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S1 Supplementary analysis

S1.1 Year- versus generation-based lags

In our preliminary analysis, we considered both year-, and generation-based lags for our models. Having
found little evidence that generation-based lags were better (Fig S1.1) we settled on using year-based lags
in the remainder of the main analyses for clarity and consistency across vertebrate groups.
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Figure S1.1: Across the range of model structures tested, we did not find overwhelming
support in favour of either year-, or generation-based lags.
In preliminary analysis, we considered both year-, and generation-based lags. Whilst most bird models are
improved by year-based lags, the case is less clear for mammals. We therefore settled on using year-based
lags in the remainder of the main analyses for clarity and consistency across vertebrate groups.
Boxplots depict the 25%, 50% and 75% quantiles. Whiskers extend 1.5x the interquartile range from the upper/lower
quartiles. Points indicate outliers.
Base models incorporate climate change, land-use change (and their interaction), body mass and protected area status as
fixed effects. +MU models additionally incorporate management and utilisation status. +R models are as the Base models,
but also including realm. +MUR represents models incorporating all of the above variables as fixed effects.
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S1.2 Influential populations

As shown in Table S1.1, the best year-based models we initially identified where strongly influenced by
certain populations and/or species (Cook’s D > 0.5). We therefore removed these data points and re-
applied the model fitting and lag selection methodology to obtain the results presented in the main text.
Investigation of the best +MU models (those we use in the main text) indicates no further strong influence
of certain species/populations (Cook’s D < 0.5 and coefficients stable under cross-validation, Fig S1.2).
Data without the influential populations was also used when conducting all analysis presented below.

Table S1.1: Summary of populations/species that were found to strongly influence the best
models in our initial analysis.

Class Model Population/Species Cook’s D

Aves

Base Gyps bengalensis 1.90
Base Podiceps nigricollis 0.84

+MU Gyps bengalensis 1.27
+MU Podiceps nigricollis 0.59

+R Gyps bengalensis 1.49

+MUR Gyps bengalensis 1.16

Mammalia

Base single population of spp. 68 1.02
Base all populations of spp. 68 1.02

+MU single population of spp. 68 0.63
+MU all populations of spp. 68 0.64

+R single population of spp. 68 0.60
+R all populations of spp. 68 0.63

Due to their substantial influence (Cook’s D > 0.5), we removed these bird species and the single pop-
ulation of spp. 68 (which appeared to be driving the above influence) from the data (Note; spp. 68 is
used as the population/species in question is confidential within the LPD). We then re-implemented our
methods, generating the results presented in the main text.
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Figure S1.2: When conducting leave-one-out (population) cross-validation of the top +MU
models, coefficients remain consistent.
Although some variation in coefficient estimates is apparent, especially for the impact of use on birds,
the direction and magnitude recorded across cross-validation folds is largely comparable to the results
from the full data. Additional analysis also found no populations/species had an undue influence on the
models (all Cook’s D < 0.5).
Bars represent the range of coefficient values obtained from cross-validation whilst red points indicate the coefficient estimate
obtained from the original/full data.
IUCN thresholds correspond to red list threat categories based on population declines of 30% (VU; vulnerable) and 50%
(EN; endangered) over 10 years.
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S1.3 Including Realm effects highlights geographic differences in abundance trends

