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Michael Freiberger1, Michael Kuhn1, and Stefan Wrzaczek1
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January 23, 2023

Abstract

Most of the models on the life-cycle utilization of health care assume that individuals are able to 
foresee the development of their health perfectly. However, health shocks with significant impact (e.g. 
severe life-threatening conditions, the onset of chronic disease or accidents) should not be averaged 
into a mean value, as they have the potential to put the life-course onto a different trajectory. In 
this paper, we introduce a dynamic optimal control framework incorporating a stochastic health shock 
with individuals allocating their resources to consumption and different kinds of health care over their 
life-cycle. We distinguish between general health care and shock specific prevention, acute and chronic 
care. This set-up enables us to analyse how the health risk shapes individual behaviour with respect 
to the different types of health care and how health shocks change the trajectories of consumption and 
savings. Newly developed transformation techniques allow us to investigate the optimal decisions made 
in anticipation of a potential health shock and the optimal reaction to all possible shock scenarios. We 
are able to obtain analytic expressions for the consumption and health care utilization profiles before 
and after the shock and identify the driving forces. Furthermore, we extend the value of life concept to 
other aspects of individual health. Finally, we illustrate our findings by calculating a numerical solution 
calibrated to an individual facing a potential cancer diagnosis in the US.

∗This work was supported by the project ’Life-cycle behaviour in the face of large shocks to health’ (No. P 30665-G27)
of the Austrian Science Fund (FWF).
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1 Introduction
Typically, life-cycle models of health behaviour take an ex-ante stance, where a representative individual
is subject to the depreciation of a health stock (Grossman, 1972), subject to some mortality process
(Ehrlich, 2000; Murphy and Topel, 2006; Hall and Jones, 2007; Kuhn et al., 2015), or subject to
the accumulation of deficits (Dalgaard and Strulik, 2014). Individuals fix their life-cycle decisions in
perfect anticipation of these processes, regardless of whether they are deterministic or stochastic. In a
similar vein, the statistical value of a life is based on an ex-ante evaluation of survival (Shepard and
Zeckhauser, 1984; Rosen, 1988; Murphy and Topel, 2006; Hall and Jones, 2007; Kuhn et al., 2010; Kuhn
et al., 2011; Kuhn et al., 2015).
While hugely simplifying analytical complexity, the ex-ante perspective amounts to a gross stylization.

In reality, health is not developing according to a smooth process which may be shaped to some extent
by health investments, but it is rather subject to smaller or greater shocks. Some of these, such as severe
life-threatening diseases (e.g. heart attacks, stroke or cancer) or accidents as well as chronic diseases
(e.g. diabetes or dementia), have the potential to put the entire life-course on a different trajectory.
Even if individuals are anticipating the risk of such a shock, the optimization problem changes in as far
as the shock subjects the individual to different constraints (e.g. a permanently lower income stream due
to disability or a persistently higher mortality risk after the shock) and, thus, to a different behavioural
regime. In consequence, individuals are also prone to alter their behaviour prior to a health shock by
engaging in precautionary saving or in preventive actions. The nature and intensity of such actions is
shaped by institutions, such as the availability (or not) of health or disability insurance, as well as by
policy interventions, such as the subsidization of preventive behaviour.
In this paper, we detail a life-cycle model, allowing us to study large, singular shocks to health. Thus,

we consider a life-cycle model with endogenous health and survival in the spirit of Kuhn et al. (2015)
but allow for the onset of a disease or accident at some random time s. The individual is only aware
of the risk, modelled as a hazard rate, that can be influenced through prevention. If the health shock
materializes at s, the health of the individual is affected, implying that (i) acute life-saving and/or
disability-preventing health care may be required at s; (ii) mortality may be permanently elevated in
the course of a chronic disease; (iii) a state of disease/disability emerges that may subsequently affect
the individual’s utility and earnings; (iv) chronic health care may be required to mitigate the adverse
longer-term consequences of the shock. Since we model the life of an individual over time (i.e. age)
and since the health shock can set in at any time during the life-course, the health state, assets and
the individual’s consumption and health care choices are age and duration dependent. This goes well
beyond most of the analysis to date.
In order to solve the underlying stochastic optimal control model with a random stopping rule (akin

e.g. to a problem considered by Boukas et al. (1990)) we transform the model into a vintage optimal
control model, following a novel approach by Wrzaczek et al. (2020). This allows us to analyse in
a coherent framework the way in which the pre- and post-shock dynamics of both state and control
variables are linked through anticipation and retrospection. In so doing and in contrast to most of the
previous literature, we make a clear distinction between preventive health care (lowering the hazard rate
directly or indirectly), acute health care (lowering the instantaneous impact of the shock on survival
and/or subsequent disability) and chronic health care (lowering the disease/disability state after the
shock).
Our analysis allows us to generalize the value of life (VOL) and apply it to a setting with a health shock.

Specifically, we derive the value of health before and after the health shock, the value of prevention,
the value of surviving the shock, and the value of morbidity. We can also calculate an ex-ante value of
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health. As it turns out, these values can be used to write the first order conditions for the different forms
of health care in a compact form with a straightforward interpretation. Furthermore, the valuations are
instrumental in understanding the dynamics of the different forms of health care.
In order to illustrate these dynamics, we employ numerical techniques developed by Veliov (2003)

to present how the development of health and survival states depends on both age and duration of
the disease (following the shock). We illustrate the age-duration specific dynamics by focusing on an
application of our model to the onset of cancer as one major type of a health shock. For this purpose we
calibrate our model (to reasonable extent) to reflect the dynamics of survival and health care spending
relating to cancer, based on US data.
The economic literature on health-related shocks to the life-cycle is disperse. The largest part of this

literature analyses the impact of health-related shocks to labour productivity, to health care expenditure,
and to survival. Palumbo (1999), De Nardi et al. (2010), and Kopecky and Koreshkova (2014), for
instance, focus on the impact of risky health care expenditure during old age on precautionary saving;
while French (2005) and French and Jones (2011) focus on the impact of health shocks on labour supply
and retirement.1 Capatina (2015) provides an overall assessment of how four channels of health-related
risk (productivity, medical expenditure, time endowment, and survival) bear on income inequality and
precautionary saving. Common to all of these papers is that they model health risks as a sequence
of possibly state-dependent shocks over the life-cycle without emphasizing the scope for "catastrophic"
shocks with a propensity to drastically shift the life-cycle trajectory. Furthermore and importantly,
they do not provide scope for individuals to reduce the probability of shocks and/or mitigate their
consequences by purchasing preventive and/or curative health care, or engaging in other health-related
actions. Reichling and Smetters (2015) allow for possibly large shocks when showing that stochastic
mortality risks may explain the (rational) abstinence from private annuities when these shocks are
correlated with medical expenses. This notwithstanding, the focus of their work is again not on the
impact of such shocks on the utilization of health care and resulting health outcomes.2

Few works so far have studied how the risk of health shocks bears on an individual’s health investments,
either in response to a shock or, more importantly, in anticipation of a shock. Cole et al. (2019) consider
a setting where (curative) health expenditure and labour productivity are subject to health shocks, the
propensity for which depends on health status. The authors examine how the individual’s incentive to
engage in preventive efforts aimed at improving their health status are shaped by non-discriminatory
health insurance and wage-setting. There is no mortality risk and, as the authors themselves remark
in their conclusions, the focus is on small (transitory) shocks to health. In Hugonnier et al. (2013)
individual productivity and mortality both depend on an underlying health stock a la Grossman (1972).
Individuals can invest into this stock of health, which is assumed to be subject to morbidity shocks
following a Poisson process. The key distinction to our approach is that their modelling of uniform
health investments and a sequence of (at least principally) transitory shocks (apart from death) does
not allow them to discriminate between preventive health care (lowering the probability of a shock)
and curative health care (reducing the damage from a shock). Neither do they distinguish between the
valuation of preventive care as opposed to the value of curative or chronic care,3 distinctions which will
feature prominently in our work. Finally, Hugonnier et al. (2013) apply their model to understand the
relationship between financial as opposed to health investments, whereas our focus lies on how the life-

1The literature on health shocks as motivation for precautionary savings ties in with a large literature on the savings
response to (general) life-cycle risks (Eeckhoudt et al. (2005) and Eeckhoudt and Schlesinger (2008))

2Smith and Keeney (2005) examine the valuation of health in a setting where individuals face lotteries over their health
and income at distinct phases of their life-cycle. While these lotteries may involve large shocks, the authors do not
model the timing of these shocks; nor do they endogenize the health risks.

3The same applies to the models in Picone et al. (1998), Fonseca et al. (2013), Jung and Tran (2016) and Yogo (2016).
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cycle allocation of preventive and curative care is shaped by the nature of the health shock. The notion
of permanent health shocks is only taken up by Laporte and Ferguson (2007) who consider a version of
the Grossman (1972) model in which the health stock is subject to a single irreversible shock, the arrival
of which follows a Poisson process. They examine how the nature of this shock bears on the ex-ante
path of health investments; however, health is assumed to bear on morbidity and, thus, on period utility
but not on survival. Indeed, the length of life is assumed to be exogenous and deterministic.
This leads us to conclude that while the theoretical literature on health shocks has made considerable

advances in terms of understanding the consequences of (a sequence of) small shocks for life-cycle
patterns of labour supply, income, expenditure, and savings/consumption, comparatively little is known
yet about the implications of shocks for the demand for health care and for health behaviours in regard to
both their preventive and curative aspect. In particular, this applies to large shocks, such as the onset of
severe chronic disease (diabetes, heart disease, cancer) or debilitating accidents, which induce permanent
rather than transitory shifts in the mortality, morbidity and income patterns over the remaining life-
cycle. These issues lie at the heart of the present work.4

The remainder of the paper is structured as follows. The next section contains a description of
the model. Section 3 presents the analytical solution, involving in particular the derivation of various
value (of health) terms from the set of relevant shadow prices (Subsection 3.1) and their subsequent
employment in the first-order conditions (Subsection 3.2). Section 4 then proceeds to present the
necessary foundations for the numerical analysis, with Subsections 4.1 through 4.4 setting out data,
functional specifications as well as details of the solution strategy. Section 5 finally examines the
numerical solution of our framework starting with a comparison of data and the calibrated model
output in Subsection 5.1. Subsections 5.2 to 5.4 break down the numerical consumption, expenditure,
health and survival profiles and provide an exploration of the driving forces behind their behaviour as
well as illustrations of the numerical assessment of several distinguished values of health. Section 6
concludes.

2 Model
In this section we present a framework that integrates a large shock to the health of an individual
into a life-cycle model. For the timing of the shock we make the following assumptions (which apply
throughout the paper).

(A1) A large shock to health occurs at some age s, which is random. The probability rate of arrival is
known by the individual.

(A2) The event at s occurs only once, thus the life-time of an individual can be separated into a stage
before and a stage after s.

These two assumptions allow us to formulate the model as a stochastic optimal control model with a
random stopping time (see Boukas et al. (1990)) and analyse it in terms of a vintage optimal control
model (see Wrzaczek et al. (2020)). In both stages the individual chooses consumption and different
types of health care in order to optimize (expected) life-time utility. Denoting by t ∈ [0, T ] the age of
the individual, where T > 0 gives the maximum feasible age, we then have that s ∈ [0, T ] is the age

4From an empirical perspective, the behavioural adjustments and consequences for income and well-being of health shocks
have been studied extensively. Adjustments have been studied in regard to saving and consumption (Bíró (2013)) as
well as in regard to health behaviours, in particular smoking (e.g. Smith et al. (2001); Khwaja et al. (2006); Marti and
Richards (2017)).
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at which the model switches from stage 1 (where t < s) to stage 2 (where t > s). In the following, we
introduce both stages of the model and specify the rate at which the shock arrives.
Using the index i (i = 1, 2) to denote the life-cycle stage that is referred to, we assume that the survival

probability S1(t) in stage 1 is determined by the stage-1 mortality rate µ1(·).5 This rate is assumed
to be equal to the base mortality rate µb(t, S1, b1) which depends on age t, decreases in survival S1(t),
and decreases in the quantity b1(t) of general health care subject to decreasing returns. Here, b1(t) is a
generic measure of all health care that is unrelated to the condition(s) relating to the health shock. As
described in Kuhn et al. (2015), the high correlation between survival and health implies that S1(t) can
be interpreted as a proxy for the health status. We thus capture the negative dependency of mortality
on health by including S1(t) as an argument in µb.6 Altogether, the survival probability evolves with
age according to

Ṡ1(t) = −µ1(t, S1(t), b1(t))S1(t)

= −µb(t, S1(t), b1(t))S1(t), S1(0) = 1. (1)

The individual maximizes expected life-time utility

Es
[∫ s

0
e−ρtS1(t)u1(c1(t)) dt+ e−ρsV ∗ (S1(s), A1(s), s)

]
. (2)

The first term contains the aggregated utility from birth up to s, where the period utility u1(c1(t))
from consumption c1(t) is weighted by survival S1(t) and a discount factor e−ρt (the discount rate ρ is
assumed to be exogenous).7 The function u1(·) is assumed to fulfil the classic assumptions of positive but
diminishing marginal utility as well as the Inada conditions if consumption tends to zero or infinity. The
second part of the expected utility denotes the discounted aggregated utility of the remaining life-time,
given that the individual has suffered a health shock at age s. Here, V ∗(·) denotes the optimal value
(i.e. the value function) of the optimal control problem in the second stage and not only depends on the
age s at the occurrence of the shock itself, but also on the survival/health state S1(s) and the assets
A1(s) at the point of the shock. The expected value is built with respect to the random variable s. The
likelihood of a shock occurring at a given age can be influenced by the individual through investments in
preventive care h1. Let the probability distribution of s be defined by F(t) = P [s ≤ t]. The probability
distribution of s can be characterized by the hazard rate η of the shock, which is generally defined by (3)
and for which equation (4) holds:

η(t) = F ′(t)
1−F(t) , (3)

F(t) = 1− e−
∫ t

0
η(a)da

. (4)

More specifically, we assume the hazard rate

η(t) = η(t, S1(t), h1(t)) (5)

to depend on age t, to decrease in survival/health S1(t), and to decrease in the utilization of preventive

5Note that we will omit t wherever it is not of particular importance.
6This formulation might be surprising at first sight, but following the explanations in Freiberger and Kuhn (2020) and
under some weak assumptions it is consistent with a deficit accumulation model as developed in Schuenemann et
al. (2017), or a classic Grossman-type (Grossman, 1972) model with a monotonously depreciating health stock over
the life-cycle.

7This formulation reaches back to Yaari (1965).
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care h1(t) (again subject to diminishing returns). One might think, for instance, of h1 as the propensity
to invest in the vaccination against an infectious disease or as the propensity to attend precautionary
screenings for cancer or heart disease.
The asset dynamics in stage 1 follow

Ȧ1(t) = (r(t) + µ̄(t))A1(t) + w1(t)− c1(t)− pb(t)b1(t)− p1(t)h1(t), (6)

A1(0) = 0 and A1(T ) = 0; (7)

where in stage 1 assets A1(t) are annuitized and generate a return (r(t) + µ̄(t)), with r(t) and µ̄(t)
denoting the interest rate and the mortality risk premium on annuities8, respectively; where w1(t)
denote stage-1 earnings; where the price for consumption c1(t) is normalized to one; and where pb(t)
and p1(t) denote the prices for general and specific preventive health care, b1(t) and h1(t), respectively.
As usual we assume zero assets at birth and at the end of the maximum life-span T .
In stage 1, the individual chooses the (non-negative) control variables c1(t), b1(t) and h1(t) so as to

maximize the objective function (2) subject to the constraints (1) and (5)–(7).
Stage 2 is modelled in a similar vein but we now consider a disease stock E(t, s) as an additional state

variable that bears on the individual’s utility and constraints. For all variables in the second stage t and
s describe the age of the individual and the age at which the health shock has occurred respectively. We
assume that the condition that sets in at s may be associated with a specific mortality µm(t, s, E(t, s)),
depending on age, the time of the shock (or onset of disease), and on the disease stock. In addition,
the individual continues to be subject to a base mortality µb(t, S2(t, s), b2(t, s)) which can be reduced
by general health investments b2(t, s). With the total mortality rate µ2 of the individual in the second
stage being the sum of µb and µm, the dynamics of stage-2 survival S2(t, s) can be written as

Ṡ2(t, s) := dS2(t, s)
dt

= −µ2(t, s, S2(t, s), b2(t, s), E(t, s))S2(t, s)

= −
[
µb(t, S2(t, s), b2(t, s)) + µm(t, s, E(t, s))

]
S2(t, s).

The disease stock E(t, s) evolves according to

Ė(t, s) := dE(t, s)
dt

= f(t, s, E(t, s), h2(t, s)) (8)

where f depends on age, age at the time of the shock, the disease stock itself, and on disease-specific
(chronic) health care h2(t, s), which is aimed at lowering the disease stock (again subject to diminishing
marginal effects). Our general formulation of the disease dynamics allows for a range of different
interpretations. These include, in particular, the cases of (i) an accident or acute disease at the point of
the shock, which leaves the individual disabled initially but where a natural healing process, supported
perhaps by health care, leads to a gradual reduction of E(t, s) (understood to be the extent of disability);
and (ii) a progressive disease, such as cancer, diabetes or Alzheimer dementia, where E(t, s) tends to
increase unless it is kept in check or lowered by the consumption of health care.
To further account for the negative consequences of the onset of disease (or disability), E(t, s) is

assumed to lower stage-2 earnings, w2, and stage-2 utility u2, i.e.

∂u2(c2, E)
∂E

≤ 0 ∂2u2(c2, E)
∂E2 ≤ 0,

8From an individual point of view the annuity rate is exogenously given. However Section 4.2 presents details about the
actuarially fair annuity rate within our framework.
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∂w2(t, s, E)
∂E

≤ 0 ∂2w2(t, s, E)
∂E2 ≤ 0.

Finally, we assume the (initial) level of the disease state at the time of the shock t = s to be a decreasing
function of the general health state, as proxied by S1(s), and of one-off (acute) health care d(s), i.e.
E(s, s) = B(S1(s), d(s)). We assume that acute care affects initial deficits in addition to the probability
of surviving the health shock, as the example of cardiac arrest shows, that effective emergency care also
affects the long run consequences of the heart attack (see Hassager et al. (2018)).
The dynamics of stage-2 assets A2(t, s) are similar to those in stage 1 with the following differences.

