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FOREWORD 

For some years , IIASA has had a keen interest in mathematical demography. In this 
paper, reprinted from Demography, Brian Arthur takes a new look at the two ergodic 
theorems of demography. He shows that there is a single mechanism behind both types of 
ergodicity and that this mechanism provides the basis for a simple and unified proof of 
the two theorems. 
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THE ERGODIC THEOREMS OF DEMOGRAPHY: 
A SIMPLE PROOF 

W. Brian Arthur 
Food Research Institute, Stanford University, Stanford, California 94305 

Abstract-Standard proofs of the ergodic theorems of demography rely on 
theorems borrowed from positive matrix theory, tauberian theory , and the 
theory of time-inhomogeneous Markov matrices. These proofs are effi­
cient and expedient, but they give little direct insight into the mechanism 
that causes ergodicity . This paper proposes a simple and unified proof of 
the two ergodic theorems. It is shown that the birth dynamics can be 
decomposed into a smoothing process that progressively levels out past 
fluctuations in the birth sequence and a reshaping process that accounts 
for current period-to-period changes in vital rates . The smoothing process, 
which causes the birth sequence to lose information on its past shape, is 
shown to be the ergodic mechanism behind both theorems. 

It is well known to mathematical de­
mographers and population biologists 
that if the age-specific fertility and mor­
tality patterns of a population remain 
unchanged over time, its age composi­
tion will converge to a fixed form, 
regardless of its initial shape. This is the 
Strong Ergodic Theorem of Demogra­
phy, first proven by Lotka and Sharpe in 
1911. And it is well known that if two 
populations start out with different age 
compositions but are subjected to the 
same sequence of age-specific vital 
rates, changing over time, their age com­
positions will become increasingly alike, 
although changing too, of course, over 
time. This is the Weak Ergodic Theorem 
of Demography, conjectured by Coale in 
1957 and proven by his student, Lopez, 
in 1961. 

These two theorems stand at the cen­
ter of mathematical demography. The 
first theorem makes stable population 
theory possible. Usually there is no clear 
or simple connection between fertility­
mortality behavior and the age composi­
tion. But in the special case of unchang­
ing vital rates, the theorem shows that a 
unique correspondence between age­
specific life-cycle behavior and the age 

composition exists. We can use this cor­
respondence in demographic analyses, in 
population projections, and in the esti­
mation of vital rates. The second theo­
rem makes clear which vital rates deter­
mine the age composition. Only recent 
vital rates count; the influence of the 
initial age composition is progressively 
washed away. Therefore we need know 
only recent demographic behavior if we 
want to determine the age structure of a 
population. 

Proofs of both theorems are by now 
routinely available, rigorous, and stan­
dard. Strong ergodicity is proven either 
via positive matrix theory (invoking the 
Perron-Frobenius theorem) or by asymp­
totic integral equation theory (invoking 
tauberian theorems), depending on 
whether population dynamics are de­
scribed in discrete or continuous time 
(see, for example, Coale, 1972; Leslie, 
1945; or Parlett, 1970). Weak ergodicity 
is proven also by positive matrix theory 
or alternatively by appeal to the theory 
of time-inhomogeneous Markov matri­
ces (see, for example, Cohen, 1979; or 
Lopez, 1961). While these proofs are not 
inordinately difficult, they say little di­
rectly to our intuition. The mechanism 
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causing ergodicity in both cases tends to 
lie hidden, obscured by the rather pow­
erful mathematical apparatus needed for 
proof. Moreover, strong ergodicity ap­
pears to describe forces that push the age 
composition toward a fixed shape; weak 
ergodicity appears to describe forces 
that cause the age composition to shed 
information on its past. To the student 
unfamiliar with ergodic theory, it is not 
clear how the two theorems are related. 

It turns out that there is a single and 
simple mechanism behind both types of 
ergodicity which can be seen clearly 
without invocation of powerful outside 
theorems. This mechanism is the pro­
gressive smoothing or averaging of the 
birth sequence by the fact that both large 
and small past cohorts act together to 
produce a given year's crop of births. In 
this paper we will suggest a simple proof 
of both theorems based on this smooth­
ing mechanism. 

