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FOREWORD

Many large urban centers in developed nations have experienced population decline
and most have grown at rates lower than those of middle-sized and small settlements. Cur-
rent patterns of urban contraction are generating fiscal pressures at the local level and may
also have important consequences for economic development at the national level. Such
trends constitute a serious challenge to spatial policy analysts, whose traditional settle-
ment policies are no longer considered adequate.

The objective of the Urban Change Task in IIASA’s former Human Settlements and
Services Area was to synthesize available empirical and theoretical information on the prin-
cipal determinants and consequences of recent patterns of growth and decline in developed
countries. Investigations were made of (a) the role played by declining rates of national
population growth and changing migration propensities in urban change processes,
(b) interdependences between industrial restructuring at a national level and adjustments
observed in local urban economies, and (c) relations between aggregate patterns of urban
development and their impact on the evolution of the internal spatial structure of urban
areas.

The papers in this special issue focus primarily on the third aspect of urban devel-
opment, one that provided linkages between the Urban Change and the Public Facility
Location Tasks within the Human Settlements and Services Area. The papers are selected,
revised contributions to the Workshop on Urban Systems Modeling held in Moscow in
September—October 1980. The articles consider a number of issues, specific variables,
and general techniques that are currently used by urban modelers. The more substantive
aspects include the role of alternative housing allocation policies, as well as environmental
factors in the process of urban change.
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Introduction

Disputes concerning conceptual virtues and limitations of urban
models have acquired a decade-long tradition (Goldner, 1971; Lee, 1973;
Sayer, 1976; Batty, 1979a, 1979b). At the same time, the need for
further development of such models becomes ever greater. This demand,
generated in the past by problems of urban management at a local
level, is now strengthened in view of recent urban trends which involve
a broad spectrum of patterns, from absolute population decline in some
of the large urban agglomerations in highly urbanized countries to the
accelerating concentration of population and economic activity in the
primate cities of many developing countries. As a consequence of these
divergent trends, planners are now facing necessity of reformulating
settlement policies carried out at the national and urban levels, since
many of the existing policies have either supported trends no longer
deemed favorable or have failed to produce more balanced settlement
patterns.

Internal functioning of urban areas represents one of the substantial
facets as well as determinants of settlement change at a national scale.
Inefficient spatial organization, as expressed for example in high friction
to travel and relocation within urban space, bears heavily on overall
quality of life in urban agglomerations. This may in turn result in a
long-term relative decline of the position of large cities vis-a-vis other
components of settlement systems. Owing to the role of large cities as
seedbeds for technical and organizational innovations, such trends may
be negatively evaluted from the point of view of economic development
at a national level (Richardson, 1978).

Admittedly, existing urban policy-oriented models say little about how
and why economic activities originate within, or migrate to and out of
an urban area, and what the likely consequences such moves may have
on other urban areas. The list of variables and interdependencies which
are crucial for the understanding or urban functioning and change, but
largely neglected in the available modeling frameworks, is a rather long
one. It includes, among others, various aspects of population dynamics
(such as changing household composition and functions), land-use
conversion patterns, substitution among alternative types of movement
(such as migration and daily travel), evolution of the functions of
distance. Also, methods for the evaluation of urban performance, and of
spatial organization of urban areas, are not well developed.

The papers included in this volume attempt to address a number of
current urban modeling issues. Some contributions focus on problems
found on the interface between urban planning and urban modeling,
while others propose more efficient computational algorithms. Still other
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papers take a critical view on methods and approaches which have so
far been dominant in the field. On the substantive side, the topics vary
from urban transportation systems to housing allocation, the urban
environment and general planning theory. Many readers may find the
list of approaches and themes followed by different authors to be
excessively large. It seems, however, that such a diversity represents an
essential condition for further progress to be achieved in urban
modeling.

This issue of the journal is composed of selected contributions to the
Workshop on Urban Systems Modeling, held in Moscow during
September 30 - October 4, 1980. The Workshop was organized jointly by
the Committee for Systems Analysis of the Presidium of the USSR
Academy of Sciences (through its Scientific Council of Management of
the Development and Functioning of Towns and Settlement Systems),
the Human Settlements and Services Area of the International Institute
for Applied Systems Analysis (Laxenburg, Austria), and the International
Scientific Research Institute of Management Problems (Moscow).

P. KORCELLI
Human Settlements and Services Area
ITASA
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Principles of formulation and analysis
of urban models

Yu. S. Popkov, B.L. Shmulyian
Institute for Systems Studies, 29 Ryleyev Street, 119034 Moscow, U.S.S.R.

Received 30 September 1980, in revised form 12 March 1981

Abstract. The methodology discussed in the paper is based on the assumption that an
urban area can be represented as a two-level system. Within such a system the links
between micro-level elements are random in character while links between states at the
macro-level are of deterministic nature. Interaction of the two levels results in the
transformation of the random moves into a regular process. The micro-level is formed by
an ensemble of choice of facilities by individual residents described by probability
distribution functions. The macro-level is composed of functionally homogenous sub-
systems such as workplaces, housing stock, population characteristics, etc. The integration
of different subsystems is achieved using entropy-maximization functions. Methods of
studying the models’ stability are proposed.

Key words: urban system, behavioral models, entropy maximization, equilibrium-stable
state.

1. Introduction

The process of intensive urbanization taking place in the world of
today is accompanied by the growth of existing cities, and the
formation of new cities and urban agglomerations. This process is
characterized by a number of problems and negative externalities related
to environmental degradation, deterioration of accessibility within large
urban systems, difficulties of controlling the spread of urban areas and
so forth.

Therefore the problem of an efficient organization of urban areas
appears to be very important and essential. At least two approaches to
solving this problem may be noted. The first comprises construction of
principles for optimal planning of an urban area. Here the definition of
precise quantitative criteria to evaluate the quality of allocation
alternatives is implied. A second approach (let us call it behavioral)
attempts to develop an areal plan that takes into account the behavior
of residents using facilities allocated in this area.

Practical realization of this latter approach comprises construction of
model simulating residents’ behavior in using these various facilities.
The Lowry model (1964), based on a gravity-based description of
residents’ behavior, was the first major model of this class. This
approach was further developed in the works of Wilson (1967, 1974)
and other authors. In his models Wilson assumes that a resident
chooses a facility in random way and independently of other residents’
behavior. This assumption leads to schemes analogous to the
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distribution of particles over energy levels whose properties are well
known from statistical physics. The stable state of such systems is
reached when their entropy is maximal. We note that as a rule
Wilson’s models describe a procedure of choosing between functionally
homogeneous objects while in the Lowry model much attention is paid
to description of interactions between functionally heterogeneous facilities
such as the basic sector, and service and residential sector facilities.

In this paper a methodology for constructing models of human
settlement is laid down. These models make it possible to determine
the functional-spatial structure of urban areas by simulating human
behavior when choosing facilities to interact with. We shall refer to
these as functional-spatial models (FSM). In these models main attention
is paid to describing interactions between urban subsystems.

2. General structure of a functional-spatial model of human settlement
systems

Let us consider a closed (autonomous) settlement system at fixed
moment of time, or during a time interval when its state does not
vary. A city, or a number of cities sufficiently closely related to each
other, may serve as an example of such a system. We consider the
area occupied by this system and divide it into M regions. Facilities of
different functional types are allocated in each region.

We denote: d% - a functional facility of type p located in district
m e 1,M; q - the number of functional types, i.e. p € 1,q; and
N = {N,,.., Ny} - the allocation of population over the urban area.

Residents patronise these facilities d* for consumption purposes. It
appears natural to assume that the procedure of individual choice of
some or another functional facility by an individual for consumption
purposes is stochastic.

A quantitative model of this procedure is constructed from
characteristics of some individual n, the facilities d% and the
transportation media facilitating the interaction.

Each object d}, is characterized by a set of attributes { of,..., 0% } = o¥
that are independent of the location of the facility. The distribution
function F’, determining the probability of choosing facility d¥ by
resident n, located in region / is our quantitative description of
behavior. Since F' characterizes a pairwise interaction we obtain:

F=F@, d) .