First, earnings are not exogenous but depend on E(t, s), as detailed above. Second, expenditures for
chronic health care, purchased at price p2(t), substitute for preventive health care. Third, the initial
stage-2 assets A2(s, s) (just after the shock) equal the stage-1 assets A1(s) (just before the shock) net
of the expenditure for acute care which is purchased at a price pd(s)). Thus,

Ȧ2(t, s) = (r(t) + µ̄(t))A2(t, s) + w2(t, s, E(t, s))− c2(t, s)− pb(t)b2(t, s)− p2(t)h2(t, s) (9)

A2(s, s) = A1(s)− pd(s)d(s) and A2(T, s) = 0. (10)

According to the last boundary condition, assets have to equal 0 at the end of life regardless of when the
shock has occurred. The aggregated utility during stage 2 consists of the present value of the expected
(i.e. survival weighted) utility stream over the remaining life-course

P (S1(s), d(s)) ·
∫ T

s

e−ρtS2(t, s)u2(c2(t, s), E(t, s)) dt, (11)

where P (S1(s), d(s)) ∈ [0, 1] is the probability that the individual survives the health shock, which
similar to the initial value of the disease stock increases in the level of the stage-1 health state S1(s) and
the quantity of acute health care d(s) (subject to diminishing returns). Note that P (·) < 1 captures the
potential that the individual does not survive the shock (e.g. an accident, a cardiac event or a stroke),
whereas P (·) = 1 would reflect a disease that is not mortal upon its onset at s but only potentially
so over time (e.g. cancer, diabetes, Alzheimer’s disease). Finally, our model also embraces the case
of health shocks leading to instantaneous death, P (·) = 0. From now on, we will refer to P (·) as the
“continuation probability”.
The complete model is summarized in Equations (12) - (20).

max
c1(t),h1(t),b1(t)≥0

Es
[∫ s

0
e−ρtS1(t)u1(c1(t)) dt+ e−ρsV ∗ (S1(s), A1(s), s)

]
(12)

Ṡ1(t) = −µ1(t, S1(t), b1(t))S1(t), (13)

Ȧ1(t) = (r(t) + µ̄(t))A1(t) + w1(t)− c1(t)− pb(t)b1(t)− p1(t)h1(t), (14)

S1(0) = 1, A1(0) = 0, A1(T ) = 0 (15)

where

V ∗ (S1(s), A1(s), s) := max
c2(t,s),h2(t,s),
b2(t,s),d(s)≥0

P (S1(s), d(s)) ·
∫ T

s

e−ρtS2(t, s)u2(c2(t, s), E(t, s)) dt (16)

Ṡ2(t, s) = −µ2 (t, s, S2(t, s), b2(t, s), E(t, s))S2(t, s) (17)

Ȧ2(t, s) = (r(t) + µ̄(t))A2(t, s) + w2(t, s, E(t, s))− c2(t, s)− pb(t)b2(t, s)− p2(t)h2(t, s) (18)

Ė(t, s) = f(t, s, E(t, s), h2(t, s)) (19)
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S2(s, s) = S1(s), A2(s, s) = A1(s)− pd(s)d(s), A2(T, s) = 0, E(s, s) = B(S1(s), d(s)) (20)

Problem (12)-(15) can be interpreted as an optimal control model with random stopping time (see
Boukas et al. (1990)). For the analysis and for the numerical solution we transform the model into
a vintage optimal control model, as this offers additional economic insights as well as an established
numerical solution method (see Veliov (2003)).9 For the theoretical background and other examples
of the transformation method we refer to Wrzaczek et al. (2020). As the presentation of the model in
vintage optimal control form is not immediately instructive, we relegate it to appendix 7.1. Here, we
only note that the vintage formulation implies that all second-stage variables are indexed by both age t
and the time of the shock s, which can be interpreted as the arrival-date of a (potential) vintage of the
remaining life-course (in disease). Indeed, the notation we have introduced earlier meets this criterion.
The transformation includes the introduction of the following two auxiliary variables, which we will

subsequently employ in our calculations and for which interpretations are straightforward. First, Z1(t)
denotes the probability, that an individual has not suffered a health shock up to age t. We will also
relate to Z1(t) as the survival in good health10. As described above, the arrival rate of the health
shock η(t, S1(t), h1(t)) depends on age, health status and preventive health care. This implies that the
development of Z1 can be formulated through the following differential equation

Ż1(t) = −η(t, S1(t), h1(t))Z1(t) , Z1(0) = 1. (21)

Second, we need the auxiliary variable Z2(s), which is defined by

Z2(s) = Z1(s)η(s, S1(s), h1(s))P (S1(s), d(s)), (22)

and can be interpreted as the joint probability of experiencing and surviving a shock at age s.11

For further reference, Table 1 summarizes the control and state variables in the two life-cycle stages.

Control variables Stage 1 Stage 2 Shock time s
Consumption c1(t) c2(t, s) -
General Health investments b1(t) b2(t, s) -
Prevention expenditures h1(t) - -
Chronic care - h2(t, s) -
Acute treatment - - d(s)
State variables
Survival probability S1(t) S2(t, s) S2(s, s) = S1(s)
Assets A1(t) A2(t, s) A2(s, s) = A1(s)− pd(s)d(s)
Survival in good health Z1(t) - -

Joint “probability” of shock and survival at s - Z2(s) Z2(s) = P (S1(s), d(s))Z1(s)×
×η(s, S1(s), h1(s))

Severity of health deficits - E(t, s) E(s, s) = B(S1(s), d(s))

Table 1: Summary of all state and control variables in the basic framework

9The solution process is, nevertheless, not trivial as Veliov (2003) sets up a general framework, requiring multifaceted
adaptations for the solution of specific problems.

10It directly holds that Z1(t) = 1−F(t).
11The term probability is not precise as we are analysing a time-continuous model and, strictly speaking, Z2(s) defines

the probability density function of s multiplied with the continuation probability P . However the term “probability”
makes for more intuitive reading.
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3 Analytical results
For the vintage optimal control model, we apply the Maximum Principle presented in Feichtinger et
al. (2003) to arrive at a set of necessary optimality conditions. Specifically, we obtain

• a set of differential equations describing the dynamics of the adjoint variables;

• a set of transversality conditions for the adjoint variables, corresponding to state variables with a
free endpoint;

• a set of first-order optimality conditions for all control variables at every point in time/age, and
for the stage-2 control variables for every possible point in life at which the health shock can occur.

These conditions, together with the state equations (with initial and boundary conditions), are used to
find the optimal solution. In the following section, we will employ the first order conditions and the
adjoint variables (together with the corresponding differential equations) to identify and characterize
the various behavioural channels of the model.

3.1 Valuations of Health

Following Rosen (1988), Murphy and Topel (2006), Hall and Jones (2007), Kuhn et al. (2015) and others
we investigate the individual willingness to pay for changes in health. However, while the original works
focus on a reduction in the mortality risk, i.e. the value of life (VOL), we distinguish between the
willingness to pay for changes in a range of different aspects of health.
Definition 1. For the analysis of problem (12) - (20), we define the following valuations of health, which
we will use throughout. Here, V denotes the value function of problem (12)-(15).

Value of health ψiH in stage i = 1, 2: Willingness to pay for a reduction in the mortality rate (de-
preciation rate of the survival stock) µi in stage i = 1, 2. ψiH :=

(
− dV
dµi

)
/
(
dV
dAi

)
.

Value of prevention ψP : Willingness to pay for a reduction in the risk of a health shock by reducing η,
ψP :=

(
−dVdη

)
/
(
dV
dA1

)
.

Value of acute survival ψAS: Willingness to pay for an increase in the probability P of surviving the
shock, ψAS :=

(
dV
dP

)
/
(
dV
dA2

)
.

Value of morbidity ψM : Willingness to pay for a reduction in the disease/disability stock E,
ψM :=

(
− dV
dE

)
/
(
dV
dA2

)
.

In addition, it is convenient to define the value of second-stage life as

ψ2
life(t, s) =

∫ T

t

R(t, τ) u
2(τ, s)

u2
c2

(τ, s) dτ, (23)

with

R(t, τ) := exp
(
−
∫ τ

t

r(τ ′) + µ̄(τ ′)dτ ′
)
,

i.e. as the present value at age t of the stream of consumer surplus over the remaining life-course in stage
2, with the return on annuities being applied as discount rate. Note the similarity to the "‘conventional"’
value of life in earlier works (e.g. Kuhn et al., 2015).
Based on this, Proposition 1 presents an explicit analytical formulation of the valuations defined

above.
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Proposition 1. Assume the existence of optimal trajectories of consumption and (the various) health
investments in both stages of the individual life-cycle model (12)-(20) together with an interior solution
for the consumption profiles c1 and c2. The valuation terms in Definition 1 can then be written as
follows.12

Stage-2 valuations:

ψ2
H(t, s) =

∫ T

t

R2
H(t, τ, s) u

2(τ, s)
u2
c2

(τ, s) dτ, (24)

ψM (t, s) =
∫ T

t

R2
M (t, τ, s)

{
µ2
E(τ, s)ψ2

H(τ, s)− w2
E(τ, s)− u2

E(τ, s)
u2
c2

(τ, s)

}
dτ. (25)

Stage-1 valuations:

ψAS(t) =
ψ2
life(t, t)
P (t) , (26)

ψ1
H(t) =

∫ T

t

R1
H(t, τ)

{
u1(τ)
u1
c1

(τ) − ηS1(τ)S1(τ)ψP (τ) + η(τ)P (τ)
u2
c2

(τ, τ)
u1
c1

(τ) ×

×
[
ψ2
H(τ, τ) + PS1(τ)S1(τ)ψAS(τ)− S1(τ)BS1(τ)ψM (τ, τ)

]}
dτ, (27)

ψP (t) =
∫ T

t

R1
P (t, τ)

{
u1(τ)
u1
c1

(τ) + ηP
u2
c2

(τ, τ)
u1
c1

(τ) ψ2
life(τ, τ)

}
dτ −

u2
c2

(t, t)
u1
c1

(t) Pψ2
life(t, t). (28)

The various discount factors are defined by

R1
P (t, τ) := R(t, τ) exp

(
−
∫ τ

t

η(τ ′)P (τ ′)
u2
c2

(τ ′, τ ′)
u1
c1

(τ ′) dτ ′
)
, (29)

R1
H(t, τ) := R(t, τ) exp

(
−
∫ τ

t

µ1
S1

(τ ′)S1(τ ′) + η(τ ′)P (τ ′)
u2
c2

(τ ′, τ ′)
u1
c1

(τ ′) dτ ′
)
, (30)

R2
H(t, τ, s) := R(t, τ) exp

(
−
∫ τ

t

µ2
S2

(τ ′, s)S2(τ ′, s)dτ ′
)
, (31)

R2
M (t, τ, s) := R(t, τ) exp

(∫ τ

t

fE(τ ′, s)dτ ′
)
. (32)

The proof is technical and thus relegated to the Appendix 7.3. Although the above expressions look
involved, the individual terms can be assigned to the forward and backward incentives that shape the
qualitative behaviour of the optimal solution. Before discussing the economic interpretations of all
valuations in detail we want to stress, that the prerequisites of Proposition 1 are rather weak. Besides
the assumption of existence of an optimal solution, it is sufficient to have interior solutions for the
consumption paths to be able to derive the presented terms. Consequently all valuations still hold
in the absence of some control variables (shocks may only require some of the controls for a proper
modelling) or for cases with boundary solutions concerning any types of health investments.

Value of health in the second stage: ψ2
H(t, s)

The value of health in the second stage ψ2
H (see equation (24)) is closely related to the value of life, i.e.

the discounted value of consumer surplus over the remaining life-cycle, as defined in equation (23). The

12For notational convenience we omit the state and control arguments in all functions and just indicate at which time-point
the state and control values should be evaluated, e.g. u2

c2 (τ, s) ≡ u2
c2 (c2(τ, s), E(τ, s)).
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only difference is that the value of health takes into additional account a term µ2
S2
S2 in the discounting

function R2
H , reflecting that better health, as measured by S2, contributes to lower mortality over the

remaining life-course. Given that µ2
S2

< 0, the new term decreases the discount factor and, thereby,
raises the value of health over and above the conventional value of life. Intuitively, this reflects the
additional value of health/survival as an asset that by lowering mortality yields a return in terms of
additional consumer surplus over the remaining life-course.

Value of acute survival: ψAS(t, s)
The value of marginally increasing the continuation probability, ψAS , (see equation (26)) at the time
of the shock directly corresponds to the conventional value of life in the second stage, ψ2

life.13 The
weighting of ψ2

life by 1/P (t) implies that the willingness to pay for acute survival increases with the
risk of not surviving the health shock.

Value of morbidity: ψM (t, s)
The willingness to pay for a (marginal) reduction in the disease/disability stock, ψM , (see equation (25))
depends on the interaction of three effects: (i) the first part µ2

Eψ
2
H captures the impact of the dis-

ease/disability stock on mortality or, equivalently, on the depletion of the health stock. A marginal
increase in the disease stock increases the mortality risk by µ2

E , which consequently leads to a change in
second-stage survival, S2, which is valued at the willingness to pay ψ2

H . (ii) the part −w2
E contains the

impact of the disease/disability on earnings, which directly translates into a willingness-to-pay to lower
the disease/disability stock. (iii) The last part − u2

E

u2
c2

measures the reduction in consumer surplus in the
presence of disease/disability, or equivalently the marginal rate of substitution between consumption
and degree of illness/disability. The greater the marginal impact of disability on utility, the greater the
willingness-to-pay for reductions in morbidity. Finally, we have to adjust the standard discount rate
R by accounting for the direction and speed of disease progression, as measured by the impact fE of
the disease stock on its own accumulation. Thus, the value of future changes in morbidity tends to be
discounted more heavily if the disease is accelerating, i.e. fE > 0, and less heavily if it is decelerating, i.e.
fE < 0. Intuitively, this suggests that reductions in morbidity are more valuable in the future (present)
if the disease is accelerating (decelerating).

Value of prevention: ψP (t)
The willingness to pay for a reduction in the hazard rate of the health shock, ψP , (see equation (28))
is equivalent to the net value of remaining in (the healthy) stage 1 as opposed to transiting into (the
diseased/disabled) stage 2. Accordingly, the integral term measures the value of remaining in stage 1,
which in itself is composed of two distinct factors. The first part u1(c1(τ))

u1
c1 (c1(τ)) amounts to the consumer

surplus for each year that continues to be spent in stage 1, whereas the second part adds the expected
value of stage 2 utility should a transition occur at rate η(τ) in some future year τ > t. Note that this
value corresponds to the stage-2 value of life, ψ2

life, weighted with the probability P (τ) of surviving a
health shock at τ . As ψ2

life is counted in units of stage-2 consumption, a conversion into units of stage-1

consumption takes place by multiplication with u2
c2 (t,t)
u1
c1 (t) . Notably, the discount factor R1

P applied to the
utility stream associated with remaining in stage 1 through t now takes into account the (weighted) risk
of a transition into stage 2.
The value of remaining in stage 1 (integral part in equation (28)) is then offset against the value of

switching to stage 2 at t (last term in (28)). This value corresponds to the stage-2 value of life, again

13The discounting term µ2
S2
S2 is not present here, as a marginal change in P (t) has no effect on survival Si.
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weighted with the survival probability, P (t), at the time of the shock and converted into stage-1 values.
Note here that the value of avoiding a deadly health shock, for which P (τ) = 0 for all τ ∈ [t, T ], exactly
corresponds to the conventional stage-1 value of life.

Value of health in the first stage: ψ1
H(t)

After having introduced all other valuations of health we can finally analyse the value of health in the
first stage ψ1

H , which contains multiple terms presented above (see equation (27)). In total we separate
five distinct impact channels. (i) The stream of stage-1 consumer surplus, u1

u1
c1
. (ii) The value of

health/survival in reducing the hazard rate and, thus, preventing the shock, ηS1S1ψP . The remaining
three parts capture the value of stage-1 health for reaching and living through a stage 2 life-cycle
conditional on surviving a shock at age τ . Thus, all three factors are weighted with ηP u2

c2
u1
c1
, the joint

probability of experiencing and surviving the health shock at τ as well as with the conversion factor.
(iii) The term ψ2

H measures the direct value of health upon entering stage 2; (iv) the term PS1S1ψAS

captures the value of stage-1 health in enhancing acute survival following a shock; and (v) the term
BS1S1ψM captures the value of stage-1 health in lowering the intensity of disease/disability and, thus,
morbidity at the point of the shock. We conclude by noting that the discount factor R1

H includes the
long run impacts of survival on future mortality µ1

S1
S1 like R2

H as well as the (weighted) risk of entering
stage 2 upon survival of a shock, ηP u2

c2
u1
c1
.

Ex-ante value of health
From an ex-ante stance the future development of the individual’s health is stochastic. Thus the value
of health in its general form, comparable to the well-known value of life in other contributions, should
account for this uncertainty. Hence we define the (ex-ante) value of health as the expected value of
the different values of health in stages 1 and 2, weighted with the corresponding probabilities. This is
summarized in the following definition.

Definition 2. Assuming the existence of optimal trajectories of consumption and (the various) health
investments in both stages of the individual life-cycle model (12)-(20), the (ex-ante) value of health can
be defined as

ΨH(t) := Z1(t)ψ1
H(t) +

∫ t

0
Z2(s)ψ2

H(t, s)ds. (33)

Following from this definition, the ex-ante value of health at age t can also be interpreted as an
averaged value of health across individuals who have not experienced a shock up to age t and individuals
who, at age t, have experienced different stages of disease progression following a shock experienced at
an earlier age s < t.
Note that such a measure is useful when it comes to assessing the value of health at population level.

In particular for normative purposes, it is considered unethical to distinguish individuals according to
their value of life. Thus, the value of life is typically averaged across income strata, health states and
often age (for an exception see Aldy and Viscusi, 2008). The ex-ante value of health would provide a
value that is averaged across the possible health states at age t, including the potential health-driven
inequality in earnings.

3.2 First order optimality conditions

As one crucial part of the system of optimality conditions presented in Appendix 7.2, the first-order
optimality conditions give insight into the economic trade-offs between the different control variables.
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Using the valuations of health presented in the previous section, we can formulate these FOCs in a
compact and intuitive way.

Proposition 2. Assume the existence of optimal trajectories of consumption and (the various) health
investments in both stages of the individual life-cycle model (12)-(20) together with an interior solutions
for the (various) choices of health care. The first-order optimality conditions can then be written as
follows.