THE PROBLEM 

A single-sex population evolves over 
time according to the Lotka dynamics 

x 

where Br is the number of births in year 
t, mr.x is the proportion of those at age x 
who reproduce at that age in year t, and 
Pr.x is the "proportionate size" at time t 
of the cohort then aged x (that is, its size 
in year t relative to its size in its birth­
year t-x) where size-changes are caused 
by mortality and migration. The initial 
birth history, B-i. . .. , B-N• is assumed 
given for ages up to the oldest age N in 
the population. Summation in this case is 
understood to run from l to M, where M 
is the upper age limit of childbearing. In 
other words, this year's crop of births is 
the sum of births born to those born in 
past years who survive and reproduce. 

Of course, we can set time zero to any 
year we please, arbitrarily. This will be 
useful later. A technical condition also is 
needed later. For certain ages fertility 

might well be zero. We will assume that 
the fertility age pattern mr.x fulfills a no­
common-divisor condition at each time 
t: that is, that the fertility rate is strictly 
positive-greater than E, some uniform 
constant-at at least two ages x1 and x2 
(the same ages each time) which share no 
common divisor greater than one. (Thus, 
for example, a pattern of reproduction at 
ages 9, IO and 12 fulfills this condition, 
whereas a pattern of reproduction at 
ages 10, 12 and 14 does not-there is a 
common divisor, 2.) Since consecutive 
integers have no common divisor, hu­
man reproduction, which takes place 
over a block of consecutive ages, fulfills 
the condition. 

The age composition, or proportion of 
the population at age a at time t, is given 
by the numbers at age a divided by the 
total population: 

(2) 

x 

Summation in this case is over all ages I 
to N in the population. 

We now state the two theorems we 
want to prove, assuming the populations 
we speak of have reproductive patterns 
that fulfill the no-common-divisor condi­
tion. 

Weak Ergodic Theorem: Two popula­
tions with different age compositions 
at time zero, if subjected to the same 
time-changing sequence offertility and 
mortality patterns, tend asymptotical­
ly to have identical but time-changing 
age compositions. 
Strong Ergodic Theorem: The age 
composition of a population subjected 
to time-constant patterns of fertility 
and mortality tends asymptotically to 
a fixed form. 
In looking for a proof of these theo­

rems, we might start by noticing that the 
age composition of a population, once 
the vital rates are given, depends only on 
the birth sequence. Therefore we might 
suspect that strong and weak ergodicity 
reside somehow in the birth sequence 
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itself. Looking further at both theorems, 
we see that what is common in them is 
that the initial age composition before 
time zero eventually ceases- to count. In 
the weak version it is progressively re­
shaped by events after time zero, identi­
cal events for two populations producing 
identical reshaping. In the strong version 
it is also progressively reshaped, but this 
time into a fixed form that we know and 
can predict. Translated to birth sequence 
terms, what we must show then is that 
the shape of the birth sequence before 
time zero, the birth history, and any vital 
events before time zero, cease to deter­
mine the future course of the birth se­
quence as time passes. This is ergodicity. 

In one special case, ergodicity in the 
birth sequence would be easy to show. 
This is where the net reproductive prob­
abilities taken across all cohorts in each 
period sum to one. The size of any given 
year's birth cohort would then be a 
weighted average of the size of the repro­
ductive cohorts. The birth sequence, un­
der these circumstances, would "aver­
age its past"; it would smooth over time 
to a constant level, and would therefore 
forget its initial shape. 

In general things are not so simple. 
Reproductive levels vary from period to 
period, usually conforming to no particu­
lar level or trend. But the special case 
does suggest a strategy for proving ergo­
dicity in general. Suppose we adjust the 
birth sequence by factors chosen careful­
ly so that it smooths, as in the special 
case, to a constant level. We choose 
these factors to depend only on vital 
rates after time zero. Thus adjusted, the 
birth sequence must forget its initial 
shape. We now recover the actual birth 
sequence by the reverse adjustment 
process. By doing this we will reshape 
the smoothed adjusted sequence, but 
note that we will reshape it only accord­
ing to the dictates of vital events after 
time zero. The initial birth history re­
mains forgotten, smoothed away, and 
reshaping determines the future course 
of the actual birth sequence. If these 

operations are possible, ergodicity will 
be straightforward to show. 