In our main analysis, we focus on models without any effect of (biogeographic) Realm. However, for
both vertebrate groups, models incorporating Realm-specific intercepts (+MUR) also perform strongly in
terms of AICc (Fig S2.17). These models identify similar optimal lags to those in the main analysis (Fig
S1.3a), supporting the importance of ecological lags in biodiversity models. Furthermore, the coefficients
of the top +MUR models are largely equivalent to those in the +MU models, but additionally emphasise
the different biodiversity trends that are occurring in different biogeographic realms (Fig S1.3b), reflecting
the complex nature of biodiversity change in the Anthropocene (Blowes et al., 2019; Leung et al., 2020).
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Figure S1.3: Optimal lags remain highly similar across model structures (a.), and models
incorporating realm effects (+MUR) highlight the divergence in average abundance trends
across biogeographic realms (b.).
a. We find optimal lags remain highly similar across the +MU and +MUR models, typically seeing longer
optimal lags associated with climate warming (CC) than land-use change (LUC).
b. In both model structures, we find a complex effect of environmental change on vertebrate populations
(CC:LUC term). Biological resource use (Use) is consistently the driver with the most negative impact for
each class, whereas management and protected areas (for birds) benefit population trends. The inclusion
of realm-specific intercepts shows how average population trends differ across space reflecting the complex
nature of biodiversity change in the Anthropocene (Blowes et al., 2019; Leung et al., 2020). We find more
negative trends for birds in the Indo-Pacific, Neotropics and Palearctic, whereas for mammals, Palearctic
populations are doing better than Afrotropical (Int.) ones.
In b., coloured lines correspond to IUCN red list threat categories based on population declines of 30% (yellow; Vulnerable),
50% (orange; Endangered), or 80% (red; Critically endangered) over 10 years (A2 criteria).
In b., the intercept (Int.) of +MUR models includes the effect associated with populations being in the Afrotropical realm.
The other realm-related effects are in relation to this (Afrotropical) intercept.
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S1.4 Removing short population time-series

Inclusion criteria for population time-series from the LPD were broad, but similar to those in recent
work (Spooner, Pearson, & Freeman, 2018; Williams, Freeman, Spooner, & Newbold, 2021). To test the
sensitivity of our results to the removal of short time-series, which can often display extreme trends (Leung
et al., 2020), we investigated the impact of raising the minimum number of data points per time series (DP
min) from 3 to 4, and 5 for models with the +MU structure. When doing so, we find lags (Fig S1.4a) and
coefficients (Fig S1.4b) remain consistent for mammals. In birds, the optimal lag associated with climate
change increases from 14 to 40 years (Fig S1.4a) whilst the land-use lags, and most coefficients remain
similar (Fig S1.4a,b). Interestingly, the delayed effects of land-use become more negative for birds when
short time-series are excluded, whilst the individual impact of climate warming (also for birds) appears
to become slightly more positive.
This sensitivity analysis reinforces the importance of lagged effects of environmental change on population
trends, and further supports the estimated effects of drivers and mitigation approaches.
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Figure S1.4: Support for ecological lags (a.) and model averaged coefficients (b.) when
considering alternative data point thresholds for population time-series inclusion.
a. Increasing the inclusion threshold for minimum number of data points per time-series (DP min) has
little impact on optimal mammal lags but is associated with longer climate lags for birds.
b. Model-averaged coefficients remain fairly consistent across DP min thresholds.
CC = climate change; LUC = land-use change.
DP min of 3 corresponds to our main analysis.
In b., coloured lines correspond to IUCN red list threat categories based on population declines of 30% (yellow; Vulnerable),
50% (orange; Endangered), or 80% (red; Critically endangered) over 10 years (A2 criteria).
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S1.5 Additional ecological subsetting of population data

In addition to the body mass subsetting presented in the main results, we also divided our mammal and
bird populations based on trophic level (herbivore or carnivore) and latitude (temperate or tropical),
before re-assessing the optimal lags and model coefficients for each subset. We did this to further assess
whether the population trends of different ecological subsets are best explained using different lags, e.g.,
herbivores may respond to land conversion faster than carnivores due to being lower in the food chain.
Here, we present results based on the +MU model specification (i.e., incorporating management and
biological resource use, but not realm).

It is hard to pick out clear patterns in the optimal lags identified for different data subsets. In mammals,
we find that carnivores display longer lags for land-use change than herbivores, but the reverse is true
when considering climate warming (Fig S1.5a). Additionally, tropical mammals appear to respond more
quickly to warming than temperate counterparts, but we do not find this for birds. Overall, the lags
inferred from our complete mammal data appear to be driven by temperate herbivores, whilst the lags
found in the main bird analysis are relatively consistent with those found for carnivorous species (Fig
S1.5a).

When looking at the coefficients of the optimal models there is some suggestion that tropical/carnivorous
mammals benefit most from management whereas temperate/carnivorous birds are most affected by di-
rect exploitation (Fig S1.5b). Surprisingly, these results also suggest that carnivorous mammals decline
more when inside a protected area than outside, indicating that further analysis is required to properly
verify any identified patterns.