Stage 1:
[
−µ1

b1
(t)
]
· ψ1

H(t) = pb(t) (34)

[−ηh1(t)] · ψP (t) = p1(t) (35)

Stage 2:
[
−µ2

b2
(t, s)

]
· ψ2

H(t, s) = pb(t) (36)

[−fh2(t, s)] · ψM (t, s) = p2(t) (37)

At the time of shock s: [−Bd(s)] · ψM (s, s) + Pd(s) · ψAS(s) = pd(s) (38)

Consequently, the optimal allocation of health care involves that for each age/point in time t and for
every possible onset of the shock s, the unit price for each type of health care equals the corresponding
marginal benefit, consisting of the respective marginal effectiveness and the respective valuation of the
health dimension involved. Thus, the price pb(t) for general first-stage health care, b1(t), has to equal
its marginal impact on mortality (−µ1

b1
) (tantamount to the depreciation rate of health) multiplied with

the first-stage value of health, ψ1
H . The interpretation for the other types of health care is analogous.

Furthermore, we note that the marginal benefits of acute care, d, consist of the sum of two separate
terms, as acute care does not only (potentially) increase the chances of surviving the shock but also
(potentially) reduce the initial level of morbidity.
The FOCs provide immediate and intuitive information on the (relative) drivers of health care choices.

Thus, the individual will demand a higher quantity of health care if it is more effective, if it has a higher
value or it has a lower price. Note that the FOCs can also be read as reflecting the optimal trade-
off between the different types of health care and consumption. Here, the left-hand side (LHS) of
each condition reflects the marginal rate of substitution between the particular type of health care and
consumption, whereas the right-hand side (RHS) gives the price ratio, with the price of the consumption
good normalized to one. Thus, a higher price for health care would either have to be offset by an increase
in effectiveness and/or an increase in the value of this care, the latter being reflective of greater need.
The system of FOCs also allows to trace the allocation across different types of health care in light of
relative effectiveness and relative valuations. Consider e.g. the condition

−Bd(s)
−fh2(s, s) + Pd(s) · ψAS(s)

[−fh2(s, s)] · ψM (s, s) = pd(s)
p2(s)

as implied by the FOCs (37) and (38). To understand the intuition, assume first a setting in which the
health shock does not impose a risk to survival, implying there is no role for acute care in enhancing
acute survival, i.e. P = 1 and Pd(s) = 0, as would be the case e.g. with cancer. In such a case the
condition would tell us that a higher price for acute care (e.g. immediate surgery) as opposed to chronic
care (e.g. pharmaceutical therapy) at the point of the onset of the disease would need to be offset by
greater effectiveness of acute care in containing the disease (i.e. the progression of cancer). If acute
care also bears on survival, the price ratio does not only reflect differences in the effectiveness of care
in curbing morbidity but, in addition, the marginal rate of substitution between the (valued) change in
acute survival for the acute treatment and the change in morbidity for the chronic treatment. Thus, a
higher price for acute care at the point of the shock is supported to the extent that it not only reduces
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initial morbidity but also improves survival chances by Pd(s) > 0. Note that this argument extends
to settings, where the provision of acute care, e.g. cancer surgery, may carry a risk to survival, such
that Pd(s) < 0. Here, the survival risk lowers the willingness to pay for acute care, implying that its
utilization is lower relative to chronic care for a given price ratio and/or a given level of utilization
is supported only at a lower price.14 Similar trade-offs between other dimensions of health care, e.g.
between general health care and preventive health care in stage 1 or between preventive health care
in stage 1 and chronic health care in stage 2, can be constructed by appropriate combination of the
relevant FOCs.
Isolating the value terms on the LHS of the FOCs, as e.g. in ψP (t) = p1(t)

[−ηh1 (t)] for preventive care

or ψM (t, s) = p2(t)
[−fh2 (t,s)] for chronic care allows us to interpret the FOCs in terms of the underlying

dimensions of health as a final good rather than health care as an intermediate good. Thus, we find
that for an optimal allocation, the value of prevention should equal the effective price of prevention,
as given by the price of preventive health care adjusted for its effectiveness in curbing the arrival rate
of a shock. Similarly, the value of (reducing) morbidity should equal the effective price of lowering
morbidity, as given by the price of chronic health care adjusted for its effectiveness in curbing or
reverting the progression of the disease. Analogous expressions can be derived for other dimensions of
health care. Following Frankovic et al. (2020) who undertake this analysis in the context of survival, we
can infer that medical progress that raises the effectiveness of a certain type of health care, prevention
say, may be associated with a decline in the value of this dimension of health. Notably, this reflects
the greater consumption of preventive health care leading to reductions in the health risk to a level for
which any further reduction is less valuable (or in micro-economic terms, the decline in the effective price
of prevention relative to consumption is associated with a decline in the marginal rate of substitution
between prevention and consumption). We conclude with the following empirical observation: In many
practical settings, the valuation of different types of health is difficult to observe. A revealed preference
argument would then suggest that the willingness to pay equals the effectiveness-adjusted price of health
care, which can be calculated on the basis of observable nominal prices of health care and scientific
evidence on medical effectiveness.
Given the multi-dimensionality of health, we can extend the previous argument to examine the relative

valuation of different types of health care. Drawing on the FOCS (36) and (37), for instance, we can
write

ψM (t, s)
ψ2
H(t, s) =

p2(t)/
[
−µ2

b2
(t, s)

]
pb(t)/ [−fh2(t, s)] .

Thus, the value of lower morbidity relative to the value of survival can be understood to reflect the
relationship between the effective price of morbidity relative to the effective price of survival. This has
important repercussions from a practical point of view, where many studies in medical evaluation seek
to probe into consumer/patient assessment of improvements to the health-related quality of life relative
to survival (see e.g. Rowen and Brazier, 2011:for a survey). While such studies are often carried out in
the context of an abstract decision-framework, we note that when resulting from market assessments
(e.g. when asking expert physicians to state these trade-offs), differences (across individuals, populations
or over time) in the relative valuations of health may be as reflective of differences in the underlying
preferences as of differences in the relative effectiveness of the different types of health care. Here, again
revealed preference analysis may be brought to bear to deduce relative valuations.

14Recall here our assumption that all controls exhibit diminishing returns.
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4 Numerical analysis: an application to cancer
Within the next two sections, we illustrate insights from our model by conducting a calibration exercise
and calculating optimal individual behaviour numerically. To provide a concrete context, we study the
impact of a (potential) cancer diagnosis on the life-cycle allocation of health care and consumption.
In order to avoid adding the substantial complexity that is involved with the hidden progression of

cancer up to the point of a diagnosis, we assume that (i) a diagnosis at age/time s coincides with the
onset of cancer. Thus, we disregard the building-up of the cancer-stock prior to s, which is a reasonable
assumption when assuming that a diagnosis coincides with the point of first symptoms. As there is no
clear empirical correlation15 between the stage of cancer at the time of diagnosis and the general health
status (or the respective age), we suppose (ii) that the individual enters with a constant positive disease
stock E(s, s) = φ0 > 0 independent of its stock of health, S1(s), at the point of diagnosis. While it is
further reasonable to assume that (iii) a diagnosis at s is not associated with an acute risk to survival,
such that P (S1, d) ≡ 1, we also assume for the purpose of this analysis that (iv) there is no role of acute
care at the time of diagnosis, i.e. d(s) ≡ 0. This is justified when assuming that the diagnosis is early
enough to rule out a significant role for surgery. To avoid the complexity involved with the timing of
diagnosis, we abstract from (v) screening measures. Finally, in order to limit the number of states and
controls we assume (vi) that healthy and unhealthy behaviours such as smoking, drinking, eating habits
or exercising that affect the risk of cancer are captured by "‘generic"’ investments in health, b1. Note
that these feed into the hazard rate η(t, S1(t), h1(t)) through their impact on the health stock/survival
and thereby generate health benefits beyond cancer, a reasonable assumption. We, thus, assume (vii)
that there is no further role for specific cancer prevention, such that h1(t) ≡ 0. We also assume that
age does not have a direct bearing on the hazard rate, implying that we work with η(S1(t)).
Altogether, we obtain a slightly reduced model, which nevertheless enables us to analyze the im-

pacts of cancer on the utilization of health care before and after the diagnosis, including a detailed
characterization of the utilization pattern of chronic care, which from now on we refer to as cancer care.

4.1 Data sources

We calibrate our model to the data of an individual in the United States in the 2010s, using a number
of data sources for the input parameters.16 We assume that an individual receives earnings from age
20, which is also the age at which the individual begins to make life-cycle decisions.

Input parameters
One of the few fully exogenous inputs is the base earnings profile {w1(t) | t ∈ [20, 110]}, which in our
model we assume to be the average earnings age-profile for the US in 2011, as taken from the National
Transfer Accounts (NTA) database17. We account for the fact, that there are no public pensions in our
model and all health care expenditures are paid out of pocket, by adding the net health and pension
transfer profiles (which are also contained in the NTA database) to the base working income to obtain
a profile of disposable income.
We abstain from trying to fit the (non-health) consumption profile from the NTA database, as it

shows the typical hump-shape over the life-cycle. Hansen and İmrohoroğlu (2008) have shown that

15Goodwin et al. (1986) find a positive correlation between the stage of cancer and the age at diagnosis for some types
of cancer, while for other types this correlation turns out to be negative. Even for breast cancer alone the results turn
out to be unclear. While Satariano et al. (1986) and Mandelblatt et al. (1991) find a positive relationship between age
and severity, Yancik et al. (2001) find it to be non-significant.

16Due to limitations in data availability we are unable to use all data from the same year.
17www.ntaccounts.org, see Lee and Mason (2011) and United Nations (2013) for details.
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such a pattern can only be explained consistently within a life-cycle model when assuming that annuity
markets are absent (or severely incomplete).18 However, we quite deliberately prefer to model a complete
annuity market for the explicit purpose of establishing a flat consumption profile as a benchmark against
which to assess the impact of health shocks on consumption and identify the underlying channels. Here,
an imperfect annuity market would obscure some of the effects. This notwithstanding, we aim for a
level of consumption that is in line with the average consumption over the life-cycle.19

In further pursuit of establishing a flat benchmark consumption profile, we opted to set two of the
other exogenous inputs, the interest rate r(t) and the discount rate ρ, both equal to 3%. If we eliminated
the possibility of a health shock in our model, this would then lead to a completely flat consumption
profile, with the annuity rate perfectly covering the mortality risk in this scenario. Therefore r(t) = ρ

enables us to directly identify the impact of the existence of a potential health shock in the consumption
profile before and after the cancer diagnosis.

Calibration goals
We use health expenditure data from the NTA-Database (available for the year 2011) and combine it with
age-specific information about the share of cancer specific health care expenditures from healthdata.

org20 to construct age profiles for (i) the general (non cancer) health expenditure and (ii) cancer
specific expenditures. We compare these against the average general health expenditure and average
cancer care expenditure profiles generated by our model and aim to match the latter with their empirical
counterparts.21

Furthermore, we use the age-specific mortality profile for the US in 2011 from the human mortality
database22 as a basis for establishing survival profiles. Using the mortality rate directly to calculate
the corresponding survival profile within our model, we obtain the equivalent of the average survival
S(t) := Z1(t)S1(t) +

∫ t
0 Z2(s)S2(t, s)ds in our model. To obtain the appropriate data against which to

compare first-stage survival in our model, we take age-specific cancer mortality rates from the SEER-
database23 and subtract them from the corresponding general mortality rates. From the resulting age-
profile of non-cancer mortality we construct a cancer-free survival profile as the appropriate comparison
for the S1 profile in the model.
We then employ the cancer-free survival profile from the data together with age-specific rates of cancer

incidence24, again taken from the SEER-database, to calibrate the hazard rate η(S1), which we assume
to depend only on the survival state. Finally, we use information from the SEER-database about
cancer-specific survival depending on the duration after the cancer diagnosis to calibrate the cancer
specific mortality rates for four different (rough) age-groups over the first ten years after the diagnosis.
For further details about the estimation and calibration strategy for the general and cancer-specific
mortality rates (µb and µm) and the cancer incidence rate (η) we refer to appendix 7.6.

18From the Euler-equation (42) we see that the absence of annuities (µ̄ = 0) implies that increasing mortality µi with age
ultimately leads to a decline in consumption. Annuities eliminate this risk (or, as in our case, even overcompensate
it), so there is no significant force anymore that would shift consumption to younger ages, implying a hump-shaped
pattern cannot be obtained.

19The US exhibit a significant life-cycle deficit, implying that life-time consumption is significantly higher than life-time
income. Thus, the raw data contradicts our assumption of zero assets at the end of life. To fulfil the equivalent
condition of life-time consumption and life-time income being equal, we have decided to raise income by 15% for our
calibration.

20Institute for Health Metrics and Evaluation (IHME) (2016) (Accessed 2020-01-13)
21We define average health expenditure at age t as b(t) := Z1(t)b1(t) +

∫ t

0 Z2(s)b2(t, s)ds and, similarly, average cancer

care expenditure as h2(t) :=
∫ t

0 Z2(s)h2(t, s)ds.
22Human Mortality Database (accessed 2019-10-04)
23SEER*Explorer: An interactive website for SEER cancer statistics [Internet]
24We take average incidence rates between 2012 and 2016.
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4.2 Remarks on the annuity market

In most models annuity markets are assumed to be either absent or complete with the equilibrium
annuity rate being equal to the mortality rate. Our setting is more complex, as it contains two mortality
rates reflecting different health regimes: one with cancer and one without. Thus the rate of return for
annuities µ̄(t) crucially depends on the way the annuity market is structured.
In this calibration exercise we assume that the insurer has no information about whether or when an

individual has been diagnosed with cancer. As a result the annuity rate at time t turns out to be the
expected (or averaged in a population context) mortality rate, which can be calculated as

µ̄(t) =
Z1(t)(−Ṡ1(t)) +

∫ t
0 Z2(s)(−Ṡ2(t, s))ds

Z1(t)S1(t) +
∫ t

0 Z2(s)S2(t, s)ds
=
Z1S1µ

1 +
∫ t

0 Z2S2µ
2ds

Z1S1 +
∫ t

0 Z2S2ds
. (39)

The nominator adds up all deaths across the two groups with and without cancer and relates them to
the total population in the denominator.25

4.3 Solution strategy

The numerical solution of a two-stage optimal control problem with random switching time is a far-from-
trivial problem. As already indicated in the problem introduction the transformation into a vintage-
structured optimal control problem is the first step in the solution process. The transformation (see
Wrzaczek et al. (2020) for further details) allows our numerical strategy to rest on an existing gradient-
based optimization algorithm, as described by Veliov (2003). However, particular features of our model,
e.g. the asset end-point constraints and the balanced annuity market, as well as variation by orders of
magnitude across some of the gradients of the controls26 made further non-trivial adaptations to the
numerical method necessary.

4.4 Functional specifications

To generate a numerical solution of our model, as summarized in equations (12) - (20), we need to
specify the following functional forms.

Utility
Following Hall and Jones (2007) and many others, we employ an adjusted CRRA-utility function for
the instantaneous utility from consumption:

u1(c) = c1−σ

1− σ + u, 0 < σ 6= 1 .

Here, we assume u to be a sufficiently large constant, which guarantees u1(c) > 0 for all reasonable
consumption levels. For the second period, we assume that the cancer stock affects the utility of

25One of multiple alternative assumptions would be that the insurer has perfect information about a cancer diagnosis. In
this case the annuity rate would be equal to the mortality rate for each individual. Investigating the implications of
different annuity markets is an interesting task in its own right that goes beyond the scope of the present paper.

26The gradients of stage 1 are initially weighted way higher than that of stage 2, what results in the effects of the gradient
in the second stage being levered out. Without adjustments this would imply a faster convergences of the controls in
the first stage and could lead to premature termination of the algorithm as either (i) the gradients of the second stage
are directly below a reasonable numerical threshold or (ii) the improvements in the objective value for adjustment
of second-stage-controls are swallowed by numerical inaccuracies due to the small directional gradient step combined
with their resp. small weights in the objective function.
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consumption in a multiplicative form:

u2(c, E) = u1(c)v(E) = u1(c) exp {κ0 · Eκ1} ,

with v(E) ∈ [0, 1] and v′(E) < 0 for κ0 < 0. The mixed derivative u2
cE = u1

c(c)v′(E) is negative,
implying that a higher cancer stock reduces the marginal utility of (non health care) consumption. Note
that this is in line with empirical evidence (see Finkelstein et al. (2013)).

Mortality
For this numerical presentation, we assume that the non-cancer mortality rate µb does not depend on
the state of survival, enabling us to better disentangle cancer specific mortality in the second stage. The
parameters γi and αi will be calibrated to reproduce the survival profile without a cancer diagnosis (see
appendix 7.6).

µb(t, S1, b1) = µb(t, b1) = g(t)bε(t)1 g(t) = exp
{
γ0 + γ1t+ γ2t

2 + γ3t
3}

ε(t) = α0 + α1t (< 0)

Cancer incidence
Comparing the survival data adjusted for cancer mortality and the cancer incidence rates from the
SEER-database we find that the function in equation (40) delivers the best fit, while still using just
three parameters.

η(t, S1) = η(S1) = β0

1 + β1( 1−S1
S1

)β2
(40)

Cancer stock
For the progression of the cancer stock, we decided to draw on the biological development and spread of
cancerous cells. Talkington and Durrett (2015) present multiple established processes for the untreated
spread of cancerous cells. We use the simplest version (which is sufficient for our purposes) and hence
assume that the number of cancerous cells grows over time at the constant rate δ0. Following the work
of Heuser et al. (1979), who estimated the average doubling time for breast cancer cells to be 327 days,
we propose a rate of δ0 = 0.774 (per year). In a normative step, we set the initial number of cancerous
cells when diagnosed constant to 1, i.e. B(S, d) = φ0 = 1.0.
For the effects of cancer care we lean on the development of health deficits introduced by Dalgaard

and Strulik (2014). Depending on the intensity of cancer care h2 (which exhibits diminishing returns
modelled with δ2 ∈ (0, 1)) and the available technology (captured by δ1), we propose that the growth
can be slowed down or also turned negative to hopefully eradicate cancerous cells in the long-run.

f(t, s, E, h2) = δ0E − δ1hδ2
2 E

δ3 .

However, in contrast to Dalgaard and Strulik (2014) we propose that the effectiveness of cancer care
also increases with the number of cancerous cells and is therefore multiplied by Eδ3 with δ3 > 0.

