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A B S T R A C T   

The prevalence of diseases often varies substantially from region to region. Besides basic de-
mographic properties, the factors that drive the variability of each prevalence are to a large extent 
unknown. Here we show how regional prevalence variations in 115 different diseases relate to 
demographic, socio-economic, environmental factors and migratory background, as well as access 
to different types of health services such as primary, specialized and hospital healthcare. We have 
collected regional data for these risk factors at different levels of resolution; from large regions of 
care (Versorgungsregion) down to a 250 by 250 m square grid. Using multivariate regression 
analysis, we quantify the explanatory power of each independent variable in relation to the 
regional variation of the disease prevalence. We find that for certain diseases, such as acute heart 
conditions, diseases of the inner ear, mental and behavioral disorders due to substance abuse, up 
to 80% of the variance can be explained with these risk factors. For other diagnostic blocks, such 
as blood related diseases, injuries and poisoning however, the explanatory power is close to zero. 
We find that the time needed to travel from the inhabited center to the relevant hospital ward 
often contributes significantly to the disease risk, in particular for diabetes mellitus. Our results 
show that variations in disease burden across different regions can for many diseases be related to 
variations in demographic and socio-economic factors. Furthermore, our results highlight the 
relative importance of access to health care facilities in the treatment of chronic diseases like 
diabetes.   
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1. Introduction 

The Austrian health-care system (HCS) can be universally accessed by all Austrian citizens, European citizens and other population 
groups residing in Austria. The administration of the system is however not managed only at the national level, but results from a 
dialogue of the federal ministry of health with federal states and social insurance institutions. Whereas overall planning regarding the 
provision of health services happens on a national level via the Austrian structural health plan, the implementation of intramural care 
is the responsibility of the federal states, implementation of extra-mural care is the responsibility of the social insurance institutions. 
This is similar to many health-care systems such as those in Italy, Germany and North America. There is evidence that this leads to 
regional variations in healthcare quality [3,7,10,16,24,27]. Socio-economic, environmental and demographic determinants such as 
education, income, marital status, citizenship and temperature of the environment, have been shown to explain much of the variance 
in life expectancy [4,17]. Differences in health expenditures and their outcomes have been investigated by de Vries et al. [5], Rahman 
[21], Manning [14] and Giannoni [8], Lopez-Casanovas [13] discuss discrepancies in supply and demand for health services, Pappas 
et al. investigate the effects of socioeconomic determinants on avoidable hospitalizations [18], while Petrelli et al. investigate citi-
zenship effects on hospitalizations [19]. However, no comprehensive study links a set of regional risk factors to a comprehensive set of 
pathology prevalence endpoints. The interplay between the regional and the national scale, in regulating the HCS, has proven to be a 
fragile yet vital element of the management of crises. During the COVID-19 outbreak for example, such coordination was a crucial 
discriminant in the success of the management in many countries including Italy, the US and China [23]. From this arises the challenge 
to monitor the how and why health conditions vary across different administrative regions. Previous studies making use of electronic 
health records (EHRs) have shown that their systematic use can greatly improve our awareness of the status of the health-care system 
and its users [12]. 

We build on this literature by analyzing data gathered from publicly available sources: the European Commission, the Austrian 
statistical office (Statistik Austria), the Austrian noise-level monitoring branch of the ministry of interior affairs (Bundesministerium), 
Open Street Maps to identify points of interest (POI) like fast food restaurants and marketing data (WIGeoGIS). A novelty in our 
analysis is the use of geolocalized information on points of care using the Google Maps API to calculate the distance from hospitals to 
urban centers. Also, the use of geographical information, means we can investigate certain potential indicators of lifestyle such as the 
fast food density, that could be informative for diagnose blocks associated with chronic diseases among others. To estimate disease 
prevalence, we use a nationwide dataset on hospital stays in each region of care (Versorgungsregion) for which we have a primary 
diagnosis in the form of a level-3 ICD-10 code that we aggregate into blocks following the guidelines of the World Health Organization 