It is necessary to note that the procedure of choice is very complex,
and not investigated in full here. Many assumptions are made
pertaining to the mechanism of choice. In particular, one of them
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(perhaps the most widespread) states that probability F is a function of
distance p between di and n,

Because of their multitude, individual stochastic interactions between
n, and d: generate in the aggregate completely deterministic
characteristics of the system’s behavior. These are a population
allocation N; attributes {e‘l‘,...,efu} = E* characterizing groups of
functionally homogeneous facilities (subsystems DY), or the distribution
of these attributes E* = {E},..., E}} over the set of locations.

Two interconnected levels are distinguished in the functional-spatial
model (FSM) of a human settlement system. At the first level, the
microlevel, stochastic individual interactions between population elements
n, and facilities di, from different functional subsystems are taking place.
The second, the macrolevel, gives a transformation of stochastic
interactions into a deterministic state, characterized by subsystems
vectors E',...,E® and a vector of population allocation N.

3. FSM macrolevel

The macrolevel is constructed from subsystems D* (u € 1,q),
combining functionally homogeneous facilities d*. Each subsystem is
characterized by the vector index E" (n € 1,q). In addition to these
vectors, the macrolevel state (hence the model’s state) is completed by
a characterization of the vector of population allocation N. The main
mechanism of the system, namely residential choices of facilities from
subsystems D¥, is defined as a correspondence between E! and N:

E'Y = E*(N) for all pel,q.

To form the model it is necessary to link subsystems D* (n € 1,q) in
some way. The simplest linkage is a hierarchical chain whereby
different types of facilities are located sequentially. But it is impossible
to establish a «rigid» hierarchy of subsystems in a human settlement
system. This is explained by its essential heterogeneity, because
ecological, socialdemographic, technical, economic and other factors
influence the system within essentially a bounded area. Therefore any
traditional orderings of the subsystem: for instance basic sector, housing,
service, population, transport - may be preferred to others at different
stages in the system’s development.

As a result any subsystem may occupy any level of the hierarchical
chain in a random way. In this case formulation of an urban system
model may be realized in Popkov (1976). The idea is to define a
hierarchical chain which is the most informative representative of some
stochastic hierarchical chains ensemble. This chain then describes a
sequence of subsystems which may be represented using subsystems
states indexed as:

E¥ > W2 > .. > B% | 6))
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Below we shall renumber the subsystems such that pj = j.

We recall that each index E* is a function of vector N of population
distribution. Then, under a hierarchical sequencing of location problems,
we obtain:

E' = T\(N)

E* = T,(E,N)

............... )
E! = T, (E*,N)

where T, are operators relating index E"~! to distribution N and index
E* of the next hierarchical level.

As noted earlier, the individual choice of a facility di by an
individual n, depends on characteristics of n, and on d%. Therefore the
distribution N depends on all subsystems E* i.e.:

N = B (E',..., E9) 3)

where B is an operator relating N to E!,..., E% Equations (2), (3)
describe a structural formation at a macrolevel of this functional-spatial
model of a human settlement system (fig. 1). From equations (2), (3)
and the structural scheme (fig. 1) it follows that FSM is a closed
system containing the hierarchical chain T,,.., T, and a feedback B.
This allows us to realize the model on a computer as a closed
iterative procedure consisting of the sequential application of operators:

El(r+1) = T,(N(I))

EZ(t+l) = TZ(EI(HI)’ NZ)

..................... 4)
Eq(u-l) — Tq(Eq—l(tH)’ Nt)

) — 1(t+1 1
NED — B(E (t+ ),_“, Eat+D ,

where T= 0,1,2,... is the step of the iterative procedure. To determine
operators T,,...,T, and B it is necessary to consider the microlevel of
this model.
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Figure 1 Macro-structure of an FSM model
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4. FSM microlevel

The FSM microlevel represents a formal description of stochastic
individual pairwise choice of facilities d¥ from functional subsystems
D* (n € 1,q) by individuals n,

It is clear that individual choice {n, — di} depends on a number of
social, economic, demographic, psychological, status, and other factors.
Nevertheless, assuming a stochastic perspective on individual choice, this
may be generally characterized by some probability distribution function
F depending on n, and d%. Decomposition of this relation allows us to
distinguish three groups of factors completely determining the
distribution F (n, db):

— behavioral factors, characterizing an individual n, (social and
demographic attributes, economic status, individual priorities and
perceptions of the quality of consumption facilities and means of
transportation);

— generalized quality factors of chosen facilities d% and their localization
regions m (places of work: professional composition, wage level,
prestige, general production level; and service facilities: service
quality, baskets of goods offered, time spent for service, etc.);

— communication factors, characterizing the environment where individual
choice is made (distance, generalized travel cost, etc.).

According to these groups of factors we define three probability
distribution functions:

f(/|d%, h,) a conditional probability distribution of choice of a fixed
facility d¥ by an individual n, when the characteristic h,, of
transportation networks is fixed;

@" (m) a probability distribution of generalized quality of facilities d,
over the urban area;

w (I,m) a probability distribution of characteristics of transportation
and distance between / and m.

We suppose that the two last distributions are mutually independent.
Then the probability distribution of individual choice is

F'(lm) = f(/ | dy, hy) @*(m)w"(/,m) . )

When realizing individual choices among any pair (/,m) a stochastic
flow x%, of individual choices is constructed. This results in a flows
matrix X" which is stochastic in the sense that there is an ensemble
of such matrices defined for some probability distribution function.

Assuming that individual choices are independent of one another and
using traditional assumptions (Landau, Lifshetz, 1964; Wilson, 1974;
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Imelbayev, Shmulyian, 1977), it may be shown that

X* = arg max H" 6)
] M u
where H" = Z b:¢ ln—F-(i—’m—)— is the generalized entropy of the

/,m=1 le
distribution {x},}.

If we also assume that the human settlement system under
consideration is closed it follows that the stochastic flows x}, must
satisfy the following constraints for population:

Y xb,=C'N,, [lelM @)

and for limiting values, G%, of subsystems attributes, E.:

™Mz

m < Gn ®

=

—

where C" is the coefficient characterizing the share of residents choosing
facilities from subsystem p. Here it is assumed that E! is a scalar
index; if it is vector, then analogous constraints are formulated
component-wise.

Therefore the problem of generalized entropy maximization (6) under
constraints (7, 8) describes the process of forming a FSM microlevel
state from stochastic flows x},, which are in turn, the results of
individual choice.

Therefore operators T,,..., T, of the hierarchical chain in the FSM
structural scheme are

Tyt [E}n =YY%, me M ;
/]
9

. F'(/,m
xh = argmax{Zx}mln—(—]—) Yxl, =CN, le l,MH

Im Im el
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T,: [E” =YxX4, meM;

1

= ([ ) [Z = C'N, le M ; (10)

X¥ = arg max I Y x#

Im

Yxi < o*EX' + BY; m e l,mH
1

where G! is a linear function of the preceding subsystem indices E%!.

In this FSM structural scheme, operators B characterize the process of
population allocation under the assumption that subsystem attributes
E!,...,E% are known. According to this scheme (fig. 1) allocation N is
formed from the stochastic flows y,,. Subsystems D* (un € 1,q) are
sources of these flows. When the flows are mutually independent the
block B’s state will be described by the three-dimensional matrix

o

Y = argmax H (11)
where
F*(1,m)
-3 ¥ 0w (12)
p=1 /,m=1 Yim

Elements of Y must satisfy constraints analogous to (8) for all
nelq.
Operator B is then of the form:

BUZ[N['_—'ZZ);/m,[el’T/I_;
B m

§¥m=argmaX[ZZY¥ P

B /m Im

|

It can thus be seen that the FSM constitutes a sequence of
generalized conditional entropy problems relates to each other.

Z W, = TEE , (13)

me l,M; pel,q

[
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5. Equilibrium - stable state

Consider relations within the problem introduced here, i.e. procedure
(4), in more detail. Each operator (9), (10), (13) represents the
constrained entropy maximization problem. Therefore we may consider
the stable states {y},} or {X},} realized in each subsystem. These states
depend on subsystem parameters, including the right-hand sides of
constraints. Since the right sides represent other subsystems indices E},
N, stable states of each subsystem depend on other subsystems’ stable
states. Therefore the concept of a subsystem’s stable state does not
suffice for determination of a «natural» state of the system.