Cancer specific mortality
For the cancer specific mortality function µm(t, s, E), we eliminate the dependence on age t and assume
that the whole mortality process is driven by the number of cancerous cells E and the age at which
cancer was diagnosed. As we find in the data, mortality increases with the age at diagnosis. Hence we
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propose the following functional form:

µm(t, s, E) = µm(s, E) = ψ0 · E · exp
{
ψ1 ·

( s
T

)ψ2
}

(41)

We estimate these parameters ψi using the cancer incidence and survival data as described in ap-
pendix 7.6.

Prices for health care
After the abstraction from preventive and acute care for this numerical exercise, there remain two prices
for health care goods and services (each expressed in units of the consumption good):

• Price of general health care pb

As we will detail in the appendix, we write mortality directly as a function of health care ex-
penditures, pbb1 for the purpose of this calibration. We can therefore set the price equal to one
=⇒ pb = 1.

• Price of cancer care p2

Due to the multiple types and combinations of cancer treatment, it turns out to be most practical
to also measure cancer care directly in its monetary units. Hence we have decided to set the price
for cancer care equal to one =⇒ p2 = 1.

Table 2 summarizes the functional forms and parameter choices. We wish to stress, that we did not
attempt to obtain a full calibration of the model, since this would have required the introduction of
further state and control variables to represent the involved nature of cancer risk, prevention, devel-
opment and treatment in the first place. Instead we aimed for a reduced model formulation, which
nevertheless replicates key patterns of cancer progression and cancer care and thereby enables excep-
tional new insights into the behavioural patterns regarding health care (general and cancer-specific) and
consumption.
Note that some parameter values shown in Table 2 are not the result of an automated calibration

process, but are manually chosen to improve the calibration fit. The high complexity of the model
and intricacy of the solution process in addition to relatively long computation times for one set of
parameters did not allow us to conduct standard calibration methods. Hence the parameters δ1, δ2, δ3
and κ0, κ1 are not chosen through a process minimizing a strictly defined quality of calibration criterion
(e.g. minimizing the maximum absolute difference in the cancer mortality rates), but are manually set
to obtain a qualitatively appropriate fit of the several profiles presented.
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u1(c) = c1−σ

1−σ + u
σ 1.13+

u 11.355+

ε(t) = α0 + α1 · t
α0 −0.2700∗
α1 0.0667∗

g(t) = eγ0+γ1t+γ2t
2+γ3t

3 γ0 −6.690∗
γ1 −0.982∗(

µb(t,b) = µ0(t) · g(t) · bε(t)
)

γ2 15.846∗
γ3 −7.560∗

Interest rate r 0.03
Discount rate ρ 0.03

η(t, S) = β0

1+β1( 1−S1
S1

)β2

β0 0.0243∗∗
β1 0.0087∗∗
β2 −2.020∗∗

B(S, d) = φ0 φ0 1.0

f(t, s, E, h2) = δ0E − δ1hδ2
2 E

δ3

δ0 0.7740+

δ1 2.0
δ2 0.03
δ3 1.3

µm(t, s, E) = ψ0 · E · exp
{
ψ1 ·

(
s
T

)ψ2
} ψ0 0.1705∗∗

ψ1 1.8475∗∗
ψ2 1.5574∗∗

v(E) = exp {κ0 · Eκ1} κ0 ln(0.7)
κ1 1.2

Table 2: Summary of functional specifications and parameters in the model. Parameters indicated by ∗∗
are estimated before the solution process using only the empirical data. Parameters indicated with ∗
result from the calibration process within the solution process. Parameters marked with + are chosen
from the literature. Parameters without indications are either educated guesses (ρ, r,κi) or are manually
chosen to improve the calibration (δ1, δ2, δ3).

5 Numerical results
Turning to the numerical results, we will first show to which degree we were able to replicate the
data and thereby meet our calibration goals (Section 5.1). In a next step we discuss and compare
the profiles of consumption before and after a cancer diagnosis and use the Euler-equations to identify
how these profiles are impacted by the different aspects of the (potential) diagnosis (Section 5.2).
Section 5.3 presents the profiles of general health investments and cancer care together with the resulting
developments of the health state in both stages and the disease stock capturing the progression of cancer.
In so doing, we also examine the numerical evaluations of the various valuations of health presented in
Section 3.1 and their respective decomposition. Finally Section 5.4 presents the Euler-type equations
for the different types of health care both in the most general formulation as well as their numerical
evaluations for the optimal solution. These calculations allow us (as for the consumption profiles) to
pin down the several impacts a potential diagnosis has on the individual’s decision making. Throughout
the whole section we summarise the key outcomes in corollaries 1–6.

5.1 Expenditure and survival patterns: Model vs. data

Figures 1 and 2 compare for a range of variables the outcomes of our model with data from the US,
as discussed in the sections above. More specifically, Figure 1 summarizes the different types of expen-
ditures in our model. The upper left panel shows the expected values for general (non-cancer) health
expenditures as well as for the spending on cancer care. Overall, the expected expenditure profiles follow
the data reasonably well and the corresponding spending shares, shown in the upper right panel, paint
a similar picture. As was discussed before, for the purpose of better isolating transmission channels, we
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have quite deliberately opted for a model with an annuity market. For this reason, our model is not
suited to replicate the US consumption profile from the data, but the lower left panel shows that the
expected consumption profile from the model meets our goal of matching average consumption. Finally,
the lower right panel illustrates the composition of the age-profiles of income (labour and transfers).
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Figure 1: Calibration results: Comparison between expenditures predicted by the model and expenditure
data

In Figure 2 we focus on the fit of the survival and mortality data. The upper left panel shows that
we meet remarkably well both average survival, S(t) = Z1(t)S1(t) +

∫ t
0 Z2(s, t)S2(s, t)ds and survival

conditional on remaining cancer-free, S1(t). Furthermore we can see that the cancer-free survival, Z1(t),
profile of our model meets the corresponding profile derived from the data relatively well, even if slightly
underestimating it.27 The lower left panel shows cancer-specific mortality data over the first 10 years
after a diagnosis for 4 different age-groups. Note that we plot the logarithm of the mortality rate to
account for the strong differences in magnitude of these values. The model and data profiles match very
well despite some discrepancy for the youngest and oldest age groups around the point of diagnosis.
Finally, the lower right panel shows the total mortality rates before and after a cancer diagnosis.28 The
good fit of mortality before a cancer diagnosis is reflecting the fit of the survival profiles.

27This could be due to numerical inaccuracies, as data on cancer incidence was only available in 5-year intervals.
28We again took a logarithmic scale as mortality rates towards the end of life are in a different order of magnitude

compared to mortality rates in younger ages.
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Figure 2: Calibration results: Comparison of survival and mortality profiles between the model and the
data

5.2 Consumption profiles

Consider now, the consumption profiles, as plotted in Figure 3. The grey dashed line depicts the
consumption profile in the absence of cancer. The solid lines represent the consumption profile following
a cancer diagnosis at a given age, where for illustrative purposes we move the age at diagnosis in five
year steps. Finally, the black dotted line illustrates the consumption level chosen immediately after a
diagnosis, the distance between the dotted and dashed line representing the instantaneous consumption
change following a cancer diagnosis.
The consumption profile in the absence of cancer is relatively flat and only increases towards the

end of life from 35000$ per year up to around 45000$ in the very late stages of life. In contrast, the
optimal choice of consumption following a diagnosis reveals strong fluctuations. Right after the diagnosis
individuals decrease their consumption if the diagnosis occurs relatively early in life. This immediate
drop is followed by an increase over the next two years which reduces the gap to consumption levels
of cancer-free individuals of the same age to insignificant levels. This increase is followed by a slightly
U-shaped pattern over the remaining life-course (partially increasing the consumption difference again).
For early diagnosed individuals (approximately before age 70 in our setting) the levels of consumption
vary between about 28000$ and 35000$ per year. If the diagnosis occurs after the age of 75, individuals
boost their consumption directly after the cancer diagnosis and the consumption path follows a constant
decline over the remaining life-course. The upward jump is increasing with the age at diagnosis and
reaches up to levels of 55000$ per year. Towards the end of life consumption decreases to 26000$ per
year.
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Figure 3: Consumption profiles in the first and in the second stage

To understand the widely different consumption patterns of cancer-free, early, and late diagnosed
individuals, we derive the Euler-type equations (42) and (43) for the dynamics of consumption.29 For
the derivations we use the first-order optimality conditions for consumption together with the dynamics
of the adjoint variables of assets (see appendix 7.5).

ċ1
c1

=
u1
c1

−u1
c1c1

c1

[
r − ρ+ µ̄− µ1 − η + ηP (S1, d)

u2
c2

u1
c1

]
, (42)

ċ2
c2

=
u2
c2

−u2
c2c2

c2

[
r − ρ+ µ̄− µ2 +

u2
c2E

u2
c2

f

]
(43)

For both stages we are able to derive the elements of a standard Euler equation in the presence of
partially insured mortality risk. These involve the difference between the interest rate, r, and discount
rate, ρ, which drops out in our calibration. Additionally, the mortality risk, µi, shifts consumption
toward younger ages in both stages to the extent it is not offset by annuity returns, µ.30 In the intuitive
case of higher mortality following a cancer diagnosis (see lower right panel of Figure 2) and under our
assumption of a non-state contingent annuity premium µ(t), as defined in equation (39), it likely holds
that:

µ1(t, S1, b1) ≤ µ̄(t) ≤ µ2(t, s, S2(t, s), b2(t, s), E(t, s))

Hence the annuity rate overcompensates the mortality rate before a diagnosis leading to a deferral of
consumption, while it only partially compensates the force of mortality after a diagnosis leading to an
advancement of consumption immediately after a shock. However, as Figure 5 will show for the case
of cancer, the second consideration may not hold over the whole life-cycle. When the cancer stock is
reduced dramatically after the first few years the total mortality rate is returning back to the cancer-free
mortality levels, while the average mortality µ is still high, due to the higher total mortality of more
29Note that all Euler equations (here and in the following sections) are presented in their general form, and the interpre-

tations also apply to a general health shock. Here, we discuss them in the context of the numerical results based on
our calibration for cancer and discuss which terms are non-existent in our specified set-up.

30As already indicated in Section 4 in absence of the risk of a cancer diagnosis this would imply completely flat (and
identical) consumption profiles before and after the shock. Hence we can attribute all variation in consumption over
the life-course to different aspects of the potential health shock/cancer diagnosis.
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recently diagnosed cancer patients. Hence, survivors of cancer have an incentive yet again to defer
consumption in their late years.
The remaining factors in equations (42) and (43) differ and we analyse them separately along some

numerical illustrations in Figures 4 and 5. These figures show the different terms Fi(t) in the Euler-
equations aggregated from the beginning of the life-cycle (resp. from the time of diagnosis) up to each
point in time t. Considering, for instance, stage-1 consumption c1(t) and defining ċ1(t)

c1(t) =:
∑
Fi(t) we

can write c1(t) = c1(t0) exp{
∫ t
t0

∑
Fi(s)ds} and, thus, log(c1(t)) − log(c1(t0)) =

∑∫ t
t0
Fi(s)ds. Hence,

the aggregated terms are direct expressions of the (log) difference between current consumption c1(t) and
initial consumption c1(t0). We apply the same reasoning to all other control variables in the subsequent
sections.

First stage
In the first stage the uninsured risk of suffering a health shock, η, shifts consumption towards younger
ages, but in contrast to the mortality risk, there is an additional effect associated with a health shock.
The term ηP

u2
c2
u1
c1

shows that the desire for consumption smoothing tends to shift consumption back
to later ages. The term contains the product of the hazard rate, η, the probability of surviving the
shock, P , and the ratio of the marginal utilities relating to the consumption levels c2(t, t) and c1(t)
immediately after and before the shock. The rationale behind this shift lies in the incentive to accumulate
precautionary savings which can be used to maintain a given level of consumption following the shock.
Three thought experiments can illustrate how the two offsetting effects combine. If the health shock

has no effect on the household at all, P = 1 and c2(t, t) = c1(t) hold. As a result, η = ηP (S1, d)u
2
c2
u1
c1

and, as expected, the two terms cancel out in the c1-dynamics. For a second experiment, we propose
a health shock with no chance of survival (P = 0). Here, the hazard rate η has the same impact as
the mortality rate µ1 as there is no more desire for consumption smoothing. Finally, suppose that a
health shock lowers the marginal utility of consumption such that u2

c2
< u1

c1
for c2(t, t) = c1(t). For

any P ≤ 1 we then have that η > ηP (S1, d)u
2
c2
u1
c1
, implying that the incentive to advance consumption

dominates the precautionary savings motive. However, our numerical analysis for the case of cancer
shows that in general a drop in consumption after the diagnosis is possible (e.g. for early diagnosed
individuals). In combination with the negative impact of the cancer stock on the marginal utility, this
implies ambiguity for u2

c2
R u1

c1
. Hence we are unable to make general statements about the combined

effect and the desire for precautionary saving could potentially be more pronounced than the incentive
to advance consumption.
In Figure 4, we illustrate the different parts of equation (42) aggregated up to each time-point t.

We can see that the desire to advance consumption resulting from the term −η (dashed purple line)
dominates the incentive for precautionary savings, ηP (S1, d)u

2
c2
u1
c1

(dash-dotted green line). However the
difference between the two only becomes significant after the ages around 50, but strongly increases
towards the end of life. As P = 1, the combined effect can be simplified to η · (u2

c2
/u1

c1
− 1). Hence the

increasing cancer incidence rate η predominantly defines the magnitude of the combined effect, while its
sign is determined by the divergence of the marginal utility ratio u2

c2
u1
c1

from 1. Thus the combined effect
being non-positive for all ages indicates, that the impact of the cancer stock on the marginal utility
still implies u2

c2
< u1

c1
, although c2(t, t) < c1(t) for diagnoses in younger ages. Consequently, desire for

precautionary savings is curbed compared to the health shock risk and we would obtain a tendency for
consumption to decline over the cancer-free life-cycle (from this combined effect alone). However, as
Figure 4 shows, the growing saving incentive that arises from the increasing gap between the annuity
return and mortality risk for individuals who remain cancer-free (dotted blue line) overcompensates this
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effect and leads to an overall increasing consumption profile (black solid line, which we also have already
seen in Figure 3).31 We summarise our findings in Corollary 1.
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Figure 4: Illustrations of the impacts of the different parts of the Euler equation for consumption before
the diagnosis

Corollary 1 (Consumption before diagnosis). Compared to an individual not facing the risk of a cancer
diagnosis, its introduction implies an increasing consumption profile for cancer free individuals. This
results from the incentive to defer consumption (as the annuity rate overcompensates their mortality
risk) dominating the desire to advance consumption (as the marginal utility of consumption is higher
when cancer-free).

Second stage
In the second stage there is no risk of a further shock, but the individual takes into account the
development of the shock-specific deficit stock E, i.e. the cancer stock. This leads to the term u2

c2E
u2
c2
f

in the growth rate of consumption in equation (43). In the more intuitive case32 of u2
c2E

< 0, where
the marginal utility of consumption declines with the deficit stock, two possible scenarios can arise: (i)
consumption is shifted towards earlier ages where the marginal utility is still high if the deficit stock
increases over time f > 0, or (ii) consumption is deferred if the deficit stock decreases after the shock
f < 0.

For illustration, we consider in Figure 5 the consumption profiles following a diagnosis at ages 30
and 70, respectively. As we have already seen (lower right panel in Figure 2), the mortality risk after
the diagnosis is significantly increased for several years and consequently is only partially offset by the
annuity rate. This implies advanced consumption right after the diagnosis as depicted by the dotted
blue line in both panels in Figure 5. However, individuals diagnosed early in life can have an incentive
to defer consumption if they survive long enough for their mortality risk to reapproach that of cancer-
free individuals, such that the term µ − µ2 becomes positive. Altogether this results in a U-shaped
consumption pattern illustrated by the dotted blue line in the left panel.
As we will present later (see Figure 7), the cancer stock decreases in a convex pattern regardless

of the age at diagnosis, hence f < 0 during the first years after the diagnosis. Therefore, u2
c2E
u2
c2
f > 0

31This analysis for the consumption profile already highlights how the introduction of a stochastic health shocks affects
the individual on multiple levels and how intricate the effort to disentangled the different driving forces can be.

32The marginal utility of consumption is higher for lower levels of the deficit stock. This holds for the multiplicative
specification of the stage-2 utility function in our calibration and is empirically supported by Finkelstein et al. (2013).
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captures the incentive of individuals to postpone their consumption in line with their recovery from
cancer (dash-dotted green line). In our calibration this would imply a steep increase in consumption
in the first few years after the diagnosis, followed by a fairly constant profile as the deficit stock is
significantly decreased and has limited impact (similar for early and late diagnoses).
Adding up both terms to obtain the total effect, we are able to explain why the consumption profiles

of early and late diagnosed individuals feature such pronounced qualitative differences. In the left panel
we see, that for s = 30 the desire to defer consumption dominates the incentive to advance consumption
in the first two years resulting in an initial increase in consumption in total (solid black line). As the
impact of the cancer stock vanishes, the difference between annuity returns and mortality risk adds
the U-shape for the consumption profile over the remaining life-course. For s = 70, the above average
mortality risk after a cancer diagnosis becomes the dominant driver after the first 6 months. Following
an initial boost, consumption then declines until the end of life (solid black line), as post-cancer mortality
never decreases to levels, where it falls short of the annuity rate.
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Figure 5: Illustrations of the impacts of the different parts of the Euler equations for consumption after
the diagnosis.

Corollary 2 (Consumption after diagnosis). The increased mortality risk following a cancer diagnosis
implies, that individuals strongly advance their consumption. This effect can be dampened or even
overcompensated by the incentive to postpone consumption to ages where a reduction in the intensity of
cancer allows for a higher marginal utility of consumption.

5.3 Health expenditure and state profiles

In this section we focus on the health expenditure choices and the resulting profiles of the health/survival
stock and cancer deficits. We also calculate, for our numerical specification, the valuations of health
from Definition 1 and decompose them according to Proposition 1, noting that they will play a crucial
role in the analysis of the health care Euler-type equations in Section 5.4.