ERGODICITY IN THE BIRTH SEQUENCE 

Following the strategy just outlined, 
we adjust the birth variable Br from time 
zero onward by a factor rr, so that 
"adjusted births," Br, are 

(3) 

We want to show first that for careful 
choice ofth,e factors rr, the adjusted birth 
sequence, Br. iterates to a constant level. 
Allowing ourselves some foresight, we 
choose the factors rr so that they evolve 
according to the dynamics 

x 

from t = M onward, with the initial 
sequence ro, r1, ... , 'M- t given, and 
set at some arbitrarily chosen positive 
values. (For example, we can allow the 
initial r-values to be a sequence of 1 's.) 
Notice that by this definition the r fac­
tors are always positive, and in particu­
lar they depend neither on the birth 
history nor on vital events that took 
place before time zero. 1 

Now rewrite the dynamics (1) by di­
viding through by rr: 

x 

x 

for t = M onward. (5) 

Also, dividing (4) through by rr, we have2 

x 

fort = M onward. (6) 

Writing the terms Pr.x mr,x Yr - I Yr- x as l/lr,x 
enables us to rewrite (5) and (6) together 
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its dispersion , eventually becoming 
trapped at a constant level. 4 

Br = L Br- xl/lr,x• with L l/lr ,x = I, 
x x 

fort = M onward . (7) 

The original dynamics have been 
adjusted merely by dividing through by 
the variable factor rr. But notice that the 
adjusted birth sequence, Br, "repro­
duces" itself with its own "net fertility 
function," I/Jr, that sums to one. In other 
words, the new dynamic process, in (7), 
for adjusted births is a weighted-averag­
ing or repeated-smoothing process. Br is 
a weighted average, with weights I/Jr x. of 
the M immediately past B-values. In' turn 
Br+ 1 is a weighted average, with new 
weights l/!r+l,x• of Br and M - I past B­
values. Br+ 2 is a weighted average of 
Br+1' Br and M - 2 past B-values. And so 
on. This repeated averaging of the B 
sequence--of averaging, then of averag­
ing the averages-we would expect intu­
itively, will converge B to a limiting 
constant value B as long as the weights 
l/lr,x are spread over several ages (the 
ages at which reproduction takes place in 
the original dynamics). Large and small 
past values of B, thrown together by the 
averaging process, will determine the 
current B at some value intermediate and 
any dispersion in the B values will tend 
to disappear. 

Exact conditions under which repeat­
ed-averaging processes smooth to a con­
stant have been examined in Feller 
(1968) and in Arthur (1981). 3 We will not 
repeat the analysis here. Suffice it to say 
that two outcomes are possible. Where 
the weights are positive at ages which 
are multiples of some integer d, then B 
could oscillate indefinitely with period d. 
But where there is no common divisor d, 
as assumed earlier, smoothing to a con­
stant must take place. In this case, at any 
time all B values sufficiently far in the 
future must lie within the spread or dis­
persion of the M values just past. Hence 
the B process must progressively narrow 

In the limit then , as time t tends to­
ward infinity, 

Br = B , a constant . (8) 

Since Br = Br · rr we may recover the 
actual birth sequence quite simply by 
multiplying through by rr . Hence we 
have 

lim (Br - rrB) = 0 . (9) 
r-.oo 

In sum, the argument shows the birth 
dynamics to be a composite of two pro­
cesses, one a process that smooths away 
the initial birth history to a constant B, 
and the other a process that progressive­
ly reshapes this smoothed, adjusted birth 
sequence according to current vital 
events. This smoothing and reshaping 
for an illustrative birth sequence is 
shown in Figure I . 

We now can see clearly the ergodic 
mechanism at work within the birth se­
quence. All the information on the initial 
birth history and vital rates before time 
zero is contained in the B smoothing 
process. But this information is repeat­
edly averaged away into a single con­
stant so that the birth sequence ''for­
gets" the shape it had in the past. The r 
sequence reshapes this constant into the 
actual future birth sequence, but this 
reshaping sequence depends only on vi­
tal rates, and by definition only on these 
after time zero. Since the age composi­
tion is a simple transformation of the 
present birth sequence the two theorems 
follow immediately. 

THE WEAK ERGODIC THEOREM: PROOF 

Recalling the definition of the age 
composition in (2), we now have 

lim 
( 

Br-aPr,a 

L Br-xPr,x 

Brr-aPr a ) ----·- =0 
L Brr-xPr,x 

x x 
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Figure I. 

that is, 

I. ( r1 - aP1.a ) _ O tm c10 - - . 
t-+"' ' L r1-xPt,x 

(10) 

x 

As time becomes large, the age composi­
tion becomes arbitrarily close to a com­
position that depends only on vital rates 
after time zero. Given two populations 
with different initial age compositions 
but subjected to identical vital events 
after time zero, we may choose their 
accompanying initial r values identically; 
then their reshaping sequences will be 
the same. By equation (10), their age 
compositions will become arbitrarily 
close. 