So we have to use the concept of «equilibrium-stable» state of the
system U’ = {x}, yi}, which has the following properties:

— it is a stable state for each subsystem;

— it is an equilibrium for all subsystem, i.e. U" transforms all
constraints in the operators T, B into identities.

As an example of a physical system with such properties consider
several cylinders filled with gas, with the cylinder pistons linked
together by a leverage. A stable state for each cylinder corresponds to
the entropy maximizing state of gas filling this cylinder under the
constraint determined by the piston position (accounting for other
factors, such as temperature and so on). Changes in constraints on
feasible states in any subsystem (change in piston’s position in a
cylinder) lead to changes in constraints on feasible states in other
subsystems (cylinders).

An equilibrium-stable state of this cylinder system is characterized by
the stable state of each piston and mechanical equilibrium of the piston
system. If a constraint is changed instantaneously (for example, by
changing a piston-rod length), the whole system will begin to change its
state and after some transient process a new equilibrium-stable state
will be realized.

A similar transient process will take place if the initial state is not
equilibrium stable. Notice that these transient processes include one
more process, namely each subsystem reaching its stable state under
fixed external condition. This process is characterized by a relaxation
time which is negligible when compared to the times of mechanical
moves, as can be shown by physical experiments. So we may assume
that these transient processes describe an instantaneously changing
stable state of each subsystem.

If we were to construct a mechanical linkage of cylinders in such a
way that piston-rods would move sequentally (returning to the first rod
after the move of the last), the analogy between the physical system
and the process (4) becomes complete. Notice that parameters (such as
temperature, pressure, etc.) for the states of each subsystem (cylinder)
differ even at the equilibrium-stable state of the system.
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Therefore the process (4) describes the urban system reaching its
equilibrium-stable state. But convergence to such a state still must be
proven. A general approach to investigating such convergence processes
is given in Shmulyian (1980a) here we consider only some stages of
this study. First of all we notice that stable states of the subsystems,
XY, Y depend (for given F, F) only on subsystem attributes E¥ N,
On the other hand, these states x*,, y*,, provide intermediary data
from which the indices E%, N, are derived. Therefore it is expedient to
determine and investigate relations between subsystem p and other
subsystems indices.

For operators T, with one-sided equality constraints this relation is
linear. For example, for T, (see Shmulyian, 1980b)

EL=c' )TN, melM (14)
!

where T}, are normalized probabilities F'(/, m). For operators with two-
sided constraints or with constraints operating as inequalities such
relations are not determined explicitly. For example, for operators T, the
solutions are of the form

Xim = T/suF* (/,m) 15)

where parameters rf, sk are limiting values of an iteration process which
is the «generalized balancing method» (Shmulyian, 1980b):

i/ = ¢*N,/ ) stF(/,m)
s¥! = min (1, %'/ ) r*'F*(/,m) (16)
i

st =1

wo=0, 1,2,

(for the variables r,, s, index p is omitted).

Nevertheless, from strict concavity of the objective function (H") we
conclude that x}, (and subsequently E}) are continuously determined by
the right-hand sides of the constraints. In other words

El = @a(N, /e LM ; E4', me 1,M)

a7
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while for all functions ¢ bounded variation of the right-hand sides leads
to bounded variation of subsystem indices, i.e.

l(Z,+ AZ,,...,Z,+ AZ) — 9 (Z,,..,Z,)| <

(18)

WAV VAR

4

Therefore the general relation between subsystems indices

Z=E82) (19)
may be considered as an equation system to determine Z, and the
process (4), formulated using indices Z, is then a way to solve this
system.

L = E{E (20)

Convergence of the process (4) corresponds to convergence of the
iterative process for solving (19). Rewriting the process (20) in
variational notation, we obtain:

|AZ* | < T|AZY (1)

where T is a matrix with coefficients determined through (17) and linear
relations in the form of (14). A sufficient convergence condition is

ITl< 1 (22)

where |T| is the determinant of T, from which a set of constraints on
parameters c¢*, o, B* and so on may be derived.

6. Relation to the entropy maximization problem for the whole system

The concept of the system equilibrium-stable state introduced above
allows us to determine [according to the algorithm (4)] a number of
«natural» subsystems states U" = {x},, yi,}, each of them maximizing
its entropy H¥, H. So the question arises - what are the properties of
the system’s entropy H? To answer this question we have to define
this entropy. It appears natural to define it as the sum of the
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subsystem entropy functions, i.e.

H=)YH'+H (23)
B
F*(I,m Fu(/,m
=Y Yxiln ———)((p ) +Y )y In ———ip ) (24)
B /m Im B /m Im

for feasible states x%, y&, corresponding to all constraints, i.e.

Cl gl

Xbh=cY)Yyh,pnelq; /el M
p m

~I¥1]

X <o)y xi'+ B, me LM; pe2q (25)
!

Yyh=v)Yxh;melM;pelq.
v/ 1

Recall that the entropy of system’s state U is the logarithm of the
probability of its realization (see Landau, Lifshetz, 1964; Wilson, 1974).
From (24) it follows that

P = P{yh} I P{xh}

where P (x) is the probability that system state x will occur. This
follows because from (24) the realizations {y},} and {x}.}, neIl,q

are independent. In reality, however, subsystem states depend on each
other. Thus definition (24) of system entropy is not valid in general

To illustrate this last point consider once more the example referred
to in section 5; i.e. cylinders with mechanical linkages. If we join the
cylinders by pipes (allowing the different gases to mix), than after the
transient process the stable state corresponding to maximum entropy
will be realized. But parameters (temperature, pressure) for each
subsystem will be the same and the entropy of the system will be
larger than the sum of entropy values in the initial system.

Formally, entropy maximization (24) under constraints (25) is a
nonlinear programming problem with a strictly concave objective
function and convex feasible set. Its solution U = {&},, .} is known
to be unique, but to get effective algorithms for solution is rather
difficult. On the other hand the equilibrium-stable state U™ = {x}, yi.},
as was already noticed in section 5, corresponds to the (manageable)
solution of the system (19) for indices Z. This is a feasible state, but
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in general it does not coincide with U. Again notice that the entropy
of the system’s stable state H (U) is larger than the sum of subsystems
entropy values in the equilibrium-stable state, i.e. H (U").

Finally, from the behavioural point of view the concept of the
equilibrium-stable state corresponds to a sequence of independent
residential choices of pairs «origins-destinations» (operators T,, B).
Maximization of system’s entropy corresponds to the simultaneous
independent residential choice of housing and a set of facilities p € 1,q.

7. Conclusion

In this paper main attention is paid to the interaction of urban
subsystems. An essential factor for constructing models of interaction is
a set of hypotheses on residents’ behavior. The assumptions made in
the paper appear rather general; variations of quantitative dependencies
used here allow us to obtain different models specifying the spatial
distribution of the various subsystems in an urban area.
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Résumé. La méthodologie mise en cause dans cet essai est basée sur la supposition
qu’'une zone urbaine peut étre représentée par un systtme a deux niveaux. Dans un tel
systtme les liens entre les éléments du micro-niveau ont un caractére casuel, alors que
les liens entre les états au macro-niveau ont une nature déterministe.