Health expenditure profiles
For the life-cycle allocation of general health expenditures, as shown in the upper left panel in Figure 6,
a cancer diagnosis does not imply a great difference regarding the qualitative shape over the life-cycle.
Quantitatively, however, we obtain some significant differences. For early diagnoses up to age 70 health
expenditures initially drop by around 2000$ per year, which amounts to around 50% of the expenditures
before a diagnosis for the youngest groups. This gap persists for the remaining lifetime following a cancer
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diagnosis and even widens after the age of 70. On the other hand a diagnosis already late in life leads
to an even more sizeable immediate reduction in general health care spending (in absolute values).
The instantaneous reduction in general health care spending (difference between the dashed and dotted

lines) can be traced back to the sudden and large increase in spending on cancer care that is triggered by
a diagnosis (see the upper right panel of Figure 6). For all age groups, the initial expenditures are highest
immediately following the diagnosis and then decline rapidly within around ten years after the diagnosis
where the residual level can be be interpreted as regular screenings to avoid the reemergence of cancer.
Strikingly, (initial) expenditures on cancer-care (dotted line) slightly increase with age from around
67000$ at young ages to 72000$ if the diagnosis occurs at age 60. As the time horizon quickly shortens
when cancer is diagnosed closer to the end of life, the benefits of cancer care are less pronounced, and as
a result the initial spending level declines steeply down to insignificant values. Expenditures for cancer
care might appear rather high, but are in line with the average per-patient costs, that are reimbursable
for breast cancer. Blumen et al. (2016) estimate the allowed costs to lie between roughly 60000$ and
134000$ within the first 12 months after a diagnosis (depending on the stage of cancer) and between
13000$ and 70000$ through the second year.
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Figure 6: First row: General and cancer specific health expenditures before and after the diagnosis.
Second row: Financial assets before and after the diagnosis.

The lower panel of Figure 6 shows the financial burden associated with the high expenditures for cancer
care. Right after the diagnosis, assets decline steeply, where young individuals (holding negative assets
already (dashed line)) go further into debt in order to finance cancer treatment, despite concomitantly
reducing general health expenditure and consumption, as in Figure 3. We need to stress, however,
that the structure of the annuity market plays a crucial role. As we assume that cancer patients are
not identified by the market, they obtain the same annuity rate as a representative member of the
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population. Despite their higher mortality risk individuals with a cancer diagnosis can thus still go into
debt to finance cancer care, facing the same full interest rate as the average population. In contrast,
adjustments in the annuity price to the individual health state and associated mortality would strongly
compromise the individual’s scope for undertaking the investments that are necessary for treating cancer
effectively.

Health state profiles
In Figure 7 we see the outcomes related to general health care and chronic care spending, as reflected in
the profiles of the health/survival state and the cancer stock. In the left panel we see the survival/health
state profiles in the absence of a cancer diagnosis (dashed grey line) and those following a cancer diagnosis
(solid grey-scaled/coloured lines) at various ages (again in 5-year steps). Most prominently we see a
rapid decline in survival immediately after a diagnosis, reflecting high mortality risk during the first
years after a diagnosis. While the decline in survival becomes less distinct after ten years (for most
age groups), even for diagnoses early in life, the survival path never returns to the one of cancer-free
individuals.
In the right panel we see that the (optimal) pattern of cancer care is effective in diminishing the

cancer stock for all ages at diagnosis. This suggests that for our specification, cancer kills patients
relatively early on and is otherwise transformed into a chronic disease, where a small residual stock is
not eliminated but rather held in check by chronic care. This can be interpreted as a situation in which
cancer can, indeed, be reduced to negligible levels (and, thus, be considered to be eliminated for all
practical purposes) but where the risk of its resurgence requires a small amount of care in the form of
regular screenings. The residual cancer stock also induces a mortality risk (depending on the age at
diagnosis), which covers the chance of dying through a potential relapse. This also explains intuitively,
why the survival profiles never return to the qualitative shape of cancer-free individuals. Meanwhile
the impact of the residual cancer stock on consumption utility is insignificant in the long run. For our
calibration, after ten years the remaining cancer stock decreases utility by less than one percent.

20 30 40 50 60 70 80 90 100
Age

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Su
rv

iv
al

Survival 
 before and after a cancer diagnosis

Survival after the diagnosis
Survival before the diagnosis

20 30 40 50 60 70 80 90 100
Age

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Ca
nc

er
 D

ef
ici

ts

Cancer deficits after the diagnosis
Cancer deficits
Initial deficit at time of diagnosis

Figure 7: Health/survival state and cancer deficits before and after the diagnosis

Valuations of Health
Before we explore the Euler-type equations for general health and chronic care expenditures, we will
make a small detour providing numerical illustrations of the valuations of the various components of
health derived in Section 3.1. These profiles play a crucial role for the shape of health investment profiles
as we already indicated in Section 3.2 discussing the first order optimality conditions.
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In the upper left panel of Figure 8 we compare the different valuations. The solid black line shows the
value of health (VOH) in the first, cancer-free stage ψ1

H , which starts slightly above 16 million $ at age
20 and follows a concave-convex decline over the life-cycle. The ex-ante or average VOH, which takes
account of the prevalence of cancer within each particular age-class (see definition 2), is illustrated by
the dotted (blue/dark) line and differs only slightly from the first-stage VOH. The dash-dotted (green)
line indicates the value of acute survival, which covers the willingness to pay for an increase in the
continuation probability. Considering this value might look counter-intuitive at first, as in the case of a
progressive disease such as cancer we do not have a mortality risk at the point of diagnosis. Following
equation (26), however, the value of acute survival also covers the initial VOH after the shock if P ≡ 1.
Hence, we can see that the VOH drops dramatically after a diagnosis before age 70, this difference being
much less pronounced for diagnoses later in life.

20 30 40 50 60 70 80 90 100 110
Age

0
1000
2000
3000
4000
5000
6000
7000
8000
9000

10000
11000
12000
13000
14000
15000
16000
17000

Va
lu

es
 in

 1
00

0$

Different Valuations of Health
Value of Health (cancer free) 1

H

Ex-ante VOH H

Value of Prevention P

VOH at time of diagnosis 2
H(t, t)

VOM at time of diagnosis M(t, t)

20 30 40 50 60 70 80 90 100 110
Age

0
1000
2000
3000
4000
5000
6000
7000
8000
9000

10000
11000
12000
13000
14000
15000
16000
17000

Va
lu

es
 in

 1
00

0$

Value of Health First and Second Stage
VOH after cancer diagnosis 2

H

Value of Health (cancer free) 1
H

Ex-ante VOH H

20 30 40 50 60 70 80 90 100 110
Age

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

Va
lu

es
 in

 1
00

0$

Value of Morbidity
VOM after the diagnosis
VOM at time of diagnosis

20 30 40 50 60 70 80 90 100
Age

0.000

0.002

0.004

0.006

0.008

0.010

0.012

0.014

Cancer incidence density

Figure 8: Valuations of Health

The upper right panel shows the development of the VOH in the second stage, i.e. the stage with
cancer, for different ages at diagnosis as compared to the VOH in stage one. Apart from an age gradient
there is only little variation in the second-stage VOH with respect to the age at diagnosis. Given the
strong decline in the VOH at diagnosis for all ages up to 70, questions about the comparatively small
difference between the ex-ante VOH and ψ1

H might arise. The answer originates in the low probabilities
of getting diagnosed with cancer early in life, as can be seen in the lower right panel in Figure 8. This
implies a low weight of ψ2

H in the calculation of the ex-ante VOH (see equation (33)). In contrast,
the difference in the first and second stage VOH has become small for the age-groups older than 70,
which exhibit significant prevalence of cancer. Thus the difference between the "cancer-free" VOH and
the ex-ante VOH remains remarkably small over the whole life-cycle. This has an interesting policy
implication:
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Corollary 3 (Expected Value of Health). Even health shocks that are wide-spread (such as cancer) and
have large impacts on the VOH from an individual perspective, exert little influence on the VOH from
a population perspective (as represented by the ex-ante or average VOH) if their prevalence distribution
is centred on high ages.

Returning to the upper left panel, the dashed (red) line indicates the value of prevention, i.e. the
willingness to pay for a reduction of the hazard rate. This value is significantly smaller, but still starts
above 2.5 million $ at age 20 and is still around one million $ at the age of 85. Finally the dotted
(purple/light) line represents the value of reducing morbidity (VOM) right at the time of the diagnosis.
This value stays fairly constant around one million $ up to age 70 and then declines slowly towards
the end of the time-horizon. The lower left panel in Figure 8 shows the VOM after a cancer diagnosis
for varying ages at diagnosis. Strikingly, the value of morbidity increases over the first 10-12 years to
values more than fourfold the VOM at the time of diagnosis, followed by a continuous decline over the
remaining life-course. These patterns can be understood when recalling from the FOC (37) that in the
optimum the VOM equals the effective price of reducing the cancer stock by one unit, ψM = p2

−fh2
. As

cancer care becomes less effective with a diminishing cancer stock, this implies an increasing effective
price of reducing cancer (further). For an optimal allocation, this, in turn, implies that the VOM
(i.e. the marginal rate of substitution between reductions in the cancer stock and consumption) must
increase as well. Once the cancer stock has been reduced to its residual value after around ten years, the
effective price of controlling it remains constant, and the VOM (and efforts towards controlling cancer)
now declines in line with the reduction of the remaining life expectancy.
In the next step we discuss the VOH before a diagnosis (left panel) and the value of prevention (VOP)

(right panel) and their respective decompositions for an optimal allocation within our numerical setting
in Figure 9. The solid (black) lines equal the sum of the respective sub-parts and correspond to the
curves in the upper left panel in Figure 8. For the VOH in the left panel the conventional VOL (dashed
red line) adds the main share over the whole life-cycle. This part thereby decreases nearly linearly with
age and accounts for most of the VOH after the age of 70. Up to that age the benefit of health, as
measured by S1, through better prevention of cancer (dotted blue line) contributes significantly and
explains more than a third of the total cancer-free VOH at age 20. The remaining component of the
VOH captures the effect of first-stage health, S1, on second-stage health, S2. At values below 1 million
$ this part is relatively small compared to the others, but still far from insignificant in absolute terms.

Corollary 4 (Value of Health before diagnosis). A potential cancer diagnosis significantly adds to the
value of health for relatively young ages if health has a preventive effect on the hazard rate.

In the right panel, we decompose the value of prevention into its three components. The direct
(dashed red line) and indirect (dotted blue line) benefits of postponing a cancer diagnosis get partially
offset by the utility which would have been generated after a diagnosis (dash-dotted green line). As the
absolute value of the losses are less than even the direct gains alone, we obtain an overall positive value
of prevention over the life-cycle.
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Figure 9: Valuations of Health

5.4 Euler equations for health care investments

Using the first-order optimality conditions for the different types of health expenditures presented in
Proposition 2, which hold for each separate point in time, we can derive Euler type equations for general
health care (before and after the diagnosis), chronic care and also preventive care33. The full derivations
are again relegated to appendix 7.5.
The Euler equations for all types of health investments share a similar pattern as they consist of

three main terms. (a) Intuitively the dynamics of a specific type of health care are connected to the
dynamics of the valuation of health, which enters the respective FOC. E.g. for life-cycle pattern of
general health care investments, the value of health is the decisive valuation, while for chronic care, the
value of morbity is a determining factor. (b) Changes in the efficiency of health investments over time
due the impacts of other variables or external factors like age or technology can contribute significantly
towards the qualitative pattern over the life-course. (c) The price development of different health care
types imposes further incentives to either postpone investments to later ages or conduct them earlier in
life.

5.4.1 General health expenditure

The Euler equations for general health expenditure before and after a cancer diagnosis in equations (44)
and (45) directly illustrate these three main contributing factors. Note that all terms are finally scaled
with −µibi

µi
bibi

bi
respectively, which is the equivalent to the inverse of the intertemporal elasticity of substi-

tution in the consumption Euler equation.

ḃ1
b1

=
−µ1

b1

µ1
b1b1

b1

[
−
µ1
b1S1

µ1
b1

µ1S1 +
µ1
b1t

µ1
b1

− ṗb
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+

+r + µ̄+ µ1
S1
S1 −

u1/u1
c1

ψ1
H

+ ηS1S1
ψP
ψ1
H

− ηP
u2
c2

u1
c1

{
(ψ2
H − ψ1

H)
ψ1
H

+ PS1S1

P

ψ2
life

ψ1
H

+ (−BS1)S1
ψM
ψ1
H

}
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=
˙
ψ1
H

(t)

ψ1
H

(t)

]
(44)

33Again we want to stress that the interpretations also hold for the case of a general health shock. In this setting they are
discussed together with the numerical results in the case of cancer, since this allows a more intuitive understanding
and gives a feeling of the signs and sizes of the different channels. The results for preventive care however are purely
theoretical as we abstracted from this type of care in our numerical setting.
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We will now discuss the economic interpretations of the three driving forces (a), (b), and (c) and their
respective decompositions in detail.

(a) Value of Health: The rate of change of the VOH, ˙ψ1
H(t)/ψ1

H(t) resp. ˙ψ2
H(t, s)/ψ2

H(t, s), plays
a crucial part in the Euler equations. Using the results of Proposition 1 these rates can be
decomposed into several parts. Parts (i) and (ii) discussed below show up in both stages and the
interpretations are relevant for general health expenditures in both stages. Meanwhile the effects
discussed in (iii)-(vi) are only present before the cancer diagnosis.

(i) The discount rate of the VOH (r + µ̄ + µiSiSi R 0) incentivizes later health investments for
high market returns (r + µ̄). This effect is partially offset as the individuals take the effect
of higher health on the mortality rate into account (µiSiSi ≤ 0).

(ii) −u
i/uici
ψi
H

≤ 0 captures the depreciation of the value of life (relative to the VOH) and motivates
health investments earlier in life.

(iii) ηS1S1
ψP
ψ1
H

≤ 0 implies advancement of health investments towards younger ages, since S1 has
an impact on the hazard rate and decreases the probability of a cancer diagnosis. The extent
of this effect depends on the value of prevention relative to the value of health.

(iv) −ηP u2
c2
u1
c1

(ψ2
H−ψ

1
H)

ψ1
H

R 0 infers that if the value of health is smaller in the second stage compared
to the first stage (as we have seen in Figure 8), health investments are less attractive in the
present (in case of a shock, health is instantaneously valued less) and consequently delayed to
later stages in life. This factor becomes more pronounced at ages at which a cancer diagnosis
is more likely (increased η).

(v) −ηP u2
c2
u1
c1

PS1S1
P

ψ2
life

ψ1
H

≤ 0 accounts for the positive effect of health S1 on the continuation
probability and results in another force shifting health investment to younger ages. This
aspect is equal to zero in our scenario, as health has no impact on the continuation probability

(vi) −ηP u2
c2
u1
c1

(−BS1)S1
ψM
ψ1
H

≤ 0 lastly represents that as initial deficits are lower, if an individual
is in good health at time of the diagnosis, individuals have another incentive to keep their
health at high levels over the life-cycle. This results in health investments being advanced
towards younger ages. This aspect is equal to zero in our scenario, as health has no impact
on the initial deficits.

(b) Effectiveness: Changes in the effectiveness of health investments over the life-cycle also play a
decisive role for the shape of the profile. This aspect contains two separate parts:

(i) −µ
i
biSi

µi
bi

µiSi covers that if health investments tend to have a higher impact for already depleted
health (µibiSi > 0), people are more likely to defer until their health is depleted to increase
their health expenditures. This aspect is equal to zero in our scenario, as health has no
impact on the base mortality rate.

(ii) µibit
µi
bi

shows that people have an incentive to postpone their health investment to later ages,
if marginal effectiveness of health expenditures increase with age (µibit < 0). This could also
include a set-up, in which individuals expect health technologies to improve during their
lifetime.
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(c) Price: Expected increases of the prices of health care over time push health investments towards
earlier stages in life (and vice versa) as the term − ṗb

pb
indicates. This aspect is equal to zero in our

scenario, as prices are assumed to be constant.

Similarly to the consumption profiles we want to illustrate these theoretical driving forces using our
numerical calibration. As already indicated above, some of the terms are equal to zero due to the
assumptions made for the scenario of a cancer diagnosis and are therefore omitted in the presentation
in the figures below. Like in Figure 4 and 5, we present the terms in the Euler equations aggregated up
to timepoint t as their sum corresponds to the difference of log-expenditures at point t and age t0 = 20.
Figure 10 shows the numerical evaluations of the different (non-zero) parts and their aggregated sum
for general health expenditure of cancer-free individuals.
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Figure 10: Illustrations of the impacts of the different parts of the Euler equations for general health
expenditure before a cancer diagnosis

We can easily identify the two main driving forces behind the overall increasing health expenditures
over the life-cycle. First, intuitively the sum of market and annuity interest alone would impose a
strong delay in health expenditure (dashed red/dark grey line) especially towards the end of life, where
the annuity rate strongly increases. The second strong incentive to postpone health investments is the
increasing efficiency of general health care for older ages (dotted orange/light grey line), which by itself
would imply nearly linearly increasing health expenditures after the age of 45. Consequently the effect
of interest is more pronounced in the early ages and for ages 100+, while the impact of the increasing
effectiveness is stronger between ages around 45 to 100.
However the aggregated effect of these two terms is dampened by two other factors. While the

advancing effect of the preventive aspect of higher health is only present up to age 70 (dash-dotted
green/grey line), the depreciation of the value of life (dotted blue/grey line) becomes increasingly strong
over the life-course. This leads to the health expenditures in total becoming stagnant at the end of the
time horizon (the solid black line becomes flat). Finally we see that the last term containing the impact
of a change in the VOH through diagnosis (dashed purple/grey line) has no significant impact over the
whole life-course.34

34The insignificant impact can be explained similarly to the small difference between the expected and the cancer-free
VOH.
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In Figure 11 we continue with the analogous decomposition for general health expenditure after a
cancer diagnosis. In the left panel we illustrate the decomposition for an early diagnosed individual at
age 30, while in the right panel the diagnosis occurs later in life at age 70. Although we already identified
in Figure 6 that the age-profile for health expenditures after a cancer diagnosis follows a qualitatively
similar pattern to the one of cancer free patients, this decomposition still helps us to identify the smaller
differences. First of all, there are only three terms remaining for health expenditures after the diagnosis
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Figure 11: Illustrations of the impacts of the different parts of the Euler equations

compared to the previous five terms. However the three with the strongest magnitude are still present.
Again the interest and annuity rate (dashed (red) line) incentiveses individuals to defer health care,
however now the postponing effect of increasing effectiveness of health care (dash-dotted (green) line)
is the most distinct reason behind overall increasing health expenditures (solid black line). The sole
dampening effect of the otherwise strongly increasing profile results from the depreciation of the value
of health (dotted (blue) line). The absence of an additional advancing force (like the preventive aspect
of health before the diagnosis) at least partially explains, why the total effect is actually slightly higher
for ages after 60 in case of an early diagnosis compared to the cancer free profile.35

Corollary 5 (General Health Expenditure). The main driving forces behind increasing health expen-
ditures over the life-course are the market and annuity interest rate and the increasing effectiveness of
health care in older ages. In the presence of a potential cancer diagnosis the dampening effect of the
depreciation of the value of life is enhanced by an additional term, which covers the preventive effect of
health and motivates advancement of general health expenditure. This term is only present before the
cancer diagnosis and only shapes the behaviour of cancer-free individuals.