THE STRONG ERGODIC THEOREM: 
PROOF 

In this case the vital rates are constant 
over time, if not over age: that is, Pr,x = 
Px and m1,x = mx. Let >.. be the unique 
real root of the equation 

x 

Since we may choose the initial r se­
quence, let it be given by r1 = >..1 for times 
0 to M - 1. It is then easy to show from 
(4) that these constant vital rates cause r1 

to equal >..1 for all t. Thus r grows geomet­
rically, and in turn so does the asymptot­
ic birth sequence. Any population sub­
jected to these unchanging vital rates will 
therefore, by (10), tend to the fixed age 
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from knowledge only of vital events after 
time zero. 

Pa 
Jim C1,a = "" , 

!--->"' L,; PxA a-x 
(11) 

x 

which is a function constant in time and 
uniquely determined. 

REMARKS 

Ergodicity, as shown in both theo­
rems, would seem to be more a once and 
for all phenomenon than a continual 
shedding of past information. This of 
course is not the case. By shifting the 
arbitrary time-zero reference point for­
ward at will in the above proof, we can 
show that the past is continually forgot­
ten . Another way to see this is to notice 
that the r sequence is itself governed by 
exactly the same dynamics as the birth 
sequence. Therefore it too is ergodic. 
Therefore events after time zero, which 
determine r and equivalently the future 
movements of the birth sequence, pro­
gressively cease to count too. As time 
travels forward ergodicity follows be­
hind. Just how fast the birth sequence 
forgets its past is an empirical question; 
Kim and Sykes (1976) have shown in a 
series of simulation experiments that in 
practical cases 75 to 100 years of vital 
data determine the age composition to a 
fair degree of accuracy. 

Standard proofs of the weak ergodic 
theorem work by showing that the age 
compositions of two initially different 
populations become "closer" as defined 
by some norm, over time. This proves 
ergodicity of course, but indirectly in the 
sense that if two populations approach 
each other their different pasts must no 
longer count. 5 The above proof is differ­
ent. It shows directly the ergodic mecha­
nism operating within the single popula­
tion as the progressive forgetting of the 
past birth sequence due to the natural 
spreading and smoothing out of repro­
duction. And it shows how the asymptot­
ic age composition can be constructed 

CONCLUSION 

This paper has attempted to show a 
simple and unified proof of the two cen­
tral theorems of demography. The proof 
relies on a simple decomposition of the 
birth sequence into a smoothing part 
inherent in spreading the replacement of 
population over several age groups and a 
reshaping part due to period-to-period 
changes in reproductive levels after time 
zero. It is the process of smoothing that 
averages out past humps and hollows in 
the birth sequence and this is the ergodic 
property-the tendency to lose informa­
tion on the past shape of the birth se­
quence-that lies behind both theorems. 
In the Strong Ergodic case it causes the 
birth sequence to forget its initial shape 
and converge to geometric growth, and 
hence the age composition to assume a 
fixed form. In the Weak Ergodic case it 
causes the birth sequence gradually to 
lose information on its past shape, and to 
follow the period-to-period relative 
change in vital rates, and hence the age 
composition to be uniquely determined 
by recent demographic history. 

NOTES 
1 Note that although certain " cohort lifetable" 

rates p.._, (those that pertain to cohorts born before 
time zero , that is, those for which t < x) are 
affected by events before time zero , equation (4) 
connects the r values with lifetable rates only after 
times t greater than M, the maximum age x occur­
ring in (4) . Hence r, as defined, is independent of 
vital events before time zero. 

2 This equation is in fact a generalized character­
istic equation. If we put rr = Ao· At .. . Ar it 
becomes I = LP,,xm, ,xA,- 1 

• Ar - 1 - t •• • Ar -x+ 1 - t 

where the summation is over reproductive ages. 
This reduces to the familiar characteristic equation 
when there are no time variations. 

3 Feller uses renewal theory arguments. Arthur 
argues from first principles. 

4 It is easy to show that this smoothing process 
for B converges within geometrically narrowing 
bounds. 

5 Among these two-population proofs is one due 
to McFarland (1969) that discusses the mechanism 
causing the approach of the two populations in 
some detail and one by Lopez (1967) which uses a 
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smoothing argument. The Lopez argument turns 
out to be closely related to the one given here. If 
we identify, from time zero onward, the sequence 
r, with Bi(t), the birth sequence of Lopez's second 
population which has an arbitrary initial history, 
then by the argument in this paper the two birth 
sequences B(t) and B2(t) tend to a constant ratio . 
Resemblance of the two age compositions follows . 
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