Fig. 1. Depiction of the analysis performed on diseases of the diabetes mellitus block (IDC-10: E10 to E14). In the left panel: a sample of the input 
data for the model. The five layers describe the regional distribution of standard scores (or Z-scores) at the highest resolution available for the 
measure. From top to bottom the values are: the prevalence of hospital diagnosis of diabetes for males aged 45 to 59, the logarithm of time to care 
(specific to diabetes), the mean income, the care provider density, the population density. In the right panel: the Kendal correlation coefficient 
between predictors selected for the model, excluding sex, being the only categorical variable. 
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(WHO). For each diagnostic block, we measure the correlation of each risk factor with the disease prevalence using multivariable 
regression analysis. We find that up to 80% of the variance of certain diagnostic blocks, such as hernia, diseases of the inner ear and 
disorders due to the use of psychoactive substances, can be predicted using this simple model. While for other diagnostic blocks, such 
as radiation-related cutaneous disorder and hemolytic anemias, the variation cannot be explained using this method (adjusted-R2 <
0.15). Overall, the strongest risk contributions, after adjusting for age and sex, come from population density, the distance to the 
healthcare facilities and migratory backgrounds. 

2. Results 

2.1. Characteristics of the dataset 

Of the 131 disease blocks defined by the WHO, we have excluded 16 from our analysis due to insufficient statistics or age and sex 
specificities of the disease (we refer to https://www.icd10data.com/ICD10CM/Codes for ease of consultation; see SI for a list of 
excluded blocks). Our data, aggregated at the level of the regions of care, comprises 29 regions divided into 12 demographic groups: 6 
age groups of 15 years each and 2 sexes. For each of these regions, we have collected publicly available data and added 2 indicators: 
time to care for the treatment of the diseases in a diagnostic block and the number of fast-food restaurants per 100.000 individuals. 
Time to care is specific to each diagnostic block and ranges from 100 s to 5000 s with a mean of 1000. The fast-food density is between 
1 and 63 establishments per 100.000 individuals (see SI for further information on these indicators). Data for each layer is assigned to 
its specific location (an example for a few layers can be seen in Fig. 1) and combined to the region of care level. 

2.2. Multivariate ecological modelling 

For each diagnostic block, we calibrate the same linear model (as defined in the SI). We find that the explained variance of the 
model varies significantly across disease blocks, going from an adjusted R2 of 0.7 for hernia to 0.02 for hemolytic anemias. Well- 
predicted diagnoses include “diseases of the ear and mastoid process” (R2 = 0.46 ± 0, 16) and “diseases of the circulatory system” 
(R2 = 0.39 ± 0, 13). The chapter that the model explains the least are “diseases of the blood and blood-forming organs and certain 
disorders involving the immune system” (R2 = 0.12 ± 0, 07) and “injury, poisoning and certain other consequences of external causes” 
(R2 = 0.14 ± 0, 14). We also controlled for variance inflation due to multicollinearity of predictors. 11% of models have variance 
inflation above 10 and therefore have inflated error estimates of the coefficients. These are therefore not among the most significant 
results (for further details see SI Fig. 1 where we report the relation between R2 and VIF). In Fig. 2, we summarize the results of the 
model calibration across the first 40 most diagnosed diseases in Austria. Each row in the lower half corresponds to one indicator, while 
each column corresponds to a certain diagnostic block. The circles represent the contribution of each indicator to the prevalence of the 
disease as estimated by the model in terms of average marginal effect (AME). A red circle identifies a risk factor, while a blue circle 