L’intéraction des deux niveaux se manifeste par la transformation des mouvements
casuels dans un processus régulier. Le micro-niveau est formé d’un ensemble des choix
des opportunités des résidents individuels, et est décrit par des fonctions de probabilité
de distribution. Le macro-niveau est composé par des sous-systémes omogénes, du point
de vue fonctionnel, tel que les lieux de travail, ’ensemble résidentiel, les caracteristiques
de la population. L’intégration des différents sous-systémes est réalisée en utilisant des
fonctions de maximisation de l’entropie. On propose en suite quelques méthodes
d’analyse de la stabilité des modeles.
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Riassunto. La metodologia discussa in questo articolo & basata sull’assunzione che
un’area urbana pud essere rappresentata come un sistema a due livelli. Entro un tale
sistema, i legami tra gli elementi del microlivello sono di carattere casuale mentre i
legami tra gli stati al macrolivello sono di natura deterministica. L’interazione dei due
livelli si manifesta nella trasformazione dei movimenti casuali in un processo regolare. Il
microlivello & formato da un insieme delle scelte delle opportunitd effettuate dai residenti
individuali ed & descritto da funzioni di probabilitd di distribuzione. II macrolivello &
composto da sottosistemi funzionalmente omogenei, quali i posti di lavoro, lo stock
residenziale, le caratteristiche della popolazione ecc. L’integrazione dei diversi sottosistemi
viene realizzata utilizzando funzioni di massimizzazione dell’entropia. Si propongono,
infine, alcuni metodi di analisi della stabilitd dei modelli.
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Abstract. This paper has two aims. The first one is to build a generalization of the
doubly-constrained spatial interaction model, in order to account for sensitiveness of
demand to accessibility and congestion and for possible multiple interacting activities.

In Section 2 it is shown how this can be done by keeping an extremal representation
for the model, which is closely related to the Neuburger’s consumer surplus maximizing
principle. The second aim is to embed the model developed in Section 2 in a
multiactivity optimal location problem, and to develop operational tools to solve the
resulting mathematical programming problems. This subject is treated in Section 3.
Section 4 is devoted to the discussion of three possible applications: the urban system,
the health care system, and the retail system.

Key words: location model, elastic demand, accessibility, congestion.

1. General introduction

Although most location-allocation models deal with a single category
of facilities at a time, in real urban areas different facilities, activities,
and settlements are present at the same time. Usually interactions take
place among them in terms of customers’ journeys, exchange of goods,
money flows, and information. These interactions tie all activities
together, and have to be taken into account in model building of both
a descriptive and a normative character.

Many descriptive models of multiactivity systems have been built
since the well-known Model of Metropolis (Lowry, 1964), and their
mathematical formulation and economic interpretation have recently been
greatly improved (see MacGill, Wilson, 1979, for a review). The
introduction of normative features (i.e., the optimal size and location of
physical stocks) also appears in some works (such as Coelho, Williams,
1978; Boyce, LeBlanc, 1979; Leonardi, 1979).

In this paper a new class of models is proposed, which, it is felt,
will improve existing ones in two respects.

a. Sensitivity of demand to accessibility and congestion is taken into
account. Most existing models assume production and/or attraction
constrained spatial interactions. It is, however, sensible to assume that
total demand production is not given beforehand, but is itself an
endogenous variable of the spatial-interaction system. Specifically, it is
reasonable to assume that demand for activities increases with
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accessibility. Moreover, it is sensible to assume that demand is also
sensitive to congestion, that is, the more a facility is crowded, the less
attractive it will be for customers. It will be shown that both features
can be introduced in spatial interaction models in a very natural way,
with no “significant changes in their general structure.

b. Possible combinatorial and indivisibility features in the location and
size of stocks are taken into account. Most existing models assume
simple linear costs for establishing and maintaining stocks, thus being
unable to account for economies of scale, bounds on the number of
facilities, and bounds on their feasible sizes. On the other hand, most
of these features have been introduced very well in the so-called «plant
location» models developed in Operations Research (OR) (for example
Erlenkotter, 1978). The usual objective function of plant location
models is not very useful in Regional Science applications, since it is
linear and induces an unrealistic spatial interaction behavior (i.e., users
always choose the nearest destination, with no possible cross
substitution). The objective functions based on Neuburger’s (1971)
measure of consumer surplus, however, embed realistic spatial
interactions very well. It is therefore natural to take advantage of the
best parts of both approaches: namely, to use a Neuburger-type
objective function and plant-location-type cost functions and constraints.
It will be shown how this gives rise to a family of combinatorial
optimization problems of a new kind.

Although this paper will focus on the general theoretical and
computational problems posed by these new models, some possible
applications are discussed in Section 4. They are:

i. The application to Lowry-type systems. In this case the optimization
concerns the location of housing and services, taking the
relationships among them into account. This is not new: it has
been the subject of many previous works. A completely new
insight, however, is given by introducing accessibility - and
congestion - sensitive mechanisms. They introduce several
interesting realistic features, such as the formation of unused
housing stocks, of location - dependant service - attendance ratios,
and of different levels of congestion across space. Another possible
improvement results from introducing combinatorial stuctures in the
cost functions and in the constraints, since it is well known that
real urban planning and management problems are faced with
indivisibilities, thresholdlike constraints, scale effects, and the
unrealistic spatial allocations obtained by continuous models.

ii. The application to multilevel service systems. Many services have
many stages, or levels, which users will possibly go through in a
given order. A typical example is given by a health care system,
where users may enter the system at the lower level (usually
made up of widespread small general-purpose facilities) and
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possibly be sent to higher, more localized levels (usually made up
of larger facilities for specialized treatments). The introduction of
sensitivity to accessibility and congestion is fully justified in these
systems, of course, as well as indivisibilities and scale economies.
Furthermore, in the example of the health care system, it is
possible to have some stages in which transport between levels
has the character of an emergency, rather than the normal

spatial -interaction behavior. This will produce mixed models, where
some stages behave according to spatial interaction, and others
behave more like the OR plant location models (with possible
maximum travel time constraints).

iii. The application to multiple-destination service systems. There are
many instances where consumers make trips with many
destinations, instead of home-return trips with a single destination.
Most trips to retail activities are of the former kind, since usually
customers have a shopping program made up of different goods,
not necessarily available in the same place. But the usefulness of
a round-trip scheme is not limited to shopping. Many generally
different kinds of services have interactions within them, in the
sense that part of the demand attracted by any one of the
services may generate demand for another, depending on
accessibilities. Apart from considerations similar to those for cases
i and ii, it is of special interest for this case to have results on
possible aggregations, that is, ways of building possible
multipurpose facilities. This is surely relevant for retail activities, in
which possible optimal patterns for shopping centers may be revealed,
taking into account both spatial interaction and economies of scale.

Not all of the above problems can be solved easily, of course.
Therefore, together with the general optimality conditions, approximate
heuristic solution methods are developed here. Most of them are shown
to be even more interesting and useful than the exact ones, since their
general form is an approximate ranking rule, based on cost/benefit
indicators, possibly to be improved by successive approximations. The
cost/benefit indicators usually have intuitive interpretations, being made
up of terms related to accessibility, congestion, demand potential, and
SO on.

A few general references will be given. The approach used in Section
2. to introduce accessibility and congestion sensitiveness is very closely
related to the approach proposed by Walsh and Gibberd (1980),
although it has been developed independently. (Earlier related work is
also found in Dacey, Norcliffe, 1976; and in Jefferson, Scott, 1979). The
general structure of the optimal location problem developed in Section
3. is related to the one proposed in Leonardi (1979), although it has
been substantially revised and extended and findings of more recent
research (Leonardi, 1980a, 1980b) have been taken into account.
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2. A general accessibility - and congestion - sensitive multiactivity spatial
interaction model

2.1. A generalization of the doubly-constrained spatial interaction model

According to the usual doubly-constrained spatial interaction model,
the total number of trips for each origin-destination pair (i, j) and for a
given trip purpose is determined by the set of equations

8y = wyfy
Z Sy = Gy
j
Z S; = A,
where
S; is the number of trips from origin i to destination j
G, is the total number of trips generated from i
A; is the total number of trips attracted in j
f; is a measure of the impedance to travel from i to j; usually,

but not necessarily,
f; = eP%, where C; is the cost of a

trip from i to j and B is a given nonnegative constant, called
the space discount rate

u;,v. are balancing factors of biproportionality.

In the models of the above type the total trip generations and
attractions are usually assumed to be determined exogenously and
independently of the spatial interaction process.

