worldwide but decreasing sink strength (1990-2007)

~0.4-0.6 / 2.3 Pg C yr⁻¹ (~25%)

Discrepancy between estimates:

- Field research
- Remote sensing
- Model simulations

2010

2000

2005

1985

1990

1995 Year

Reduction of C sink strength (ground observation)

 \rightarrow tree mortality rates and turnover time should be accounted for when projecting C sink strength $_$

Increase of C sink strength (remote sensing)

Satellite-based NPP estimate:

• Satellite observation + 3%

• CMIP5 (CO2 + clim.) + 8%

• CMIP5 (climate only) - 2%

IASA

CO2 fertilization effect on plant growth (models)

- Earth System Models predict increase in NPP (+ **63%**)
- Excluding CO₂ fertilization effect suggests reduction (- 6%)
- Large uncertainties in model representation of vegetation response to projected climate change!

FACE experiments – geographical distribution

Nitrogen and phosphorus constrain CO₂ fertilization

The strength of CO2 **fertilization** is primarily driven by nitrogen (N) in ~65% and by phosphorus (P) in ~25% of global vegetation, with N- or Plimitation modulated by mycorrhizal association, which would suggest that CO2 levels by 2100 may enhance plant biomass by **12 ± 3%**, equivalent to 59 ± 13 PgC

Belowground controls over aboveground processes

Fig. 4. Basin wide distributions of soils under forest vegetation. Map based on the SOTERLAC–ISRIC soil database (version 2.0, 1:5 million scale) and the vegetation database of Saatchi et al. (2008) for South America.

Evidence from the scientific literature suggests that:

- Soil <u>texture and chemistry</u> affect aboveground C storage via the productivity & turnover of plant species across the Amazon basin¹
- Basin-wide differences in <u>nutrient (P) availability</u> affect tree mortality and turnover across the Amazon basin¹
- <u>Nutrient availability</u> significantly affects C sink strength but large uncertainty²
- <u>Phosphorus availability</u> enhances forest growth but the response to fertilization is not consistent among species³
- Some species respond to fertilization others don't (effect of plant functional strategy?!)

¹Quesada et al. 2010, 2012; ²Wieder et al. 2015, Yang et al. 2016; ³Wright et al. 2018, 2019

AmazonFACE (Free-Air Carbon Enrichment) in Brazil

Response to eCO₂

What would we expect in response to elevated CO₂?

- CO2 fertilization might affect
- \rightarrow Increased plant productivity (i.e. GPP / NPP)
- Limited by nutrient availability
- \rightarrow Belowground allocation of root tissues to acquire resources
- Shift in C allocation likely affects
- \rightarrow Turnover and storage of carbon in the ecosystem (source / sink)

Hofhansl et al., (2016) Frontiers in Earth Science 4: 1540-9. doi:10.3389/feart.2016.00019

Response to elevated CO₂ hinges on nutrient limitation

11

 First model-ensemble including 6 CNP models;
 (ORCHIDEE, CABLE, CABLE-POP, G'DAY,
 ELM-CTC, ELM-ECA) LASA

- Differing in parameterization and thus <u>representation of</u> <u>P control on biomass growth</u> and nutrient dynamics
- reveals P feedbacks on biomass response to eCO2
- enhanced P acquisition
 belowground alleviates P
 limitation (ELM/ORCHIDEE)

Fleischer et al., (2019) Nat. Geosci. 12, 736–741. https://doi.org/10.1038/s41561-019-0404-9

Project plant functional diversity and ecosystem functions Conductivity as a 16 function of water 25 potential 50 E Moisture outflow 14 Moisture inflov 40 ght Evapotranspiratio Rainfall SLA class (mm² mg⁻¹) 20 30 hei 12 20 (Mg ha free 10 Forest cover 15 parametrize plant 10 hydraulic SLA-class 10 strategies 50 ŝ 5 40 height 30 20 10 1900 2100 +200 +400 +600 Year 15 10 **Quercus suber** с 20 50 0.8 40 Biomass (Mg ha⁻¹ WD-class⁻¹) 16 20 0.7 10 -WD class (g cm⁻³) 10 0.6 Ficus tikoua 12 0.5 SLA (mm² mg⁻¹) 0.4 10 12 20 · 15 -0.3 10 -**Eucalyptus pilularis** 0.5 0.6 0.7 0.8 0.2 WD (g cm⁻³) 1900 2100 +200 +400 +600 Year -6

¹² Zemp et al. (2017) Nature Communications 8: 14681; Sakschewski et al. (2016). Nature Climate Change, 1–6; Joshi et al. (2021) EGU General Assembly, EGU21-11142.

Plant-FATE – Plant FuntionAl Trait Evolution Model

Joshi, J., Stocker, B.D., Hofhansl, et al., (2022). Nature Plants 10.1038/s41477-022-01244-5.

For further questions please contact me via the QR code linked to my personal website: <u>https://tropicalbio.me/</u>

Dr. Florian Hofhansl, Research Scholar, Biodiversity, Ecology, and Conservation (BEC) Research Group, Biodiversity and Natural Resources (BNR) Program, International Institute for Applied Systems Analysis (**IIASA**)

Annual Meeting of the British Ecological Society (BES), 18 - 21 December 2022, Edinburgh, Scotland