Fig. 2. A graphic representation of the linear models for certain disease blocks. Only models of the first 40 most common diagnostic blocks in 
Austria are shown. In the top panel, the R2 of the model is the amount of variance the model can explain. In the bottom panel, the average marginal 
effect (AME) each independent variable has on the age-standardised prevalence of the disease is shown. The color represents the direction of the 
effect: red means higher disease prevalence in regions where the independent variable assumes higher values, blue means lower prevalence. The size 
of the circle represents the significance of the effect: larger dots are more significant, smaller dots are less significant. (For interpretation of the 
references to color in this figure legend, the reader is referred to the Web version of this article.) 
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Fig. 3. A detailed view of the regression coefficients of four disease blocks: F10 to F19 mental and behavioural disorders due to psychoactive substance use, E10 to E14 diabetes mellitus, I10 to I15 
hypertensive diseases and I20 to I25 ischaemic heart diseases. The blue circles show the average marginal effect and the bars correspond to the 95% confidence interval. A positive value (>0) indicates a 
concurrence between the predictor and the diagnose prevalence. A negative effect, conversely, indicates that areas where the predictor is high have a lower diagnose prevalence. The value P above each 
line indicates the p-value (or statistical significance) of each marginal effect. (For interpretation of the references to color in this figure legend, the reader is referred to the Web version of this article.) 
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indicates a protective effect. The size of the circle specifies the significance of the indicator with large circles being more significant 
than the small ones. Given that we are testing the effect of 14 indicators across 115 diagnostic blocks, we will treat as significant results 
with a p-value lower than 10− 6 using a Benjamini-Hochberg correction as a false discovery rate of 10− 3. Examples of significant 
contributions to the prevalence model are: disorder of the thyroid gland is less prevalent in densely populated areas (codes E00 to E07, 
ρ = − 1.7, p-value = 1.1 × 10− 10); diseases of the middle ear and mastoid are more prevalent in areas with lower access to primary 
care (codes H65 to H75, ρ = − 0.08, p-value = 5.6 × 10− 7); diseases of esophagus, stomach and duodenum are more prevalent in areas 
of higher income (codes K20 to K34, ρ = 4.7 × 10− 3, p-value = 1.4 × 10− 10) and diseases of hair and nails are more prevalent in areas 
where the average distance to a relevant hospital ward is greater (codes L60 to L75, ρ = 2.4, p-value = 3.4 × 10− 7). At the top of Fig. 2, 
we display the predictive power of the calibrated model in terms of its R2. To correct for age being the strongest driver of disease 
prevalence across most diagnostic blocks, we have normalized diagnosis prevalence within each age group. Excluding age, the 
strongest predictors over all are sex, population density, time to care and migratory backgrounds. Time to care is strongly correlated 
with population density (see Fig. 1). However, the increased time to care is a risk factor for most diseases, while population density has 
an opposite effect in many important cases, such as for hypertensive diseases [I10 to I15] and ischemic heart diseases [I10 to I25] (see 
Fig. 3 for a detailed view of the average marginal effect on these diseases). Among other effects, we notice also a protective effect of 
Turkish migratory background with respect to “mental and behavioral disorders due to psychoactive substances” [F10 – F19]. 
Conversely, we see that high noise levels (induced by street traffic) are not strongly related to any diagnostic block. 

3. Discussion 

Here we performed an ecological analysis that seeks to relate changes in the regional prevalence of 115 different groups of di-
agnoses to socio-economic variables, demographic factors, access to certain POIs like fast food restaurants, environmental factors such 
as noise, migration status, as well as access to intra- and extra-mural healthcare facilities. While prevalence of some diagnoses shows 
little correlation with any of these factors, for diseases like diabetes mellitus, ischemic heart diseases, or substance abuse we can indeed 
explain a substantial amount of their regional variation. For many chronic disorders like diabetes or cardiovascular diseases their 
prevalence is strongly driven by distance to hospital wards in which such disorders are typically treated, the larger this distance, the 
higher the corresponding disease prevalence. 

We find that population density, sex and time to care contribute strongly to the predictive power of most disease-specific models. 
Time required to reach hospital care is always positively related to the disease prevalence. On the other hand we find that the 
accessibility of non-hospital health-care systems does not contribute substantially to the predictive power of the model. This may be 
due either to insufficient statistics or the fact that the data we used did not enable us to distinguish between specialists, as we were able 
to do in the case of time to care. Note that in Austria diagnoses information is only available for inpatient care, which might also 
explain why distance to inpatient care shows a stronger correlation than distance to outpatient care facilities. A more detailed analysis 
needs to be carried out in order to verify these hypotheses. Socio-economic predictors, such as income and education, did not 
contribute strongly, with the exception of unemployment, that shows an increased risk of the prevalence of diabetes. 