Let it now be assumed that the following quantities can be defined

P; is the maximum number of trips which can be
generated from i, so that G, < P;; P, will be called the
potential demand in i

Q; is the maximum number of trips which can be attracted
in j, so that A; < Q;; Q; will be called the rotal
capacity in j

U, = P,— G, is the difference between the potential demand in i and
the trips generated from i; U, will be called the
unsatisfied demand in i
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V,= Q;— A, is the difference between the total capacity in j and the
number of trips attracted in j; V; will be called the
unused capacity in j.

A natural assumption which can be made for endogenously
determined generations and attractions is that they increase with
unsatisfied demand and unused capacity, respectively. A simple
mathematical translation of this assumption is given by the following
equations

u; = Uy/g (D
v; = Vi/h, @

where g;, h; are given nonnegative constants. Equation (1) states that
the balancing factor for the origin is proportional to the unsatisfied
demand. Equation (2) states that the balancing factor for the destination
is proportional to the unused capacity.

Furthermore, from the definition of U; and V,, the following
equations hold

Gi + Ui = Pi (3)
Substitution of (1) and (2) in the spatial interaction model and

addition of (3) and (4) to the list of equations yield the following new
model

S; = UV L 5
Dij = ivj gihj ()
Zsij = Gi (6)
j

Zsij = Aj (7)
j

G+ U =P ®

By means of some easy rearrangements and substitutions, model (5)-
(9) can be given the following two alternative representations.
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a. The production-constrained representation, in which the constraint on
demand generation is evidenced. It is defined by the following
equations

V,f,/h,
Sy = G, —4= (10)
i
iy By e 12
i = i (Di oF g 2 ( )

The variables ®; defined by (11) can be interpreted as accessibility
measures in the Hansen sense (Hansen, 1959), and the unused
capacities play the role of attractiveness measures. Equations (12) give
the generated demands as functions of accessibilities. The shape of the
graph of these functions is shown in fig. 1. By means of (10), (11),

A

Gi generated demand

Pi potential demand

accessibilit
¢ < y

Figure | Generated demand as a function of accessibility

and (12) sensitiveness of generated demand both to accessibility and to
congestion has been introduced. The total generated demand is a
nondecreasing function of accessibility, and it tends to the total
potential demand as accessibility increases. On the other hand, the



A multiactivity location model with accessibility sensitive demand 273

accessibilities increase with the unused capacities or, which is the same,
decrease as the congestion in the destinations increase.

b. The attraction-constrained representation, in which the constraint on
demand attraction is evidenced. This representation is completely
symmetrical with the production-constrained one, and is defined by the
following equations

U;f;/g;
Sy = Ay w—JJ (13)
y; = ZUifij/gi (14)
-0 ¥

In analogy with the interpretation given above for the ®, the
variables y; defined by (14) can be interpreted as population potentials
in the Stewart sense (Steward, 1948), and the unsatisfied demands
represent populations. Equations (15) give the attracted demands as
functions of potentials. The shape of the graph of these functions is
the same as for functions (12), and is shown in fig. 2.

By means of (13), (14), and (15) sensitiveness of attracted demand
both to potential and to unsatisfied demand has been introduced. The
total attracted demand is a nondecreasing function of potential, and it
tends to the total capacity as the potential increases. On the other
hand, the potentials increase with the unsatisfied demand or, which is
the same, decrease as the satisfied demand in the origins increases.

The above modified form of the classical spatial interaction model has
been built by introducing the intuitive assumptions (1), (2), (3), and
(4). It will be shown that this modified model can be derived by an
extremal principle, which is closely related to Neuburger consumer’s
surplus maximization (Neuberger, 1971). Let the following function be
defined

S; U, \%
s = -5 S - 70 o 1) o o
l i j j

ij ij
then it can be shown that the solution to the mathematical program

max W(S,U, V) (16)

S.L Z SlJ + Ui = Pi (17)
j
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Y8 +V,=Q (18)

is the spatial interaction model defined by (5)-(9). For the proof, it is
first noted that the function W (S, U, V) is concave, because it is the
sum of concave' functions. Since constraints (17) and (18) are linear,

A

Aj attracted demand

Qj total capacity

wj potential
=

Figure 2 Attracted demand as a function of potential

(16)-(18) is a concave program, whose solution is unique. This solution
must satisfy the Lagrange optimality conditions

ow

aS; A==V
AW

ou, ~ " =0

aW "

BV, W=
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or
S.

—log%—vi—pj= 0 (19)
i
U

— log —gl—— v, = 0 (20)
V.

— log —hj__ B=0 (1)
j

where v, and p; are the Lagrange multipliers corresponding to
constraints (17) and (18), respectively. From (19), (20), and (21) it
follows that

8; = Tvd; (22)

u = Ul/g; (23)

v, = Vi/h (24)
where

0; = £

7= e

But (23) and (24) are identical with assumptions (1) and (2),
provided

ui=ﬁi, VJ=V]‘

Moreover, (17) and (18) are equivalent to (3) and (4). Hence, the
solution to (16), (17), (18) satisfies equations (5)-(9).

If, as a special case, the terms depending on unsatisfied demand U,
and unused capacity V; are dropped, then W reduces to the Neuburger
consumer’s surplus (except for a multiplicative constant), provided the fj
are of the form

fU = C_BC” 5
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2.2. Introducing many activities

The model discussed in Section 2.1. refers to just one trip purpose.
Now let many trip purposes be introduced or, equivalently, let the trip
attractors in each destination be many different activities. The following
definitions will be needed.

i is the potential demand in i for activity k.
Q}‘ is the total capacity of activity k in j.

Gf is the demand for activity k generated in i, that is, the total
number of trips from i which have an activity k as a destination.

Af is the demand attracted by activity k in j, that is, the total
number of trips having as a destination activity k which is
located in j.

S{; is the number of trips with purpose k (that is, having an activity
k as a destination) from origin i'to destination j.

fx is a measure of impedance to travel from i to j with purpose k;
usually, but not necessarily, the measure of impedance is of the
form ff = e P where C} is the cost of traveling from i to j
with purpose k and B, are nonnegative space discount rates.

gf, hfare given nonnegative constants.

The following equations must hold

Y St = Gt (25)
i

Y Sk = Af (26)
GF+ Uk = Pt (27)
AF+ VF = QF, (28)

The introduction of many activities is meaningful if interactions take
place among them. Let it therefore be assumed that the potential
demand for each activity k from each location i, P¥ is not a given
constant, but a linear function of the demand attracted by all activities
in i. This assumption is stated by the equations

P:( = YF - Z A{ark
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or, after substitution from (28)
P} = Yf+ ) Qia, — X Viag (29)

where Y¥ and a, are given nonnegative constants. The terms Y¥ can be
interpreted as exogenous inputs, while the coefficients a, are defined as
follows

a, is the potential demand for activity k produced by a unit of
attracted demand in activity r.

The function W (S, U, V) introduced in Section 2.1. can be generalized
as follows

Sk ity VE
W@, U, V) = — ) Sk (log — ) — ZU}‘(Iog — ) ka(log —— 1) .
ijk ﬁ( ik gi h;
If equations (29) are added to the list of constraints, the following
generalization of (16)-(18) is obtained

Srrllje{,xP WES,UY) 30)
s.t. Z Sk+ U = GD
Z Sk 4+ VE = Q (32)
P* = Yi+ T Qag — Y Via, . (33)

The variables P* have been added to the list of maximization
variables in (30), since now they are no longer given constants.
The Lagrange optimality conditions for (30)-(33) are

YT +vW—nur=0
ij

oW
aUu*

AW
Syr ~ B~ LA, =0
i I
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oW i i
aPF + Vv —A'=0
or

gk

— log f‘.? —W—pf=0 (34)
ij
U, .