5.4.2 Cancer specific chronic care expenditure

As the last part of our numerical analysis we focus on cancer care after the diagnosis, present the
corresponding Euler equation and again evaluate the decomposition along the optimal numeric solution.
The dynamics of chronic care can differ quantitatively between the different shock scenarios, however
the qualitative shaping forces are the same independent of the age at diagnosis. Similar to the general
health expenditures all terms in equation (46) are scaled with −fh2

fh2h2h2
, the equivalent to the inverse of

35Furthermore we would like to stress that these figures evidently show how an analytical derivation and assessment of
dominating terms in the Euler equations would be fairly impossible. The numerical evaluation nevertheless give great
insight into to driving behavioural forces.
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the intertemporal elasticity of substitution in the consumption Euler equation.
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− ṗ2

p2

]
(46)

Furthermore we also obtain the same three main parts in the dynamics: (a) value of morbidity dynamics,
(b) chronic care efficiency aspects and (c) the price developments.

(a) Value of Morbidity: As we have seen in Figure 8, the value of morbidity follows a surprising
profile after the diagnosis. Consequently decomposing its rate of change ˙ψM (t,s)

ψM (t,s) can enhance our
understanding extensively:

(i) The discount rate of the value of morbidity (r+ µ̄−fE) again leads to chronic care postpone-
ment for high market rates (r + µ̄). If deficits accumulate slower (faster) if they are already
on a high level, i.e. fE < 0 (fE > 0) individuals further delay (accelerate) their chronic care
expenditures.

(ii) w2
E

ψM
≤ 0 captures the impact of the deficit stock on the wage, what also incites individuals to

conduct chronic care earlier in life or closer to the time of the diagnosis. This term is equal
to zero in our scenario, as deficits are assumed to have no impact on working income.

(iii) u2
E/u

2
c2

ψM
≤ 0 is another reason for individuals to invest into chronic care earlier, as the deficits

have a negative impact on the utility. The extent of the shift of chronic care towards younger
ages depends on the ratio of marginal utility gains through deficit reduction and consumption.

(iv) −µ2
E
ψ2
H

ψM
≤ 0 implies advancements of chronic care as increasing deficits impose an additional

mortality risk. The strength of this factor depends on the value of health relative to the value
of morbidity.

(b) Effectiveness: Changes in the effectiveness of chronic care over the life-course also play a decisive
role for the shape of the patterns:

(i) fh2Ef

fh2
R 0 covers the effect of the cancer stock on the marginal impact of chronic care. The

sign of this term depends on several factors, e.g. first the sign of the mixed derivative fh2E

might be ambiguous. Depending on the specific health shock, chronic care might be more
effective if a certain deficit stock has been accumulated (fh2E < 0). On the other hand it
is also possible, that an higher accumulated deficit stock makes it harder to eliminate the
remaining deficits as the treatment is effective (fh2E ≥ 0). Second it is crucial whether
deficits are accumulated or reduced at every point in time as it defines the sign of f .

(ii) Again we might expect fh2t
fh2

R 0 to lead to a delay in chronic care investments, since it
is reasonable for chronic care to be more effective for older ages. Still we cannot make a
statement about the sign of this term in general. This term is equal to zero in our scenario,
as the progression of cancer is assumed to be independent of age.

(c) Price: Expected increases of the price of cancer care over time can push cancer care closer to the
diagnosis (and vice versa) as the term − ṗ2

p2 indicates. This term is equal to zero in our scenario,
as prices are assumed to be constant.

In Figure 12 we present the numerical profiles aggregated from the time of diagnosis analogue to the
previous analyses. First of all we find, that the qualitative patterns of each decompositional term are
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similar regardless the age at diagnosis, however the absolute values and consequently the composite
effect can be different.
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Figure 12: Illustrations of the impacts of the different parts of the Euler equations for cancer specific
care after a diagnosis.

Similarly to all types of health expenditures presented so far, the total interest rate r+µ alone would
lead to deferral of chronic care especially late in life (dashed red/dark grey line). Strikingly, as the
marginal impact of deficits on the efficiency of chronic care is (for the optimal chronic care profile)
stronger than the cancer growth rate δ0, the term −fE implies a delay in cancer care, especially in the
first years after the diagnosis (dotted blue/dark grey line). Consequently through this channel we would
expect a chronic care profile even more concentrated right after the diagnosis, if the efficiency of chronic
care was independent or even increasing with a decreasing cancer stock.
On the other hand the negative impacts of the cancer stock are an incentive for the advancement of

cancer treatments. Notably the term concerning the additional mortality risk (dashed violet/grey line)
implies a continuously decreasing chronic care pattern after the diagnosis. This effect is strengthened by
the term containing the impact of cancer deficits on utility, which, however, is comparatively small and
only increases in magnitude at very late ages (dash-dotted green/light grey line).36 As a last part the
dotted orange/light grey line shows, that the decreasing efficiency of cancer treatments for decreasing
cancer stock leads to investments closer to the diagnosis, but has no significant impact on the qualitative
shape of the pattern after the first ten years. Adding all terms up, we obtain the total profile (solid
black line), which highlights the dominance of negative terms over the positive ones. The strongest
decrease in the cancer expenditure profile occurs right after the diagnosis, which is followed by a period
of relatively flat resp. slightly diminishing expenditures.

Corollary 6 (Cancer treatment). A spike in cancer care right after the diagnosis is mainly driven by
the high additional mortality risk and decreasing efficiency of cancer care for a decreasing cancer stock.
However the combined impact is attenuated as the direct effect of the cancer stock on cancer progression
(under the optimal cancer care regime) acts in an opposing way. Compared to the other types of health
care, the total interest rate significantly affects the cancer care profile only towards older ages 70+.

5.4.3 Preventive care

Lastly we want to analyse the theoretical results we can derive for preventive care, which we unfortu-
nately cannot underline with our numerical solution as for the other types of health care. However the
36Note that this reassures, that changes in our educated guesses for the parameters of the utility function likely do not

have significant impact on the overall structure of the optimal solution.
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interpretations of the analytical results still hold true in general. In equation (47) we present the Euler
type equation for preventive care.

ḣ1

h1
= −ηh1

ηh1h1h1

[
r + µ̄+ ηP

u2
c2

u1
c1

−
u1/u1

c1

ψP
+
(
ρ− Ṗ

P
−

d
dtV

∗(t)
V ∗(t)

)
u2
c2

u1
c1

Pψ2
life

ψP︸ ︷︷ ︸
=

˙ψP
ψP

−ηh1S1µ
1S1

ηh1

+ ηh1t

ηh1

− ṗ1

p1

]

(47)

Analogous to the other health care measures the Euler equation consists of the equivalent of the inverse
of the intertemporal elasticity of substitution as a scaling factor and the three main impact factors: (a)
value of prevention dynamics, (b) preventive care efficiency aspects, and (c) the price developments.
While the latter two are straight forward as for the other types of health care, the decomposition of
the former can be significantly more involved. This follows intuitively from preventive care (resp. the
value of prevention) generating costs in the cancer-free present, while its impacts and benefits are on
the probabilistic side.

(a) Value of Prevention: The rate of change of the value of prevention ψ̇P (t)
ψP (t) can be split up in the

following parts:

(i) The discount rate of the value of prevention (r+ µ̄+ ηP
u2
c2
u1
c1
> 0) again leads to chronic care

postponement for high market rates (r+µ̄). Additionally the desire for precautionary savings
ηP

u2
c2
u1
c1

(which we also discussed in Section 5.2 regarding the consumption profiles) further
delays preventive care.

(ii) −u
1/u1

c1
ψP

< 0 captures the the value of life lost, when being diagnosed with cancer, relative
to the value of prevention and motivates advancements of preventive care to earlier ages.

(iii)
(
ρ− Ṗ

P −
d
dtV

∗(t)
V ∗(t)

)
u2
c2
u1
c1

Pψ2
life

ψP
R 0 is the most involved part. It contains the comparison

between the value of life in the second stage and the value of prevention. The sign of this
term depends on whether the utility discount rate (ρ) is higher then the sum of the rate of
change in the continuation probability and the optimal objective value in the second stage
( ṖP +

d
dtV

∗(t)
V ∗(t) ). However it is more than plausible that

d
dtV

∗(t)
V ∗(t) < 0 in general, since the length

of the remaining time horizon after a health shock shrinks as t increases. Furthermore as
Ṗ
P ≤ 0 is more likely than not for most diseases, the total effect is probably positive in many
cases (without general applicability) and implies deferral of preventive investments towards
older ages, where the cancer diagnosis (or general health shock) has a more significant impact
on the individual.

(b) Effectiveness: Changes in the effectiveness of preventive care over the life-cycle also play a decisive
role for the shape of the profile:

(i) −ηh1S1µ
1S1

ηh1
indicates, that depending on whether preventive care is more (ηh1S1 < 0) or

less (ηh1S1 > 0) effective while in better health, individuals are either motivated to conduct
preventive care earlier or later in life.

(ii) ηh1t
ηh1

shows that the expectation of higher effectiveness of preventive care in the future (ηh1t <

0) leads to postponement of preventive care to older ages.

(c) Price: Expected increases of the price of preventive care over time push investments into preventive
actions towards earlier stages in life (and vice versa) as the term − ṗ1

p1 indicates.
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Corollary 7 (Preventive Care). The Euler equation for preventive care is the most involved within
all types of health care. Beside the price, effectiveness and interest rate impacts similar to other types
of health care, the demand for precautionary savings potentially delays preventive efforts. While the
depreciation of the value of life incentiveses earlier investments in preventive care, a counter acting
deferral effect towards later ages where the shock has more significant impact is likely to exist.

6 Conclusions
We have constructed a life-cycle model in which individuals respond to the risk of a singular, life-changing
shock to their health (e.g. heart attack, stroke, cancer, diabetes, disabling accident) by investing besides
their general health expenditures in a range of distinct forms of health care: preventive care to reduce,
directly or indirectly, the arrival rate of the shock; acute care to lower instantaneous survival and
the extent of morbidity/disability at the point of the shock; and chronic care to lower mortality and
morbidity in the follow-up of the shock. We solve the complex underlying stochastic optimal control
problem with a random time horizon by applying an innovative transformation into an age-structured
control model. This enables us to derive (i) intuitive expressions for the first-order conditions for the
choice of health care based on their respective (monetary) valuations; and (ii) Euler equations that reflect
both age and duration of disease after the onset of the shock and forward-looking behaviour before the
arrival of the shock. The first-order conditions first of all affirm the intuitive notion, individuals choose
their optimal level of all distinct types of health care, so that the marginal costs of any additional
effort match the monetary valuation of the respective aspect of health. On the other hand they also
provide a basis for empirical derivations of the valuations of different facets of health following a revealed
preference argument.
Calibrated to US data, our model illustrating the risk of onset of cancer provides a very good fit

between (i) general and cancer-specific health care expenditure, (ii) age-specific survival and age-specific
prevalence of cancer; (iii) age- and duration-specific cancer mortality rates, as well as (iv) average cancer
and non-cancer specific mortality. Under the assumption that assets are exclusively held as annuities
the return of which is based on the average mortality rate, relatively young individuals respond to
a cancer diagnosis by adjusting their consumption in the light of an increased mortality risk, from a
gradually increasing pattern to a U-shaped pattern (after a brief initial adjustment phase). To finance
high temporary cancer-specific care they reallocate resources from consumption and health expenditures
putting both respective profile on a lower level compared to cancer free individuals. Given the possibility
to do so in a perfect annuity market, they also run up substantial debt in order to finance cancer-
specific health care. With the duration of the disease, cancer-specific health care is reduced, reflecting
an intuitive tendency of such care to evolve from urgent life-protecting care into less intensive chronic
care, conditional on the individual’s survival. A hike in consumption early-on for individuals diagnosed
late in life coincides with a larger drop in general health expenditures and a smaller investment in
cancer-specific care, showing that a cancer diagnosis affects individuals differently at different points
within the life-cycle. However consumption of individuals diagnosed during old age subsequently steeply
reduces to levels below those that would be realized for healthy individuals.
We calculate various expressions for the value of health. Here, the value of health before a diagnosis

of cancer starts from a level of around 16.3 Mio $ at age 20 and then declines steadily. Our analysis
shows that up to around age 70 a cancer diagnosis lowers the value of health dramatically. While both
the cancer-free value of health and the value of health at the point of diagnosis decline with age, the
decline is much more pronounced for the cancer-free value of health. From around age 85 onwards, the
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cancer-free value of health no longer differs much from the value at the onset of diagnosis, reflecting
the much diminished remaining life time in either case. Contrasting the cancer-free value of health
with the ex-ante value of health, which involves a weighting with the prevalence function, we find little
difference between the two. This may come as a surprise given the strong drop in the value of health
for individuals diagnosed at young ages. Notably, however, for these age groups a cancer is an unlikely
diagnosis, implying a low weight, whereas for higher ages, the two values of health have converged.
Considering the components of the cancer-free value of health, we find that while the largest part

falls on the value of survival (tantamount to the conventional value of life), the preventive value of
good health (i.e. the value of prevention weighted with the health-related reduction in the incidence of
cancer) makes up for a significant proportion of the total value up to age 65. Standing at slightly above
6 Mio $ up to the early thirties, it compares to a value of survival around 9.5 Mio $ and makes up more
than a third of the total value of health at age 20. From age 50 onwards, however, the preventive value
of good health diminishes quickly and vanishes almost entirely for the highest ages.
Finally, turning to the Euler equations, we see that under our assumption that the rate of time

preference equals the interest rate, two offsetting forces emerge as drivers of consumption in the healthy
state: On the one hand, given that the individual remains healthy, the average mortality component
(including expected mortality due to cancer) exceeds (to increasing extent) the non-cancer mortality
as a source of risk, allowing the individual to increase consumption over the remaining life-course. On
the other hand, a desire for consumption smoothing leads to the advancement of consumption into
the healthy stage, which subsequently translates into a tendency to reduce consumption of the life-
course. As it turns out, the former effect is slightly stronger for our calibration, leading to an increase
in consumption with age for individuals who remain cancer-free. After the onset of cancer, again two
main forces determine the consumption choice: Assuming that the marginal utility of consumption is
reduced through cancer, there is a tendency for individuals to defer consumption into the future when
(conditional on survival) they expect to experience a higher marginal utility from consumption. As it
turns out, for the most part this tendency tends to be offset by the desire of individuals to consume
instantaneously given the high mortality risk, following the onset of cancer.
The demand for health care generally develops under the presence of two forces: On the one hand, the

return to annuities tends to imply an increase, whereas the writing off of life-years from the respective
value of health tends to imply a decline. For general health investments, these effects tend to be
moderated by age-related changes to their effectiveness. While for cancer-free individuals the shock-
preventive aspect of health implies an additional incentive to advance general health investment, this
factor is absent for individuals after a diagnosis. Overall, in our calibration there is a moderate increase
in general health investments over the life-course both in the absence and, from a much lower level, in
the presence of cancer. While the former three forces also tend to be at play for cancer-specific health
care, there are two additional effects: On the one hand, individuals have an incentive to delay the
consumption of cancer care, given it is more effective for a disease that has progressed already; on the
other hand, the mortality risk that is increasing with the progression of the disease provides a strong
incentive to advance cancer care; and this is, indeed, the dominating effect.
While in this paper we have developed a rich framework for the study of large, singular health shocks,

there is considerable scope for extensions and applications. First, we are planning to provide analysis for
other types of health shocks, in particular cardio-vascular events that involve an instantaneous threat
to survival and, thus, warrant the consumption of acute health care. Second, especially in the case of
cancer, there is an important issue about the lag between onset and diagnosis, which we plan to address
in future work. Third, there is large scope for employing the model to study the role of the annuity
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market and the role of health and disability insurance. Finally, we are considering extensions of the
model to involve multiple shocks and differences in severity of the health shock as a second dimension
of uncertainty.
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7 Appendix

7.1 The model as a vintage optimal control model

The transformation from the stochastic formulation defined by equations (12)–(20) into a vintage struc-
tured optimal control problem follows the technique developed by Wrzaczek et al. (2020). We will
present the two crucial steps here, for the proof and detailed derivations we will however refer to the
work of the original authors.
In the first step we transform the stochastic formulation into an equivalent deterministic version.

The dynamics of the state variables thereby do not change, but we need to introduce the new state
variable Z1(t), which is already presented in Section 2 and its dynamics are described in equation (21).
Following the description in Wrzaczek et al. (2020) we obtain the new deterministic objective function
shown below.

max
c1(t),h1(t),b1(t)≥0
c2(t,s),h2(t,s),b2(t,s)≥0
d(t)≥0

∫ T

0
e−ρt

[
Z1(t)S1(t)u1(c1(t)) +

+ Z1(t)η(t, S1(t), h1(t))P (S1(t), d(t)) ·
(∫ T

t

e−ρ(τ−t)S2(τ, t)u2(c2(τ, t), E(τ, t))dτ
)

︸ ︷︷ ︸
:=Ṽ (t)

]
dt

The integrand consists of two parts. The first part is the probability of surviving in good health Z1(t)
multiplied with the expected utility derived from consumption at this age S1(t)u1(c1(t)). The second
part captures the "probability" of suffering the health shock at age t (→ Z1(t)η(t, S1(t), h1(t))) times
the probability of surviving the shock (→ P (S1(t), d(t))) times the expected aggregated utility over the
remaining life-time after health shock at age t. To abbreviate some equations below we define this term
as Ṽ (t) (as it directly corresponds to the objective value of the second stage).
For the next step in the transformation process we need to introduce the variable Q(t) as the expected

utility at age t with the expectation taken over the distribution of all possible prior shocks s ≤ t, i.e.