We find stronger predictive power for specific chronic diseases, especially related to heart conditions and the thyroid gland, some 
psychological disorders and some pathologies of the ear. For many of these, sex plays an important role: there is a higher risk of heart 
diseases in men and a higher risk of thyroid-related diseases in women. The close relationship between male sex and cardiovascular 
diseases (cvd) is an important issue. Hence the effect of sex (male) is strongly related to atherosclerosis. Protective effects of female sex 
hormones on cardiovascular wall properties have been described earlier. Also, a more favorable body fat distribution, adipokine 
secretion, better insulin sensitivity and secretion especially in the younger ages of females contribute to the lower cvd and diabetes risk 
compared to males [9]. Regarding cvd prevention, also a lower prevalence rate of diabetes, arterial hypertension and dyslipidemia in 
females in the premenopausal state has to be mentioned here ([22]. On the other hand the presence of these comorbidities also predict 
higher relative risk of cvd in women than men, especially at younger age. For well-predicted psychological disorders, certain migratory 
backgrounds show a negative correlation, while the population density is a risk factor. Given the correlation between population 
density and migration status, this might also indicate inequalities in health care utilization. 

We observe substantially lower predictive power for oncological disease groups, infectious diseases, eye, ear and cutaneous in-
fections. Our results might directly be useful for a more evidence-based approach to regional health planning. Health planning in 
Austria often uses a regionalized system based on socio-economic and demographic indicators [15]. For instance, decisions on 
establishing primary care units at a given place are supported by constructing regional care profiles for the corresponding catchment 
area. These profiles include indicators such as population size in different age groups, regional prevalence of diseases like obesity or 
diabetes mellitus type 2, or life expectancy. Our results suggest that adding an indicator quantifying the travel distance to specific 
hospital wards (“time to care”) in such a system might further contribute to tailoring the provision of health services to the needs of the 
population. 

Regarding the relevance of our work beyond the Austrian health-care system, our claims are three-fold: we present a methodo-
logical improvement through the use of geolocalized data, we discuss a novel indicator (time to care) relevant both to the improvement 
of current and future models of health-care provision. The methodology implemented can indicate regional criticalities and support the 
planning process for regional care. For example, in the discussion on the creation of rural health centers in the United States similar 
analysis might provide important information. Further, the importance of time to care, while shown only in the context of Austrian 
healthcare, might prove to be even more relevant in health-care systems where this indicator has greater variations, such as nations 
with significantly larger surfaces and greater diversity in health-care-provision density. Finally, the results of our work provide 
relevant information for the greater discussion on the design of novel models for health-care systems, specifically for the organization 
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of regionalized care. 
Our work’s main constraint is the lack of geolocalized data on diagnosis, specifically in the out-patient sector. The level of gran-

ularity for the diagnosis data is approximately that of the federal district, while other data sets were available on a much finer scale. 
Furthermore, the lack of out-patient data is cause for concern in the case of some diseases, such as diabetes, for which hospitalization 
should not be necessary. Moreover, data on the distribution of different care-provider specializations could prove more insightful if 
matched to the specific disease typology. Finally, more work needs to be done to correctly understand whether the effects we see are 
the result of biological phenomena, such as distance to care being critical for certain disease types, or the result of socio-economic 
differences such as the divide between urban and rural communities. 

4. Conclusion 

We set out to explore the regional variability in the structure of demands made of the health-care system. We have shown that the 
use of electronic records enables a comparison between different regions in the prevalence of disease diagnoses. Using a combination of 
data on hospital diagnoses and sources for demographic, socio-economic, environmental data and the accessibility of the health-care 
system, we have developed a linear model for each diagnostic block. Each of these models sets a lower boundary for the explanatory 
power of these resources on the disease prevalence. We found that for certain disease groups, some psychological and heart-related 
conditions and thyroid disorders, the explanatory power of our model is up to about 80% of the observed variance. We observed 
that the distance to a relevant care point positively correlates with the prevalence of most disease types. This raises questions about 
how best to structure and distribute care centers. Our findings highlight the need for awareness of the geographic distribution of 
resources, such as hospital departments and out-patient centers, based on predictable healthcare demands. 
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Appendix A. Supplementary data 

Supplementary data to this article can be found online at https://doi.org/10.1016/j.heliyon.2023.e15377. 

Data 

In this section we detail how the data was gathered and prepared for the regression analysis. 