—log —/— -V =0 (35)
g
vk

— log —hi—— pf— Y Ala, = 0 (36)
j T

vi— A =0 (37)

where vf, pf, Af are the Lagrange multipliers corresponding to constraints
(31), (32) and (33), respectively. From (34), (35), (36), and (37) it
follows that

Sk = ufvif} (38)
uf = Ul/g! B
K | G L

v = IT\=r) Vi/h; (40)

)
where
uk = e
V;‘ = e_”Jk

Gt = u'®*, or uf = GYO! (41)
where
oF = Zﬂjvj‘ can be interpreted as an accessibility measure,
i

in analogy with (11).
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Substitution of (41) into (40) gives for the vf

Vk D7 \ay
- Bolzr
J J

Equation (42) gives much insight in the way activities interact. If it
is compared with its analogous (2) for the simple case, it is seen that
the attractiveness of activity k in destination j is still proportional to
the unused capacity V}‘, but it is also proportional to the term

Q)F Akr
et
v @

that is, the product of the ratios of accessibilities to generated demands
for all activities in j. These ratios are raised to the power a,, which is
a measure of the intensity of interaction between activities k and r.
Therefore, the value of (43) is mainly determined by the activities
which have strong interactions with k. If, as a special case, a, = 0 for
some 1, then k and r have no interaction at all, and the corresponding
factor in (43) reduces to 1. If, as a limiting case, all a,, = 0, there is
no interaction among activities, the value of (43) reduces to 1, and the
value of (42) reduces to

vf = V¥/h!

which is the same as (2), except for the superscript k. In other words,
the model with many activities reduces to a set of independent models
with a single activity.

If (42) is substituted into ®*, the following equations are obtained

Vi (@ \a
q>:<=2ﬂ%—111(—’r) . (44)
7 hf T \Gj

In equations (44) the multiplier effect of accessibilities on themselves,
and hence on demand generation, is evidenced. All accessibilities from
all locations and to all activities are tied together by (44), and these
ties are stronger the higher the values of the coefficients a,,.

2.3. An example: the Lowry model revisited

The usefulness of model (30)<(33) is shown by the following example.
Let an urban system be given, which is assumed to behave according
to the classic economic base theory, as it has been introduced in the
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well

known Lowry model (Lowry, 1964). In order to get a qualitative

understanding for the structure of the model, some very crude
simplifying assumptions will be introduced. These assumptions are the
following.

a.

b.

.

The urban system has only two types of endogenous activities,
housing and service, with no further breakdown.

Only one exogenous input is given, the basic sector, with no
further breakdown.

The households are homogenous, and only the householder works.

. The demand for housing arises only from the basic sector and the

service sector.
The demand for services arises only from the housing sector.

Let k= 1 label the housing sector and k = 2 label the service sector,
and introduce the following definitions.

s}
S}
p!

P2

is the number of households living in j, whose householders work
in i

is the number of daily trips made by households living in i to
services located in j.

is the potential demand for housing from i, that is, the total
number of households whose householders work in i.

is the potential demand for service from i, that is, the maximum
number of daily trips to services which can be made by
households living in i.

is the total capacity for housing in j, that is, the total number of
dwelling units, or the housing stock, in j.

is the total capacity for services in j, that is, the total size of
services, or the service stock, in j. (Q] is assumed to be
measured in terms of maximum number of daily customers that
can be served).

ijs

is the demand for housing generated in i, that is, Gl = ZSI' in

J
general G! < P!, that is, not all the potential demand for housing
is necessarily satisfied.
is the demand for service generated in i, that is, G?= ) S; in

ijy

i
general G? < P2 that is, the maximum number of possible trips
to services is not necessarily made.

is the demand for housing attracted in j, that is, Al= ) S}; in

general Af < Q], that is, not all the housing stock is necessarily used.
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A? is the demand for service attracted in j, that is, A? = ZSU, i
general Af < QJ-, that is, not all the service capacity is necessarily
used.

Y is the number of households whose householder works in the
basic sector.

a,, is the potential number of daily trips to services made by a
household.

a, is the ratio between workers in the service sector and total
attracted service demand.

Assumptions b, d, and e imply that Y} =0, a;; = 0, a,, = 0.
Equations (29) assume the simple form

P! = Y! + Ala,, (45)
P2= Alg. . (46)

Equation (45) states that the total potential demand for housing is
equal to the number of workers in the basic sector, plus the number
of workers in the service sector. Equation (46) states that the total
potential demand for service is equal to the maximum number of daily
trips to services which can be made by households.

If equation (42) is applied to the housing sector, it takes the form

] ]
where
Vi = Q] — A is the unused housing stock in j
@} is the accessibility to services from j.

Therefore, the attractiveness of location j as a place of residence, as
measured by vjl, increases both with the availability of dwelling units,
Vj‘, and with the accessibility to services, (IJJ?. The main trade-off in
residential choice is thus embodied in (47). The third trade-off term,
the home-to-work travel cost, is introduced if the production-constrained

representation (see Section 2.1.) is used for the Sj

®?\a
V! ( 2) fi/h!
s, = G! .
= ®!

(48
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where ®! = ) v!fl, and v! is defined as in (47). Since f. dependes on

the cost of t&avelmg from i to j, plus possibly some additional costs
associated with location j (like the rent), (48) shows how availability of
houses, accessibility to services, home-to-work travel cost and location
costs determine the overall attractiveness for residential location. Other
results easily derived from the production-constrained representation are

o!

G = Pl the demand for housing (49)
Qi + & generated in j
gl
L = Pl—r——r the unsatisfied demand (50
Q; + g for housing in i
V! [ ®}\a: o G
A} = —r (——’2) "Y1 the housing demand (51)
h! \ G - ! o
j i attracted in j.

Equation (51) can be given a more meaningful and simpler form.
From (49) and (50) it follows that

Gi
Vo e
therefore
Gl
q;l ij ZU, U/gl - wj is the.unsatisﬁed hoqsing demand
i potential, as defined in the

attraction-constrained representation
of Section 2.1.

Substitution of this result into (51) yields

\% (Dz ap
R/ (_L) i . (52)
] hjl G_,Z : |

Equation (52) embodies the spatial interaction process in the most
synthetic and intuitive way. It says that the total housing demand
attracted in j 1s proportional to the availability of houses in j, V1 to
the potential y, which is a measure of nearness of j to unsatlsﬁed
housing demand, and to the accessibility to services from j, raised to
the power a,,, which is the maximum daily frequency of home-to-service
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trips. From (52) an equation for the unused housing stock is easily
derived. If:

Ajl = le -V

is substituted for A! in (52), and the resulting equations is solved for
V}, it is found that

h!
le = le (q)z :

(53)

J
IR

Equation (53) says that the formation of unused housing stock mainly
takes place in locations far from both services and from places of work,
where the housing demand arises. This is exactly what might be
expected. However, from (52) it is seen that the unused housing stock
is an attracting factor for new housing demand. Therefore, the housing
demand is forced to trade off accessibility to services and nearness to
the place of work (which would solely guide their choice, other things
being equal) with availability of houses, which acts as a constraint. The
resulting spatial pattern is a concentration of households in locations
with highest accessibility to services and places of work, whose housing
capacity is near to saturation, and a lower density of households in the
less accessible locations, where unused housing stock may possibly be
found. This is indeed very close to what actually happens in real urban
systems, and it is also very similar to what the classic Lowry model
predicts. However, when total demand grows faster than the housing
stock, all locations tend to be saturated, whether their accessibility is
high or low. This behavior is also very close to the actual behavior of
congested urban systems, but it cannot be accounted for by the classic
«unconstrained» Lowry model.

The analysis which has been carried out for the housing sector
applies to the service sector as well, and it will not be repeated here.

3. The optimal location problem

3.1. The primal problem

In Section 2. the analysis of the descriptive process has been carried
out. Now the problem of how to control the multiactivity spatial
interaction system in some optimal way will be posed. That is, given
that customers behave as if they were looking for the optimal solutions
to problems (30)-(33), how can a public authority improve this
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optimizing behavior by suitably choosing the values for the physical
stocks of activities, that is, the capacitites Qf? The above question
implies the assumption that the goal of the customers (maximizing the
function W defined in Section 2.2.) is in agreement with that of the
public authority, so that no conflicting-goal problem arises between
customers and public authority. The public authority is also assumed to
pay the costs to establish the capacities Qf. Let the cost functions be
of the form

k kNk

where af is a fixed-charge cost to be paid for establishing an activity k
in location j, while bf is a unit cost. Fixed charges have the effect of
introducing economies of scale and threshold effects, as it will be
shown later.