Q(t) =
∫ t

0
Z2(s)S2(t, s)u2(c2(t, s), E(t, s))ds (48)

with Z2(s) being defined as in equation (22). Wrzaczek et al. (2020) then show, that the equation (49)
for the aggregated utility over all possible second stage scenarios holds,∫ T

0
e−ρtṼ (t)dt =

∫ T

0
e−ρtQ(t)dt (49)

This is illustrated by a diagram similar to a Lexis-diagram (see figure 13). The left respectively right
panel in figure 13 illustrate the different integrations techniques on the left respectively right side of
equation (49). In both panels (corresponding to the resp. side in equation (49)) the utility is aggregated
over the triangle below the 45◦-line. In the left panel the integration first takes place along each shock
scenario from the age at the health shock until the end of the maximum life-span. In a second step all
scenarios weighted with their occurrence probability of Z1(t)η(t, S1(t), h1(t)) get aggregated. On the
right side, for each age t, first the utility generated in each scenario, where the shock has occurred at
an age s < t, is aggregated and in the second step the integration over all ages takes place.
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Figure 13: Graphical illustration of the change in the order of integration

In a final step we need to introduce another artificial dimension to the variable Z2(s) as follows:

dZ2(t, s)
dt

= 0, t ≥ s,

Z2(s, s) = Z1(s)η(s, S1(s), h1(s))P (S1(s), d(s)), ∀s ≥ 0.

This is a pure technical point (i.e. it eliminates the time lag) and ensures that the optimisation problem
fits the problem framework of Feichtinger et al. (2003). Finally we can summarise the whole problem
formulation in equations (50)–(66).

max
c1(t),h1(t),b1(t)≥0
c2(t,s),h2(t,s),b2(t,s)≥0
d(t)≥0

∫ T

0
e−ρt

[
Z1(t)S1(t)u1(c1(t)) +Q(t)

]
dt (50)

s.t. Ṡ1(t) = −µ1(t, S1(t), b1(t))S1(t) = −µb(t, S1(t), b1(t))S1(t) (51)

S1(0) = 1 , (52)

Ȧ1(t) = (r(t) + µ̄(t))A1(t) + w1(t)− c1(t)− pb(t)b1(t)− p1(t)h1(t) (53)

A1(0) = 0 , A1(T ) = 0 (54)

Ż1(t) = −η(t, S1(t), h1(t))Z1(t) (55)

Z1(0) = 1 , (56)
dS2(t, s)

dt
= −µ2(t, s, S2(t, s), b2(t, s), E(t, s)

)
S1(t) (57)

= −
[
µb (t, S2(t, s), b2(t, s)) + µm(t, s, E(t, s))

]
S2(t, s), t ≥ s (58)

S2(s, s) = S1(s) , ∀s ≥ 0 (59)
dA2(t, s)

dt
= (r(t) + µ̄(t))A2(t, s) + w2(t, s, E(t, s))− c2(t, s)− pb(t)b2(t, s)− p2(t)h2(t, s) (60)

A2(s, s) = A1(s)− pd(s)d(s), , A2(T, s) = 0, ∀s ≥ 0 (61)
dZ2(t, s)

dt
= 0 (62)

Z2(s, s) = Z1(s)η(s, S1(s), h1(s))P (S1(s), d(s)), ∀s ≥ 0 (63)
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dE(t, s)
dt

= f(t, s, E(t, s), h2(t, s)) (64)

E(s, s) = B(S1(s), d(s)), ∀s ≥ 0 (65)

Q(t) =
∫ t

0
Z2(t, s)S2(t, s)u2(c2(t, s), E(t, s)) ds (66)

7.2 Necessary optimality conditions

Using the vintage structured model formulation (50)–(66) we can derive the necessary optimality condi-
tions following the theoretical work of Feichtinger et al. (2003). These conditions consist of (i) a system
of differential equations (67)–(71) for first stage co-state variables, (ii) a system of partial differential
equations (72)–(78) and (iii) a set of first order optimality conditions (accounting for boundary solutions
for the controls) (79)–(92). Note there are not endpoint condition for λA(t) and ξA(t, s) as we included
the terminal conditions A1(T ) = 0 and A2(T, s) = 0∀s ≥ 0 in the problem formulation.

λ̇S = (ρ+ µ1 + µ1
S1
S1)λS + Z1ηS1 [λZ(t)− PξZ(t, t)]− ξS(t, t)− ξE(t, t)BS1−

− Z1
[
u1 + ηPS1ξZ(t, t)

]
(67)

λS(T ) = 0 (68)

λ̇A = (ρ− r − µ̄)λA − ξA(t, t) (69)

λ̇Z = (ρ+ η)λZ − ηPξZ(t, t)− S1u
1 (70)

λZ(T ) = 0 (71)
dξS(t, s)

dt
= (ρ+ µ2 + µ2

S2
S2)ξS − Z2u

2 (72)

ξS(T, T ) = 0 (73)
dξA(t, s)

dt
= (ρ− r − µ̄)ξA (74)

dξZ(t, s)
dt

= ρξZ − S2u
2 (75)

ξZ(T, T ) = 0 (76)
dξE(t, s)

dt
= (ρ− fE)ξE + µ2

ES2ξS − w2
EξA − S2Z2u

2
E (77)

ξE(T, T ) = 0 (78)

0 ≥ Z1S1u
1
c1
− λA (79)

0 =
(
Z1S1u

1
c1
− λA

)
· c1 (80)

0 ≥ −Z1ηh1 (λZ − P (S1, d)ξZ)− λAp1 (81)

0 =
(
−Z1ηh1 (λZ − P (S1, d)ξZ)− λAp1) · h1 (82)

0 ≥ −µ1
b1
S1λS − λApb (83)

0 =
(
−µ1

b1
S1λS − λApb

)
· b1 (84)

0 ≥ ξE(t, t)Bd + Z1ηξZ(t, t)Pd − ξA(t, t)pd (85)

0 =
(
ξE(t, t)Bd + Z1ηξZ(t, t)Pd − ξA(t, t)pd

)
· d (86)

0 ≥ Z2S2u
2
c2
− ξA(t, s) (87)

0 =
(
Z2S2u

2
c2
− ξA(t, s)

)
· c2 (88)

0 ≥ ξE(t, s)fh2 − ξA(t, s)p2 (89)

0 =
(
ξE(t, s)fh2 − ξA(t, s)p2) · h2 (90)
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0 ≥ −µ2
b2
S2ξS − ξA(t, s)pb (91)

0 =
(
−µ2

b2
S2ξS − ξA(t, s)pb

)
· b2 (92)

7.3 Proof of proposition 1 on the valuations of health

Following the calculations of Rosen (1988) we derive the following terms for the valuations:

ψ1
H(t) = S1λS

λA
(93)

ψ2
H(t, s) = S2ξS

ξA
(94)

ψP (t) = Z1(λZ − PξZ(t, t))
λA

(95)

ψAS(t) = Z1(t)η(S1(t), h1(t))ξZ(t, t)
ξA(t, t) (96)

ψM (t, s) = −ξE(t, s)
ξA(t, s) (97)

Since we assume an interior solution for the consumption profiles, the first order conditions for con-
sumption (79) and (87) have to be fulfilled in strict form and we can derive the following equations.

λA(t) = Z1(t)S1(t)uc1(c1(t))

ξA(t) = Z2(t, s)S2(t, s)uc2(c2(t, s), E(t, s))

∀t ∈ [0, T ] and s ∈ [0, t]

Furthermore we can easily derive the following relationship, which will be useful in the calculations
below.

λA(t) = ξA(t, t)
η(t)P (t)

u1
c1

(t)
u2
c2

(t, t) . (98)

In a next step we summaries the explicit solutions for the costate ODEs and PDEs.

ξZ - dynamics
From equation (75) together with the terminal condition ξZ(T, s) = 0 it directly follows that

ξZ(t, s) =
∫ T

t

e−ρ(τ−t)S2(τ, s)u2(τ, s)dτ.

ξS - dynamics
From equation (72) together with the terminal condition ξS(T, s) = 0 it directly follows that

ξS(t, s) =
∫ T

t

e
−
∫ τ
t

[ρ+µ2+µ2
S2S2]dτ ′

Z2(τ, s)u2(τ, s)dτ

=
∫ T

t

e−ρ(τ−t)Z1(s)η(s)P (s)u2(τ, s) e−
∫ τ
t
µ2dτ ′︸ ︷︷ ︸

S2(τ,s)
S2(t,s)

e
−
∫ τ
t
µ2
S2S2(τ ′,s)dτ ′

dτ

= Z1(s)η(s)P (s)
S2(t, s)

∫ T

t

e−ρ(τ−t)S2(τ, s)u2(τ, s) e−
∫ τ
t
µ2
S2S2(τ ′,s)dτ ′︸ ︷︷ ︸
≥1

dτ
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≥ Z1(s)η(s)P (s)
S2(t, s) ξZ(t, s).

ξA - dynamics
As there is no terminal condition for ξA we can only derive the following equation from equation (74)
which will still be crucial further down below.

ξA(t, s) = ξA(s, s) · e
∫ t
s

(ρ−r−µ̄)ds′ = ξA(T, s) · e−
∫ T
t

(ρ−r−µ̄)ds′

ξE - dynamics
The dynamics for ξE(t, s) described in equation (77) together with the terminal condition ξE(T, s) = 0
yield

ξE(t, s) =
∫ T

t

e
−
∫ τ
t

[ρ−fE(τ ′,s)]dτ ′ [w2
E(τ, s)ξA(τ, s) + Z2(τ, s)S2(τ, s)u2

E(τ, s)− µ2
E(τ, s)S2(τ, s)ξS(τ, s)

]
dτ

λZ - dynamics
Similar to the ξZ dynamics from equation (70) together with the terminal condition λZ(T ) = 0 it
directly follows that

λZ(t) =
∫ T

t

e
−
∫ τ
t

(ρ+η)ds′ [
η(τ)P (τ)ξZ(τ, τ) + S1(τ)u1(τ)

]
dτ

λA - dynamics
For our calculation of the λA-dynamics we first use equation (98) to modify the λ̇A-equation what results
in

λ̇A = (ρ− r − µ̄)λA − ξA(t, t),

λ̇A = (ρ− r − µ̄)λA − η(t)P (t)
u2
c2

(t, t)
u1
c1

(t) λA(t),

λ̇A =
(
ρ− r − µ̄− η(t)P (t)

u2
c2

(t, t)
u1
c1

(t)

)
λA(t).

Now similar to the ξA-dynamics, without a terminal condition, we can still derive the equation below:

λA(s) = exp
(∫ s

t

ρ− r − µ̄(s′)− η(s′)P (s′)
u2
c2

(s′, s′)
u1
c1

(s′) ds′
)
λA(t).

λS - dynamics
Finally from equation (67) together with the terminal condition λS(T ) = 0 we can derive the following
representation of λS(t).

λS(t) =
∫ T

t

e
−
∫ τ
t

(ρ+µ1(τ ′)+µ1
S1S1)dτ ′

[
Z1u

1 + ξE(τ, τ)BS1 + ξS(τ, τ)−

− Z1ηS1 [λZ(τ)− P (τ)ξZ(τ, τ)] + ηPS1(τ)Z1(τ)ξZ(τ, τ)
]
dτ

Coming back to the different valuation of health, we are going to start with the simpler ones of the
second stage and proceed to the more involved ones of the first stage.
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7.3.1 Value of health in the second stage ψ2
H(t, s)

ψ2
H(t, s) = S2(t, s)ξS(t, s)

ξA(t, s) =
S2(t, s)Z2(t,s)

S2(t,s)
∫ T
t
e−ρ(τ−t)S2(τ, s)u2(τ, s)e−

∫ τ
t
µ2
S2S2(τ ′,s)dτ ′

dτ

ξA(t, s)

=
∫ T

t

(
e−ρ(τ−t)Z2(τ, s)S2(τ, s)u2(τ, s)e−

∫ τ
t
µ2
S2S2(τ ′,s)dτ ′ 1

ξA(τ, s)e
∫ τ
t
ρ−r−µ̄dτ ′

)
dτ

=
∫ T

t

e
−
∫ τ
t
r+µ̄+µ2

S2S2(τ ′,s)dτ ′ Z2(τ, s)S2(τ, s)u2(c2(τ, s), E(τ, s))
Z2(τ, s)S2(τ, s)u2

c2
(c2(τ, s), E(τ, s)) dτ

=
∫ T

t

e
−
∫ τ
t
r+µ̄+µ2

S2S2(τ ′,s)dτ ′ u
2(c2(τ, s), E(τ, s))

u2
c2

(c2(τ, s), E(τ, s)) dτ

7.3.2 Value of morbidity ψM (t, s)

ψM (t, s) = −ξE(t, s)
ξA(t, s) =

∫ T
t

(
e
−
∫ τ
t
ρ−fEdτ ′ [−w2

E(τ, s)ξA(τ, s)− Z2(τ, s)u2
E(τ, s) + µ2

E(τ, s)S2(τ, s)ξS(τ, s)
])

dτ

ξA(t, s)

=
∫ T

t

e
−
∫ τ
t
ρ−fEdτ ′

[
−w2

E(τ, s)− Z2(τ, s)S2(τ, s)u2
E(τ, s)

ξA(τ, s) + µ2
E(τ, s)S2(τ, s)ξS(τ, s)

ξA(τ, s)

]
e

∫ τ
t
ρ−r−µ̄dτ ′

dτ

=
∫ T

t

e
−
∫ τ
t
r+µ̄−fEdτ ′

[
−w2

E(τ, s)− u2
E(τ, s)
u2
c2

(τ, s) + µ2
E(τ, s)ψ2

H

]
dτ

7.3.3 Value of acute survival ψAS(t)

ψAS(t) = Z1(t)η(t)ξZ(t, t)
ξA(t, t) =

Z1(t)η(t)
∫ T
t
e
−
∫ τ
t
ρdτ ′

S2(τ, t)u2(τ, t)dτ
ξA(t, t)

= Z1(t)η(t)
∫ T

t

e
−
∫ τ
t
ρdτ ′

e

∫ τ
t
ρ−r−µ̄dτ ′ S2(τ, t)u2(τ, t)

ξA(τ, t) dτ

= Z1(t)η(t)
∫ T

t

e
−
∫ τ
t

(r+µ̄)dτ ′ S2(τ, t)u2(τ, t)
Z2(τ, t)S2(τ, t)u2

c2
(τ, t)dτ

= Z1(t)η(t)
∫ T

t

e
−
∫ τ
t

(r+µ̄)dτ ′ u2(τ, t)
Z1(t)η(t)P (t)u2

c2
(τ, t)dτ

= 1
P (t)

∫ T

t

[
e
−
∫ τ
t

(r+µ̄)dτ ′ u
2(c2(τ, t), E(τ, t))

u2
c2

(c2(τ, t), E(τ, t))

]
dτ

=: 1
P (t)ψ

2
life(t, t)

7.3.4 Value of prevention ψP

ψP (t) = Z1(t)(λZ(t)− PξZ(t, t))
λA(t) = Z1(t)λZ(t)

λA(t) − Z1(t)PξZ(t, t)
λA(t) = Π1 −Π2

Π1 = Z1(t)λZ(t)
λA(t)

= 1
λA(t)

∫ T

t

e
−
∫ τ
t
ρds [

Z1(τ)η(τ)P (τ)ξZ(τ, τ) + S1(τ)Z1(τ)u1(τ)
]
dτ

=
∫ T

t

e
−
∫ τ
t
ρds
e

∫ τ
t

(
ρ−r−µ̄−ηP

u2
c2
u1
c1

)
ds
[
Z1(τ)η(τ)P (τ)ξZ(τ, τ)

λA(τ) + S1(τ)Z1(τ)u1(τ)
λA(τ)

]
dτ
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=
∫ T

t

e
−
∫ τ
t

(
r+µ̄+ηP

u2
c2
u1
c1

)
ds

Z1(τ)η(τ)P (τ)ξZ(τ, τ)
ξA(τ,τ)
η(τ)P (τ)

u1
c1 (τ)

u2
c2 (τ,τ)

+ S1(τ)Z1(τ)u1(τ)
S1(τ)Z1(τ)u1

c1
(τ)

 dτ
=
∫ T

t

e
−
∫ τ
t

(
r+µ̄+ηP

u2
c2
u1
c1

)
ds
[
u1(τ)
u1
c1

(τ) + η(τ)P (τ)
u2
c2

(τ, τ)
u1
c1

(τ) P (τ)Z1(τ)η(τ)ξZ(τ, τ)
ξA(τ, τ)

]
dτ

=
∫ T

t

e
−
∫ τ
t

(
r+µ̄+ηP

u2
c2
u1
c1

)
ds
[
u1(τ)
u1
c1

(τ) + η(τ)P (τ)
u2
c2

(τ, τ)
u1
c1

(τ) ψ2
life(τ, τ)

]
dτ

Π2 = Z1(t)P (t)ξZ(t, t)
λA(t) = Z1(t)P (t)ξZ(t, t)

ξA(t,t)
η(t)P (t)

u1
c1 (t)

u2
c2 (t,t)

=
u2
c2

(t, t)
u1
c1

(t) P (t)Z1(t)η(t)ξZ(t, t)
ξA(t, t) P (t) =

u2
c2

(t, t)
u1
c1

(t) P (t)ψ2
life(t, t)

ψP (t) =
∫ T

t

e
−
∫ τ
t

(
r+µ̄+ηP

u2
c2
u1
c1

)
ds
[
u1(τ)
u1
c1

(τ) + η(τ)P (τ)
u2
c2

(τ, τ)
u1
c1

(τ) ψ2
life(τ, τ)

]
dτ −

u2
c2

(t, t)
u1
c1

(t) P (t)ψ2
life(t, t)

7.3.5 Value of health in the first stage ψ1
H(t)

ψ1
H(t) = S1(t)λS(t)

λA(t) = S1(t)
λA(t)

∫ T

t

e
−
∫ τ
t

(ρ+µ1(τ ′)+µ1
S1S1)dτ ′

[
Z1u

1 − Z1ηS1 [λZ(τ)− P (τ)ξZ(τ, τ)] +

+ ξE(τ, τ)BS1 + ξS(τ, τ) + ηPS1(τ)Z1(τ)ξZ(τ, τ)
]
dτ

=
∫ T

t

e
−
∫ τ
t

(ρ+µ1+µ1
S1S1)dτ ′

e

∫ τ
t
µ1dτ ′

e

∫ τ
t

(
ρ−r−µ̄−ηP

u2
c2
u1
c1

)
dτ ′
[
S1(τ)
λA(τ)Z1u

1−

− S1(τ)
λA(τ)ηS1Z1 [λZ(τ)− P (τ)ξZ(τ, τ)] + S1(τ)

λA(τ)ξE(τ, τ)BS1 + S1(τ)
λA(τ)ξS(τ, τ) + S1(τ)

λA(τ)ηPS1(τ)Z1(τ)ξZ(τ, τ)
]
dτ

=
∫ T

t

e
−
∫ τ
t

(
r+µ̄+µ1

S1S1+ηP
u2
c2
u1
c1

)
dτ ′
[
u1(τ)
u1
c1

(τ) − ηS1S1
Z1 [λZ(τ)− P (τ)ξZ(τ, τ)]

λA(τ) +

+ ηP
u2
c2

u1
c1

(
BS1S1(τ)ξE(τ, τ)

ξA(τ, τ) + S2(τ, τ)ξS(τ, τ)
ξA(τ, τ) + PS1(τ)S1(τ)Z1(τ)η(τ)ξZ(τ, τ)

ξA(τ, τ)

)]
dτ

=
∫ T

t

e
−
∫ τ
t

(
r+µ̄+µ1

S1S1+ηP
u2
c2
u1
c1

)
dτ ′
[
u1(τ)
u1
c1

(τ) − ηS1S1ψP (τ)+

+ ηP
u2
c2

u1
c1

{
(−BS1)S1(τ)ψM (τ, τ) + ψ2

H + PS1(τ)S1(τ)ψAS(τ)
}]

dτ

=
∫ T

t

e
−
∫ τ
t

(
r+µ̄+µ1

S1S1+ηP
u2
c2
u1
c1

)
dτ ′
[
u1(τ)
u1
c1

(τ) + (−ηS1)S1ψP (τ)+

+ ηP
u2
c2

u1
c1

{
ψ2
H + PS1(τ)S1(τ)

P (τ) ψ2
life + (−BS1)S1(τ)ψM (τ, τ)

}]
dτ

7.4 Proof of proposition 2 on the first order optimality conditions

Under the assumption of interior solutions the FOCs (79), (81), (83), (85), (87), (89) and (91) all have to
hold in strict form. Simple rearrangements of these equations and substituting the different valuations
of health in equations (93)-(97) result in the equations presented in proposition 2.
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7.5 Derivation of the Euler equations

In this section we present the derivation of all the Euler equations presented in the numerical analysis.