Dataset 1: Global human settlement 

This spatial raster dataset depicts the distribution and density of population, expressed as the number of people per cell. Residential 
population estimates for the year 2015 provided by CIESIN GPWv4.10 were disaggregated from census or administrative units to grid 
cells, informed by the distribution and density of built-up areas using the Global Human Settlement Layer (GHSL). For more infor-
mation see [6]. 

Dataset 2: Demographics from Statistik Austria 

This dataset on demographic information is comprised of different layers we obtained from the Austrian statistical office, Statistik 
Austria. We use the layers for age distribution, and sex at the political district (bezirk) level; and employment, education, households, 

D.R. Lo Sardo et al.                                                                                                                                                                                                   

https://doi.org/10.1016/j.heliyon.2023.e15377


Heliyon 9 (2023) e15377

7

families and companies at the municipality level (gemeinde). The resident population consists of people staying at least 90 days 
(including key day) in one location (registration of main residence). For this work we use data from 2017. Since each federal region 
(versorgungsregion) is comprised of, and covers completely, a set of political districts, we define the series {vk}k such that the k-th 
element is the federal-region index corresponding to political district k. We also define faskv: the fraction of inhabitants of a given age 
group, and sex in bezirk k. For each of the layers at the gemeinde level of aggregation, we define a similar series {kg} and an inde-
pendent variable Lkg, where L stands for a generic layer. 

Dataset 3: Diagnosis dataset 

This data was provided by Gesundheit Österreich GmbH (GÖG), the Austrian National Public Health Institute and covers 
approximately 2,7 M hospitalizations of circa 9 M individuals for the year 2014. The dataset includes long-term care facilities such as 
rehabilitation centers and psychiatric hospitals. For each entry, the dataset documents the patient anonymized ID, age (in 15 y groups), 
sex, the federal region of origin, the admission and release date, region of care, the release type (release, transfer, death), the 
department of care, and most relevant for our study, the main and side diagnoses in the form of level-3 ICS-10 codes. Since we want to 
run a comprehensive assessment of the health status of the Austrian population, we aggregated the diagnoses in diagnostic blocks as 
defined by the World Health Organization (WHO). There are 115 diagnostic blocks. For a full taxonomy of the ICD-10 codes see 
Ref. [26]. For the purpose of this work, we indicate variables that correspond to individuals using the subscript μ. We thus define dμ the 
diagnoses of patient μ and the set Dasvd = {μ|vμ = v ∧ dμ ∋ d ∧ aμ = a ∧ sμ = s} of all patients of a given age, sex, federal region that have a 
certain diagnosis in their history. We also denote HdΔ = {μ|dμ = d ∧ Δμ = Δ} the set of patients with diagnosis d who received care in 
department Δ. Finally, we need to define Basvb =

∑
d ∈ b |Dasvd| the number of patients of age a, sex s, from region v, with a diagnosis 

from block b. 

Dataset 4: Distance to care 

For each municipality (gemeinde) and for each diagnosis, we used the Google Maps API to query the time necessary to reach the 
relevant hospital wards from the center of the inhabited area or the official location for the municipal center (gemeindeamt). District 
center locations were geocoded via Google Maps. We manually verified the locations of each gemeindeamt and repositioned the location 
to a densely populated area (using a visual overlay of population densities on the map), for cases where the Google Maps algorithm 
could not find a suitable location. Once the municipal center locations were verified, we used the Google Maps API to issue distance 
queries between hospital and gemeindeamt locations, calculating the distance and travel time (based on average traffic conditions) 
between each point pair. For further exploration of this data visit: https://www.csh.ac.at/vis/med_public/hospital_explorer/ [25]. 
Since a diagnosis is not necessarily treated in only one kind of ward, we perform a weighted average of distances to wards offering the 
required type of care, i.e., Tgd =

∑

Δ
HdΔTgΔ, with HdΔ = HdΔ ∨∑

Δ′

HdΔ∨
. 

Dataset 5: Marktdaten Österreich. 
This dataset consists of demographic and population level statistics collected by WIGeoGIS. For each postal code, we have infor-

mation on: inhabitants by main and secondary residence, population structure (age groups, gender, nationality, origin), the average 
income and household size among others. We aggregate the postal codes to the gemainde. 