The optimization problem can be split in two steps:

a. choose a subset of locations and a subset of activities to be
established for each chosen location;

b. given the result of step a, find the optimal size of the activities to
be established in each chosen location.

While step a gives rise to a combinatorial problem, step b is a
smooth mathematical programming problem. Let therefore step b be
solved first, and step a be introduced in the next section. It will be
thus assumed that the chosen locations and activities are given, and
only the capacities Qf have to be found. The resulting mathematical
programming problem is the same as (30)-(33), the only difference
being that establishing costs are subtracted from the objective function
W, and the capacities Q are added to the list of decision variables:

Jmax W(S,U,V) — A (,-Zk ak+ ijQ}‘b}‘) (54)
st. 2S5+ Ur = P (55)
i
L85+ V= (56)
P* = YK+ Zan,k - ZV{a,k . (57

The parameter A which multiplies the cost term in (54) is a trade-off
parameter, weighting costs against benefits. Usually a sensitivity analysis
has to be made on A, in order to assess the appropriate trade-off level.
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Alternatively, A may be interpreted as a Lagrange multiplier arising
from the relaxation of a budget constraint.

Formulation (54)-(57) is somewhat redundant. First, since the locations
and activities are assumed to be given, the sum of the fixed-charge
costs is constant, and can be dropped from the objective function (54).
Secondly, there is no use to keep P¥ and QF in the list of decision
variables, since by means of equatlons (55) and (56) they can be
expressed in terms of the variables Sf, U, VI Therefore, after some
substitutions and rearrangements, problem (54)-(57) reduces to:

max W (S,U,V) — A Y bf .S} + V) (58)
U, ik i
st. ) SE+ Uk — Zarkz 5 =", (59)
j

Problem (58)-(59) will be referred to as the «primal» problem.

3.2. Some duality results

The saddle-point problem equivalent to (58)-(59) is

min max L (S,U,V,v)
v s,uv

where the Lagrangean function L is defined as:

LS, U,V,y») = W(S,U,V) — AZbk(Z Sk + V)

+ ZV:((Y:(— Zsﬁ_ Ur + Zarkzsﬁ)
jk j £ j

and the V¥ are the Lagrange multipliers, or dual variables, corresponding
to constraints (59). The vanishing of the derivatives of L with respect
to the primal variables yields the following equations

Sk

fk’ AbF— W+ Ya, v =0, or

4 ' (60)
Gk — fk e—()\bjk+v}‘—;ak,v})

— log

(=)

—log——-vw=0, o Uf= gie™ 61)
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k

V;
—log -~ Abf =0, or Vi= hie (62)

By means of equations (60), (61), and (62) the primal variables can
be expressed in terms of the dual variables in closed form. Substitution
into L and some rearrangements yield the following unconstrained
«dual» problem

min D (v)

where the dual objective function D is defined as

D) = XS5 + LU + X Vi + L viY; (63)

ijk

and the functions S§(v), Uf(v), and the constants Vf are defined by
equations (60), (61), and (62). The dual objective function can be given
an intuitive interpretation. From equation (32), the total capacity of
activity k in location j, Qf is given by

QF = Y8+ Vi

so that

Qk(W) = ) SE(v) + V¥ is the total capacity of activity k (64)
i in location j, as a function of the
dual variables.

If (64) is substituted into (63), the dual function becomes

D) = ;Ur(v) + %Q}‘(v) + Zk:vﬁ‘Y{‘ . (65)

The first two terms of (65) are the total unsatisfied demand and the
total capacity, respectively. The philosophy behind minimization of D (v)
is therefore a balance between a welfare goal (minimizing unsatisfied
demand) and an efficiency goal (minimizing the total capacity). Now let
the combinatorial part of the problem (step a of Section 3.1.) be
introduced. Define the boolean variables

1, if an activity k is located in j
0, otherwise.
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Further constraints may be introduced on the number of activities
which can be established in the same location. For simplicity, it will be
provisionally assumed that only one activity can be established in each
location. The assumption seems restrictive, but it may be easily relaxed,
as it will be done in later sections. In terms of the boolean variables,
the assumption gives rise to the constraints

xF 1
k

If the boolean variables and the sum of the fixed charges (which
now is no longer a constant) are suitably introduced in (65), the
following modified dual function is obtained

D(v,x) = Y [UX() + vEY] + Y xF[QF(v) — Aal] . (66)
jk jk

This function has to be minimized with respect to the dual variables
vF and maximized with respect to the variables xi The resulting
problem is

max min D (v,x) (67)
st Y xF<1 (68)
xf e {0,1} . (69)

An upper bound to the optimal value of D is obtained by relaxing
constraint (69) and replacing it with the weaker condition:

0<x<1 (70)

where the variables x| are allowed to assume any real value in the
unit interval. But the right-hand side inequality in (70) is redundant,
since it is already implied by constraints (68). Therefore, the relaxed
version of (67)-(69) becomes

max min D (v,X) (71)
st rxF< 1 (72)
k

x>0 . (73)
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Problem (71)-(73) is a saddle-point problem. It is therefore natural to
look at D(v,x) as the Lagrangean function associated with some
«primal» problem, the variables x} playing the role of Lagrange
multipliers. It will be shown that such a «primal» problem indeed
exists, and it is given by the following mathematical program

min P (v,z) (74)
stz > QF(v) — Aaf (75
z>0 (76)

where the function P (v,z) is defined as

P(v,2) = Y [UKO) + v¥Y + Yz .
ik i

To show that (74)«(76) is equivalent to (71)-(73), the following
«Lagrangean» function is introduced

D_(V,Z,X,e) = P(V,Z) - ZXJI( [Zj— Qr(v)_ Aa_:(] - Zejzj
jk i

where x,-k and ¢; are the Lagrange multipliers corresponding to
constraints (75) and (76), respectively. Problem (74)-(76) is equivalent to
the following saddle-point problem

Q?rwnﬁmLLQ a7
st. x>0 (78)
g >0 . (79

(The nonnegativity constraints on the multipliers are required because
constraints (75)_and (76) are inequalities). The vanishing of the
derivatives of D with respect to z; implies

1-)Yxf—g =0

YxE=1-—¢ . (80)
k
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Equation (80) and constraints (78) and (79) imply
0<1—-¢<1

therefore (80) is equivalent to (72). Substitution of (80) into (77) yields:
D(vz,x,e) = Y [UK() + vEYE] + Y 2 -
ik j

=Y (1 -g)z + ) x[QF(W) + Aak] — Y gz
i i !

and since the terms in z; and g cancel out a comparison with (66)
shows that

5(v,z,x,s) = D(y,x) .

It follows that problem (77)-(79) is equivalent to problem (71)-(73),
and hence that problem (74)-(76) is equivalent to problem (71)-(73).

A more detailed description of the general structure of the solution
to (74)<(76) will now be given. The way the function P (v,z) has been
built always forces the variables z; to assume the lowest possible value
in the optimal solution of (74)«(76). From constraints (75) and (76) it
follows that it must be either

z; = max [QF(v) — Aaf] (81)

z =0 (82)

or both, which ever is greater. When only (81) holds, a k* which
maximizes its right-hand side exists such that

z = QF(W — AaF >0 (83)
while for every k= k* it must be

z; > QF(v) — AaF . (84)
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Therefore, constraint (75) is binding for activity k* only, and
nonbinding for all other activities. It follows that the multipliers of
constraints (75) are

x>0 (85)
xf = 0 for k # k* . (86)

On the other hand, since (82) does not hold, constraint (76) is
nonbinding, therefore it must be

g =20. (87)

x =1 (88)

that is, the location j is chosen to establish an activity k*. It is
important to notice that (88) yields a natural integer solution, that is,
one which is feasible for the original combinatorial problem.

When only (82) holds, then it follows that

Qf(v) — Aaf < 0 for all k (89)

that is, constraints (75) are nonbinding for all activities, and the
corresponding multipliers will be

xF == §) for all k . (90)

In other words, no activity will be established in location j. Again it
is important to notice that (90) yields a natural integer solution.