7.5.1 c1 - Dynamics

λA(t) = Z1(t)S1(t)u1
c1

(c1(t))

λ̇A(t)
λA(t) = Ż1(t)

Z1(t) + Ṡ1(t)
S1(t) +

d
dt

[
u1
c1

(c1(t))
]

u1
c1

(c1(t))

ρ− r − µ̄− ηP
u2
c2

u1
c1

= −η − µ1 +
u1
c1c1

c1

u1
c1

ċ1
c1

ċ1
c1

=
u1
c1

−u1
c1c1

c1

[
r − ρ+ µ̄− µ1 − η + ηP

u2
c2

u1
c1

]
7.5.2 c2 - Dynamics

ξA(t, s) = Z2(t, s)S2(t, s)u2
c2

(c2(t, s), E(t, s))
˙ξA(t, s)
ξA(t, s) = Ż2(t, s)

Z2(t, s) + Ṡ2(t, s)
S2(t, s) +

d
dt

[
u2
c2

(c2(t, s), E(t, s))
]

u2
c2

(c2(t, s), E(t, s))

ρ− r − µ̄ = 0− µ2 +
u2
c2c2

c2

u2
c2

ċ2
c2

+
u2
c2E

u2
c2

f

ċ2
c2

=
u2
c2

−u2
c2c2

c2

[
r − ρ+ µ̄− µ2 +

u2
c2E

u2
c2

f

]
7.5.3 b2 - Dynamics

pb(t) =
[
−µ2

b2
(t)
]
· ψ2

H(t)

ṗb(t)
pb(t) =

d
dt

[
−µ2

b2
(t)
]

−µ2
b2

(t) +
˙ψ2
H(t)

ψ2
H(t)

ṗb

pb
=
µ2
b2b2

b2

µ2
b2

ḃ2
b2

+
µ2
b2S2

Ṡ2

µ2
b2

+
µ2
b2t

µ2
b2

+
˙ψ2
H(t)

ψ2
H(t)

ḃ2
b2

=
−µ2

b2

µ2
b2b2

b2

[ ˙ψ2
H(t)
ψ2
H(t) −

ṗb

pb
−
µ1
b2S2

µ2
b2

µ2S2 +
µ2
b2t

µ2
b2

]

˙ψ2
H =

(
r + µ̄+ µ2

S2
S2
)
ψ2
H −

u2

u2
c2

ḃ2
b2

=
−µ2

b2

µ2
b2b2

b2

[
r + µ̄+ µ2

S2
S2 −

u2/u2
c2

ψ2
H

− ṗb

pb
−
µ2
b2S2

µ2
b2

µ2S2 +
µ2
b2t

µ2
b2

]

7.5.4 b1 - Dynamics

pb(t) =
[
−µ1

b1
(t)
]
· ψ1

H(t)
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ṗb(t)
pb(t) =

d
dt

[
−µ1

b1
(t)
]

−µ1
b1

(t) +
˙ψ1
H(t)

ψ1
H(t)

ṗb

pb
=
µ1
b1b1

b1

µ1
b1

ḃ1
b1

+
µ1
b1S1

Ṡ1

µ1
b1

+
µ1
b1t

µ1
b1

+
˙ψ1
H(t)

ψ1
H(t)

ḃ1
b1

=
−µ1

b1

µ1
b1b1

b1

[ ˙ψ1
H(t)
ψ1
H(t) −

ṗb

pb
−
µ1
b1S1

µ1
b1

µ1S1 +
µ1
b1t

µ1
b1

]

˙ψ1
H =

(
r + µ̄+ µ1

S1
S1 + ηP

u2
c2

u1
c1

)
ψ1
H −

u1

u1
c1

+ ηS1S1ψP − ηP
u2
c2

u1
c1

{
ψ2
H + PS1S1

P
ψ2
life + (−BS1)S1ψM

}
˙ψ1
H

ψ1
H

= r + µ̄+ µ1
S1
S1 −

u1/u1
c1

ψ1
H

+ ηS1S1
ψP
ψ1
H

− ηP
u2
c2

u1
c1

{
(ψ2
H − ψ1

H)
ψ1
H

+ PS1S1

P

ψ2
life

ψ1
H

+ (−BS1)S1
ψM
ψ1
H

}

ḃ1
b1

=
−µ1

b1

µ1
b1b1

b1

[
r + µ̄+ µ1

S1
S1 −

u1/u1
c1

ψ1
H

+ ηS1S1
ψP
ψ1
H

−

− ηP
u2
c2

u1
c1

{
(ψ2
H − ψ1

H)
ψ1
H

+ PS1S1

P

ψ2
life

ψ1
H

+ (−BS1)S1
ψM
ψ1
H

}
− ṗb

pb
−
µ1
b1S1

µ1
b1

µ1S1 +
µ1
b1t

µ1
b1

]

7.5.5 h2 - Dynamics

p2(t) = [−fh2(t, s)] · ψM (t, s)

ṗ2(t)
p2(t) =

d
dt [−fh2(t, s)]
[−fh2(t, s)] +

˙ψM (t, s)
ψM (t, s)

ṗ2

p2 = fh2h2h2

fh2

ḣ2

h2
+ fh2t

fh2

+ fh2EĖ

fh2

+
˙ψM (t, s)
ψM (t, s)

ḣ2

h2
= −fh2

fh2h2h2

[
˙ψM (t, s)
ψM (t, s) + fh2t

fh2

+ fh2Ef

fh2

− ṗ2

p2

]

˙ψM = (r + µ̄− fE)ψM + w2
E + u2

E

u2
c2

− µ2
Eψ

2
H

ḣ2

h2
= −fh2

fh2h2h2

[
r + µ̄− fE + w2

E

ψM
+
u2
E/u

2
c2

ψM
− µ2

E

ψ2
H

ψM
+ fh2t

fh2

+ fh2Ef

fh2

− ṗ2

p2

]

7.5.6 h1 - Dynamics

p1(t) = [−ηh1(t)] · ψP (t)

ṗ1(t)
p1(t) =

d
dt [−ηh1(t)]
[−ηh1(t)] + ψ̇P (t)

ψP (t)
ṗ1

p1 = ηh1h1h1

ηh1

ḣ1

h1
+ ηh1S1 Ṡ1

ηh1

+ ηh1t

ηh1

+ ψ̇P
ψP

ḣ1

h1
= −ηh1

ηh1h1h1

[
ψ̇P
ψP
− ηh1S1µ

1S1

ηh1

+ ηh1t

ηh1

− ṗ1

p1

]
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ψP (t) =
∫ T

t

e
−
∫ τ
t

(
r+µ̄+ηP

u2
c2
u1
c1

)
ds
[
u1(τ)
u1
c1

(τ) + η(τ)P (τ)
u2
c2

(τ, τ)
u1
c1

(τ) ψ2
life(τ, τ)

]
dτ − Z1(t)P (t)ξZ(t, t)

λA(t)

= Π1 −Π2

Π̇1 =
(
r + µ̄+ ηP

u2
c2

u1
c1

)
Π1 −

u1

u1
c1

− ηP
u2
c2

u1
c1

ψ2
life

Π̇2 =
(
Ż1

Z1
+ Ṗ

P
+

d
dtξZ(t, t)

ξZ
− λ̇A
λA

)
Π2

=
(
−η + Ṗ

P
+

˙ξZ
ξZ

+
∂
∂sξZ

ξZ
−
(
ρ− r − µ̄− ηP

u2
c2

u1
c1

))
Π2

˙ξZ
ξZ

= ρξZ − S2u
2

ξZ
= ρ− S2u

2

ξZ
= ρ− S2u

2 Z1η

ξAψAS
= ρ− Z1ηS2u

2

Z2S2u2
c2
ψAS

= ρ− Z1ηS2u
2

Z1ηPS2u2
c2
ψAS

= ρ− u2

u2
c2
ψ2
life

Π̇2 =
(
r + µ̄− η + ηP

u2
c2

u1
c1

+ Ṗ

P
+

∂
∂sξZ

ξZ

)
Π2 −

u2

u2
c2
ψ2
life

Π2

=
(
r + µ̄− η + ηP

u2
c2

u1
c1

+ Ṗ

P
+

∂
∂sξZ

ξZ

)
Π2 −

u2

u1
c1

P

ψ̇P (t) = Π̇1 − Π̇2 =
(
r + µ̄+ ηP

u2
c2

u1
c1

)
Π1 −

u1

u1
c1

− ηP
u2
c2

u1
c1

ψ2
life−

−

((
r + µ̄− η + ηP

u2
c2

u1
c1

+ Ṗ

P
+

∂
∂sξZ

ξZ

)
Π2 −

u2

u1
c1

P

)

=
(
r + µ̄+ ηP

u2
c2

u1
c1

)
ψP −

(u1 − Pu2)
u1
c1

−

(
Ṗ

P
+

∂
∂sξZ

ξZ

)
u2
c2

u1
c1

Pψ2
life

Since it also holds that

ξZ(t, t) = V ∗(t, S1(t), A1(t), Z1(t)) =: V ∗(t)

we can alternatively derive

ψ̇P (t) =
(
r + µ̄+ ηP

u2
c2

u1
c1

)
ψP −

u1

u1
c1

+
(
ρ− Ṗ

P
−

d
dtV

∗(t)
V ∗(t)

)
u2
c2

u1
c1

Pψ2
life

ψ̇P
ψP

= r + µ̄+ ηP
u2
c2

u1
c1

−
(u1 − Pu2)/u1

c1

ψP
−

(
Ṗ

P
+

∂
∂sξZ

ξZ

)
u2
c2

u1
c1

Pψ2
life

ψP
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= r + µ̄+ ηP
u2
c2

u1
c1

−
u1/u1

c1

ψP
+
(
ρ− Ṗ

P
−

d
dtV

∗(t)
V ∗(t)

)
u2
c2

u1
c1

Pψ2
life

ψP

ḣ1

h1
= −ηh1

ηh1h1h1

[
r + µ̄+ ηP

u2
c2

u1
c1

−
(u1 − Pu2)/u1

c1

ψP
−

(
Ṗ

P
+

∂
∂sξZ

ξZ

)
u2
c2

u1
c1

Pψ2
life

ψP
+ ηh1S1 Ṡ1

ηh1

+ ηh1t

ηh1

− ṗ1

p1

]

= −ηh1

ηh1h1h1

[
r + µ̄+ ηP

u2
c2

u1
c1

−
u1/u1

c1

ψP
+
(
ρ− Ṗ

P
−

d
dtV

∗(t)
V ∗(t)

)
u2
c2

u1
c1

Pψ2
life

ψP
+ ηh1S1 Ṡ1

ηh1

+ ηh1t

ηh1

− ṗ1

p1

]

7.6 Estimation and calibration strategies

Estimation of cancer incidence rate η(S1)
For the estimation of the cancer incidence rate we adjust the total age-specific mortality rate obtained
from the human mortality database (University of California, Berkeley (USA) and Max Planck Institute
for Demographic Research (Germany) (2020)) for the average age-specific cancer mortality provided in
the SEER-database (Surveillance Research Program, National Cancer Institute (2020)). Using this
adjusted mortality profile, we can derive the empirical equivalent of the S1-profile in our model. Using
the age-specific cancer incidence rate (again from the SEER database), the functional form

η(t, S) = β0

1 + β1( 1−S1
S1

)β2

turns out to provide an appropriate fit. Consequently we use a general least square fitting function for
non-linear functions to obtain estimates for β0, β1, and β2.

Estimation of cancer specific mortality rate µm(s, E)
The estimation procedure the parameters of the cancer specific mortality rate is more involved. Using
the duration dependent cancer specific survival data for different ages at diagnosis (4 broad age groups),
we first derive the corresponding empirical information about the cancer mortality rate. The remaining
procedure is less straight forward. Compared to the estimation of the cancer incidence rate, we do not
have an empirical counterpart for the development of the cancer stock E. First note, that we can derive
the empirical duration specific mortality only between full years. However especially within the first
two years after a diagnosis, there can be significant differences in cancer mortality risk and expenditure
between the beginning and the end of the first year. Hence the derived empirical mortality rates are in
a continuous time setting more appropriate estimates for mortality at 6 months, 1.5 years, 2.5 years,
etc. Furthermore our specified cancer mortality function

µm(t, s, E) = ψ0 · E · exp
{
ψ1 ·

( s
T

)ψ2
}

and the normalisation of the initial cancer stock E(s, s) = 1.0 imply that we can potentially estimate
the impact of age at diagnosis using mortality data right at the point of diagnosis. Hence we use the
cancer specific mortality data for 6 months, 1.5 years, 2.5 years to estimate a non-linear function

M j(t− s) = exp
{
−a1 + a2 · e−a3(t−s)

}
for each age-group j ∈ {1, 2, 3, 4} separately (which provides excellent fit) and use it to derive extrapo-
lated estimations for the mortality rates right after the diagnosis, i.e. M j(0).
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However the data shows that the impact of the age at diagnosis can change for increasing duration
of cancer. Therefore estimating ψ1 and ψ2 only from data M j(0), might lead to skewed results, which
are not able to replicate the mortality risk of cancer also in the long-run. Hence we evaluated M j(t)
at t = 0, 1, . . . , 10 to obtain a relevant data-set M. While we still do not know the development of E
ex-ante, we can estimate ψ0, ψ1, and ψ2 as follows:

(i) We assume a highly general mortality function (with d = t − s describing the duration of the
diagnosed cancer disease) in the form of

µ̃m(d, s) = νd · exp
{
ζ1 ·

( s
T

)ζ2
}

(ii) Now we can use the dataset M to estimate the 13 parameters ν0,ν1 . . . ν10, ζ1, and ζ2 using a
generalised least-square fit. However to obtain the corresponding mortality rates for the four
age-groups, we need to calculate the averaged values within each age-group. Thereby we need to
account for the varying incidence of cancer depending on age and use the empirical equivalents to
S1, Z1, and Z2, which we can all derive from the estimates of the cancer incidence rate.

(iii) Finally we can use the estimates for ζ1 and ζ2 as estimates for ψ1 and ψ1 in µm and the estimated
value for ν0 provides an approximation for ψ0.

Calibration of the base mortality function µb(t, b)
We use a very general form of the mortality function, so we are able to match the health expenditure
profile and the survival profile at the same time, i.e. we assume the functional form presented in
Section 4.

µb(t, S1, b1) = µb(t, b1) = g(t)bε(t)1 g(t) = exp
{
γ0 + γ1t+ γ2t

2 + γ3t
3}

ε(t) = α0 + α1 · t (< 0)

As the data delivers better information about the health expenditure rather than the health invest-
ments/measures we will directly connect the mortality rate to the health expenditures and as a result
also set the price for health investments pb = 1. To find fitting values for γi and αi we use an iterative
procedure:

(i) We start with a reasonable estimate for the value of health profile in the first stage.

(ii) Now consider the first-order optimality condition

(−µ1
b1

(t, b1(t)))ψ1
H(t) = pb(= 1)

and the fact, that for our functional specification it holds that

µ1
b1

(t, b1(t)) = ε(t)µ
1(t, b1(t))
b1(t)

(iii) Consequently we can rewrite the optimality condition as:

ε(t) = b1(t)
−µ1(t, b1(t))ψ1

H(t)
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Inserting the general expenditure data bData1 (t) obtained from the NTA database, the calculated
value of health profile and the non-cancer mortality rates from the data, we get an estimated
profile for ε(t), which can then be used to estimate the parameters α1 and α2.

(iv) Having found the parameters for ε(t), we can then simply use the definition of the mortality
function to find the parameters γi, i ∈ {1, 2, 3, 4} by using

ln(g(t)) = ln
(
µ1(t)
b(t)ε(t)

)
and inserting the mortality and health expenditure data together with the estimate for ε(t) on the
right side of the equation.

(v) As a next step we undertake several steps in our general optimisation algorithm to get closer to
the optimal solution.

(vi) After a certain number of steps we stop and calculate the a-priori value of health (average value
of health in the first and second stage) for the current solution of controls, states and costates and
return to step (ii).

As the optimal solution converges during the process, also the calibration for the parameters γi and αi
should converge for proper guesses for the initial choices.
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