Dataset 6: Fast food density 

Using publicly available data from open street maps, we gathered information on the location of fast foods. We assign each fast food 
restaurant to a municipality and compute the number of fast food restaurants per capita in the area. 

Dataset 7: Noise 

Data on noise levels was taken from the Bundesministerium of Austria. For information on the data collection methods see 
Ref. [11]. From the available data, we took 24 h averages of noise caused by road traffic. This data is organized in shapefiles such as 
polygons and points. It was spatially aggregated to the population density layer and a weighted average was performed, using pop-
ulation as a weight, to obtain federal state averages. 

Data preparation 

Since the data at hand were stored in different geographical projections, we harmonized them using Mollweide espg:54009. We 
assign each point in the raster from dataset 1 to a gemeinde. Some areas along the border are not uniquely assigned and were discarded. 
The total population after this step is: 8.52 M. To compute diagnostic-block prevalences, we must first compute the size of each unique 
age, sex and region specified group. We define Masv = Nv fasv, where Nv is the total population of the region. Since age is often the main 
driver of disease prevalences, we also standardized each prevalence within the age groups. Each disease is assigned a prevalence as 
follows 
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Pasvb =
Basvb

Masv  

Psvb =
Pasvd − Pasvba

σ(Pasvb)a  

where the symbols <>a and σ(.)a indicate mean and standard deviation within a certain age group. The data preparation methods 
described were implemented in python, in particular using the GeoPandas library. The code for the preparation is available at https:// 
github.com/complexity-science-hub/GeoDisPrev. 

Dependent and independent variables in the regression analysis 

In the previous sections, we have presented the sources, both publicly accessible and sensitive data sets, used for this study. Special 
attention was paid to the collection of data measuring the distance from the municipality (gemeindeamt) to the centers of care, selecting 
departments relevant to the disease being analyzed. 

Prevalences from each diagnostic block Pasvb are used as outcome of a series of layered models in which a group of predictors of a 
certain category are added at each step: a purely demographic model, a model also informed by data on the health-care system, a model 
that includes migratory background distributions in the population and finally a complete model with the addition of socio-economic 
predictors and noise levels. The predictors are:  

• Age Group: A growing index corresponding to the age group for which the prevalence is computed. Groups cover 15 y of age with 
the last being from 75 onward.  

• Birthplace ex Yugoslavia: The percentage of people in region v with a migratory background originating in ex Yugoslavia.  
• Birthplace Turkey: The percentage of people in region v with a migratory background originating in Turkey.  
• Fast Food Density: The number of fast food vendors per capita in region v.  
• Income Per Capita: The average net income of region v’s inhabitants.  
• Latitude: The weighted average of region v, with the population of each subregion being used as weight.  
• log_Population.Density: The natural logarithm of the number of people living in a 250 × 250m2 area. This is an average over all 

inhabited areas of the region.  
• log_Time to Care: the natural logarithm of the time from the gemeindeamt to the nearest hospital department, averaged over all 

possible departments that treat diagnostic block b and over all municipalities in region v.  
• Noise Level: The average noise level due to road traffic in the inhabited areas of the region.  
• Primary Care Density: The number of primary care providers per inhabitant in the region.  
• Secondary Education: The percentage of people in region v who have achieved secondary education but not tertiary.  
• SexM: The percentage of people of male sex in the region.  
• Specialist. Density: The number of specialized care providers per inhabitant in the region.  
• unemployment: The percentage of people older than 15 years of age who are unemployed in the region. 

In the purely demographic model, we use: sex, age, population density and latitude as predictors. In the health-care system 
informed model, we add: primary care density, specialist density and time to care. The third model includes the percentages of people 
born in Turkey and ex Yugoslavia. Finally, noise level, secondary education percentage, unemployment rate and income are included. 
At each step in the modeling procedure, variance inflation was computed to make sure multicollinearity was acceptable. For the 
diagnoses discussed in greater detail, such as diabetes mellitus, the maximum value for the final model is 6.2 for time to care (for 
further details see the SI). The results of the complete model are displayed in Fig. 2, while tables with detailed results are available in 
the SI. For each diagnostic block, we measure the predictive power of the model in the form of an adjusted r-squared. We then use 
permutation importance tests, Bonferroni adjusted significance and the model coefficients to uncover the contribution of each pre-
dictor. In order to validate the results of the analysis we use a battery of tests: r-squared, QQ plots and VIF monitoring (See SI for QQ- 
plots of each diagnose block). The implementation for the regression analysis was performed in R. Code for this implementation can be 
accessed at https://github.com/complexity-science-hub/GeoDisPrev. 