When both (81) and (82) hold, then (85) and (86) hold as well, but
instead of (87) it must be

g§2>0
and from (80) it follows that

k*

That is, a natural integer solution is no longer assured and fractional
values for x}“ may be (and usually are) introduced.
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Equations (81) and (82) suggest a new possible formulation of
problem (74)-(76). From (81) and (82) it follows that

z; = max {mfx [Qf(v)—Aaf] , 0}

and if this result is substituted in P(v,z) the following non-smooth
optimization problem is obtained:

min G (v) (92)

where the function G (v) is defined as

G = LUK + viY] + ) max { max [Qf(v) — Aaf], 0} .

Problem (92) is computationally attractive, since it is unconstrained
and contains only the variables v*. The price to be paid for this
simplicity is the nonsmoothness of the function G.

A summary of the main duality and equivalence results is useful. If
X, v, z denote the optimal values for the corresponding arrays of
variables, the following equalities hold

D#,%) = GF) = P, 2).

For general nonoptimal values x, v, z the following inequalities hold

D(v,x) < G(v < P(v,2). 93)

If, as a special case, x is the optimal integer solution, it is seen
from (85) that G (v) provides the tighter upper bound to D (v, x).
Anyway, both G and P can be used to compute upper bounds to D,
depending on computational convenience. Problem (92) is simple, but
nonsmooth, as already stated. Problem (74)-(76) is a smooth convex
programming problem but has the nonlinear constraints (75). If an
algorithm to solve either (92) or (74)-(76) is available, it can be used
to find the optimal relaxed values for the x}. If all the xj assume
natural integer values, then the original combinatorial problem is solved,
and no further refinement is needed. If some x; assume fractional
values, a branch-bound refinement procedure may be started.
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3.3. Heuristic approximations

The problems introduced in Section 3.2. may be hard to solve
exactly, and the requirement of integer values for the variables xf
makes the task even harder.

However, there are many reasons why applications to real problems
should not be obsessed with finding exact solutions. First, the input
data and the definition of the physical setting are always less precise
than an exact algorithm seems to imply. The set of possible locations,
for instance, is usually a set of zones in which a given area is
subdivided, and there is much arbitrariness in this subdivision. An
exact algorithm would possibly be very sensitive to changes in the
subdivision, but in the real world such changes are meaningless.
Secondly, finding an exact solution corresponding to a given set of
input data is much less interesting and useful than having a whole
spectrum of solutions corresponding to different sets of input data. A
sensitivity analysis has typically to be carried out on parameters like the
space discount rate, the travel costs, the trade-off between benefits and
costs, the elasticity of demand to accessibility, the minimum feasible
size for the activities, and so on. Finding an exact solution for all the
possible combinations of different values for these parameters is usually
prohibitive. Third, producing numerical solutions is not the only aim of
optimal location models, nor is it necessarily the main one. Qualitative
understanding of the relationships among the main factors affecting
location patterns is often a much more interesting goal, both in theory
and in applications.

The reasons listed above suggest that fast and easy heuristic
approximations could be a useful tool for optimal location problems.

A heuristic approach to solving (74)-(76), subject to the integrality
conditions on the multipliers xjk, may be developed starting from
equations (81)-(91), which can be summarized as follows

let k* maximize

Qf(v) — Aaf

then
if Q€ —2Aa" >0, X =1 94)
if QF(W —Aaf" =0, 0<x <1 (95)
if Q¥ —Aa <0, x¥=0. (96)

The above result refers to general (noninteger) values for x}. Since,
however, an integer solution is looked for, it will be assumed that only
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integer values will be introduced in the trial solutions. Therefore
equation (95) can be dropped and the following heuristic optimality
conditions are obtained:

if QF(W > Aaf, 2= 1 97)
if QF(v < Aaf, =10 . (98)

Conditions (97) and (98) state a very reasonable efficiency principle. If
the total size required by the activity k* in location j is greater than,
or equal to, the fixed charge a to be paid for establishing it
(multiplied by the trade-off parameter A), than j is a good location for
activity k*, and it is worth establishing it there. If the total size
required by the activity k* in location j is less than the fixed charge
term, then j is a bad location for activity k* which will not be
established there. From (97) and (98) a very simple interpretation of
the fixed-charge term follows: Aaf is the minimum feasible size for an
activity k in location j. This interpretation is very useful in applications,
since it is often easier to assess the values for the minimum feasible
sizes, rather than for the fixed costs. Conditions (97) and (98) can be
rephrased in the following first rule of thumb (ROTI):

ROT] choose only those locations where at least one activity requires
a capacity at least as great as the minimum feasible size;
establish in each of these locations only the activity with the
highest difference between required capacity and minimum size.

The rational behind ROT1 is that only those activities will be
established that attract enough demand to justify at least the minimum
feasible size. The reason why only one activity is possibly established
in each location is because of contraints (72). But now these constraints
can be easily relaxed, and the more general case, in which many
different activities can be established in the same location, can be
introduced. The efficiency conditions for this case are stated in the
following, second rule of thumb (ROT2):

ROT2 step 1 for each possible location, rank the activities according
to the difference between required capacity and minimum
feasible size; if this difference is negative, drop the
corresponding activities from the list

step 2 establish in each location as many activities as possible,
choosing them according to the ranking obtained in step 1.

There is some vagueness in step 2, since the precise meaning of «as
many activities as possible» has not been defined. However, it is felt
that it is better to keep this vagueness, and leave the decision maker
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some freedom on judging by inspection when to stop picking up
activities from the list. This freedom is needed because the constraints
imposed in each zone by the limited availability of space and by the
already existing physical stocks act in a nonsmooth and hardly
quantifiable way. The tools provided by ROT2 do not solve the
problem of how to meet these constraints in the best way, which is
left to town designers and architects. ROT2 simply yields a set of
indicators by means of which activities and locations can be ranked for
a possible choice.

It is worth recalling that, although the indicators and the ranking
produced by ROT2 are very simple and intuitive, they are rooted in a
rigorous ground, since ROT2 has been obtained by suitably
approximating and generalizing the exact optimality conditions (94), (95),
and (96).

Both ROT1 and ROT2 can be used to generate improved values for
the variables x{. The general structure of a possible iterative algorithm
is shown in the block diagram of fig. 3.

The diagram is self-explanatory and only a few comments are needed.
The function D (v, x) is the one defined by (66). Step 1 is quite
arbitrary and any initial guess can be used. However, since the
algorithm is a heuristic one, independence of the final solution from
the initial guess may not be assured. Therefore, it is worth putting
some effort in finding a good initial guess. When no better assumption
is available, two possible starts are:

1. all activities are established in all locations;
2. no activity is established in any location.

Although assumption 1 may seem more reasonable, assumption 2 has
some definite computational advantages. This can be shown by
performing the first iteration of the algorithm. If all xf = 0, then

mvin D (v, x)

reduces to

v

min ) (g}‘e‘”ik + vEYH (99)
i

[(99) follows from (61) and (66)]. Standard calculus yields the solution
to (99)

b= — or gl = == (100)
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and substitution of (100) into (64) yields the total capacities required in
each location

e : g \aw
Q - o [Zﬂ?? I <—Yj—‘) + hjk] (101)

START

guess an initial trial

®

solution {xﬁ};
set V = - ® and {y%} =0

v

solve the unconstrained C)

dual problem

min D(v,X)
v

for x fixed; set
z = D(v,x)

v

no
v

1~
¥ is
{yj

the solution

keep the old solution ©
k k

c} o= .}

{yj} {x]

v

X ®
update {xj} by
ROT1 or ROT2
®

set V. = 2

Figure 3 An iterative heuristic algorithm for the multiactivity location problem
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The right-hand side of (101) depends only on given constant terms,
and can be computed beforehand. Going now to step 5 of the
algorithm, the differences

Qk — Aat (102)

are computed and used to update the xf, either by ROTI or by ROT2.
A sensible updating can be performed only if some of the differences
(102) are positive. If, however, it is found at this step that all the
differences (102) are negative, the algorithm stops after two iterations,
and the final solution is the same as the starting guess 2, that is doing
nothing. When this happens, no location problem exists. It is therefore
suggested to us