References 

[3] L. Borboudaki, M. Linardakis, A. Markaki, A. Papadaki, A. Trichopoulou, A. Philalithis, Health service utilization among adults aged 50+ across eleven European 
countries (the SHARE study 2004/5), J. Publ. Health (2020) 1–11. 

[4] M.R. Cullen, C. Cummins, V.R. Fuchs, Geographic and racial variation in premature mortality in the US: analyzing the disparities, PLoS One 7 (4) (2012), 
e32930. 

[5] E.F. de Vries, Unraveling the drivers of regional variation in healthcare spending by analyzing prevalent chronic diseases, BMC Health Serv. Res. 18 (1) (2018) 
323. 

[6] A.a. Florczyk, GHSL Data Package 2019, European Commission Joint Research Center, 2019, p. 29788. 
[7] V.R. Fuchs, More variation in use of care, more flato-of-the-curve medicine, Health Aff. 23 (2004) VAR 104–Var107. 
[8] M.a. Giannoni, The regional impact of health care expenditure: the case of Italy, Appl. Econ. 34 (14) (2002) 1829–1836. 

D.R. Lo Sardo et al.                                                                                                                                                                                                   

https://github.com/complexity-science-hub/GeoDisPrev
https://github.com/complexity-science-hub/GeoDisPrev
https://github.com/complexity-science-hub/GeoDisPrev
http://refhub.elsevier.com/S2405-8440(23)02584-7/sref3
http://refhub.elsevier.com/S2405-8440(23)02584-7/sref3
http://refhub.elsevier.com/S2405-8440(23)02584-7/sref4
http://refhub.elsevier.com/S2405-8440(23)02584-7/sref4
http://refhub.elsevier.com/S2405-8440(23)02584-7/sref5
http://refhub.elsevier.com/S2405-8440(23)02584-7/sref5
http://refhub.elsevier.com/S2405-8440(23)02584-7/sref6
http://refhub.elsevier.com/S2405-8440(23)02584-7/sref7
http://refhub.elsevier.com/S2405-8440(23)02584-7/sref8


Heliyon 9 (2023) e15377

9

[9] A.a. Kautzky-Willer, Sex and gender differences in risk, pathophysiology and complications of type 2 diabetes mellitus, Endocr. Rev. 37 (3) (2016) 278–316. 
[10] T. Kopetsch, H. Schmitz, Regional variation in the utilization of ambulatory services in Germany, Health Econ. 23 (12) (2014) 1481–1492. 
[11] laerminfo.at, Current Noise Maps 2017, 2020. Retrieved from, https://www.laerminfo.at/laermkarten.html. 

[12] L. Laranjo, D. Rodrigues, A. Pereira, R.T. Ribeiro, J. Boavida, Use of electronic health records and geographic information systems in public health surveillance 
of type 2 diabetes: a feasibility study, JMIR Public Health Surveill. 2 (1) (2016) e12. 

[13] G.a.-F. Lopez-Casasnovas, Diversity and regional inequalities in the Spanish ‘system of health care services, Health Econ. 14 (S1) (2005) S221–S235. 
[14] W.G. Manning, Explaining Geographic Variation. Geographic Variation in Health Care Spending and Promotion of High-Value Care Interim Report, Institute of 

Medicine, 2012. 
[15] S.a. Mathis-Edenhofer, Regional health care profiles–an improved method for generating case studies on the catchment areas of envisaged primary health care 

units in Austria: a report to the InfAct Joint Action, Arch. Publ. Health 80 (1) (2022) 1–8. 
[16] C. Mu, J. Hall, What explains the regional variation in the use of general practitioners in Australia? BMC Health Serv. Res. 20 (2020) 1–11. 
[17] S.a.-E. Muratov, Regional variation in healthcare spending and mortality among senior high-cost healthcare users in Ontario, Canada: a retrospective matched 

cohort study, BMC Geriatr. 18 (1) (2018) 262. 
[18] G.a. Pappas, Potentially avoidable hospitalizations: inequalities in rates between US socioeconomic groups, Am. J. Publ. Health 87 (5) (1997) 811–816. 
[19] A.a. Petrelli, Socioeconomic and citizenship inequalities in hospitalisation of the adult population in Italy, PLoS One 15 (4) (2020), e0231564. 
[21] T. Rahman, Determinants of public health expenditure: some evidence from Indian states, Appl. Econ. Lett. 15 (11) (2008) 853–857. 
[22] J.G.-C. Regensteiner, Sex differences in the cardiovascular consequences of diabetes mellitus: a scientific statement from the American Heart Association, 

Circulation 132 (25) (2015) 2424–2447. 
[23] G.a. Sartor, COVID-19 in Italy: considerations on official data, Int. J. Infect. Dis. 98 (2020). 
[24] H. Schmitz, More health care utilization with more insurance coverage? Evidence from a latent class model with German data, Appl. Econ. 44 (34) (2012) 

4455–4468. 
[25] J. Sorger, Hospital Explorer (Austria), 2018. Retrieved from, https://www.csh.ac.at/vis/med_public/hospital_explorer/. 
[26] WHO, ICD-10 Version:2019, 2019. Retrieved from, https://icd.who.int/browse10/2019/en. 
[27] X. Zhang, B. Yu, T. He, P. Wang, Status and determinants of health services utilization among elderly migrants in China, Global Health Res. Policy 3 (1) (2018) 

8. 

D.R. Lo Sardo et al.                                                                                                                                                                                                   

http://refhub.elsevier.com/S2405-8440(23)02584-7/sref9
http://refhub.elsevier.com/S2405-8440(23)02584-7/sref10
https://www.laerminfo.at/laermkarten.html
http://refhub.elsevier.com/S2405-8440(23)02584-7/sref12
http://refhub.elsevier.com/S2405-8440(23)02584-7/sref12
http://refhub.elsevier.com/S2405-8440(23)02584-7/sref13
http://refhub.elsevier.com/S2405-8440(23)02584-7/sref14
http://refhub.elsevier.com/S2405-8440(23)02584-7/sref14
http://refhub.elsevier.com/S2405-8440(23)02584-7/sref15
http://refhub.elsevier.com/S2405-8440(23)02584-7/sref15
http://refhub.elsevier.com/S2405-8440(23)02584-7/sref16
http://refhub.elsevier.com/S2405-8440(23)02584-7/sref17
http://refhub.elsevier.com/S2405-8440(23)02584-7/sref17
http://refhub.elsevier.com/S2405-8440(23)02584-7/sref18
http://refhub.elsevier.com/S2405-8440(23)02584-7/sref19
http://refhub.elsevier.com/S2405-8440(23)02584-7/sref21
http://refhub.elsevier.com/S2405-8440(23)02584-7/sref22
http://refhub.elsevier.com/S2405-8440(23)02584-7/sref22
http://refhub.elsevier.com/S2405-8440(23)02584-7/sref23
http://refhub.elsevier.com/S2405-8440(23)02584-7/sref24
http://refhub.elsevier.com/S2405-8440(23)02584-7/sref24
https://www.csh.ac.at/vis/med_public/hospital_explorer/
https://icd.who.int/browse10/2019/en
http://refhub.elsevier.com/S2405-8440(23)02584-7/sref27
http://refhub.elsevier.com/S2405-8440(23)02584-7/sref27

	Systematic population-wide ecological analysis of regional variability in disease prevalence
	1 Introduction
	2 Results
	2.1 Characteristics of the dataset
	2.2 Multivariate ecological modelling

	3 Discussion
	4 Conclusion
	Author contribution statement
	Data availability statement
	Acknowledgements
	Appendix A Supplementary data
	Data
	Dataset 1: Global human settlement
	Dataset 2: Demographics from Statistik Austria
	Dataset 3: Diagnosis dataset
	Dataset 4: Distance to care
	Dataset 6: Fast food density
	Dataset 7: Noise

	Data preparation
	Dependent and independent variables in the regression analysis
	References