As in our main results, we again find that the estimated effects of climate and land-use change vary
substantially depending on the lags considered (Fig S1.5c, showing coefficients from models where both
climate and land-use have the same lag). In contrast, the effects of Use (negative), Management (positive)
and PAs (positive for birds) remain more consistent across lags and data subsets.
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Figure S1.5: Optimal lags and model coefficients differ amongst ecological subsets, but no
over-arching patterns appear to be present.
Herbivores = diets contain at least 2/3 plants; Carnivore = diets contain at least 2/3 animals; Temperate populations =
above 23.5 N or below -23.5 S; Tropical populations = below 23.5 N and above -23.5 S.
CC = climate change; LUC = land-use change.
In a., summed Akaike weights depict a measure of relative support for a particular lag. They are presented on a square root
scale to enhance visualisation of lags with relatively low support.
In b., coloured lines correspond to IUCN red list threat categories based on population declines of 30% (yellow; Vulnerable),
50% (orange; Endangered), or 80% (red; Critically endangered) over 10 years (A2 criteria).
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S1.6 Categorising interactive effects

We defined the interactions between climate and land-use change following Piggott, Townsend, and
Matthaei (2015). Specifically, using models with ∆AICc < 6 we predicted population responses to scaled
rates of climate change (annual rate of temperature change) and land-use change (annual rate of change
in agricultural land) i) using the main effects only (additive only), and ii) including the climate:land-use
interaction term (additive plus interaction). We averaged these predictions over models using Akaike
weights to get model averaged predictions. By comparing these predicted responses (i.e., additive only
v. additive plus interaction), we assigned synergistic v. antagonistic interactions based on Piggott et al.
(2015) (see their Fig 2, and also shown in Côté, Darling, & Brown, 2016, Fig 1).

Figs S1.6 and S1.7 show the model-predicted response to environmental change (a), and the type of
interaction between climate and land-use change across this environmental space (b). Whilst much of the
prediction space indicates synergistic interactions between the temperature and land-use change variables,
there is also some evidence for antagonism (e.g., Fig S1.6 large birds and Fig S1.7 herbivorous mammals).
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Figure S1.6: Synergy v Antagonism: Data split based on body mass tertiles.
a. Predicted average annual rate of population change based on average annual rates of climate warming
and land conversion.
b. Classification of the interaction between climate and land-use change, based on environmental change
rates, predicted population responses (with/without environmental interaction term) and Piggott et al.
(2015).
In a., coloured lines correspond to IUCN red list threat categories based on population declines of 30% (yellow; Vulnerable),
50% (orange; Endangered), or 80% (red; Critically endangered) over 10 years (A2 criteria).
In a., the dark grey lines indicates the boundary between the regions of synergy and antagonism shown in b.
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Figure S1.7: Synergy v Antagonism: Data split based on trophic level and latitude.
a. Predicted average annual rate of population change based on average annual rates of climate warming
and land conversion.
b. Classification of the interaction between climate and land-use change, based on environmental change
rates, predicted population responses (with/without environmental interaction term) and Piggott et al.
(2015).
In a., coloured lines correspond to IUCN red list threat categories based on population declines of 30% (yellow; Vulnerable),
50% (orange; Endangered), or 80% (red; Critically endangered) over 10 years (A2 criteria).
In a., the dark grey lines indicates the boundary between the regions of synergy and antagonism shown in b.
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S1.7 Sensitivity to environmental data sources

There are a number of global, gridded temperature and land-use datasets. We therefore assessed the
sensitivity of our analysis to using different environmental data sources. In addition to the IPSL and
LUH2 datasets used in our main analysis, we considered CRU 4.04 (temperature; Harris, Osborn, Jones,
& Lister, 2020) and HYDE 3.2 (land-use; Klein Goldewijk, Beusen, Doelman, & Stehfest, 2017).

Using CRU, we extracted average annual temperatures for each 0.5◦ grid cell containing any of the mod-
elled populations. Following Spooner et al. (2018) we extracted the percentage cover of anthropogenic
land use in the nine 0.083◦ HYDE grid cells surrounding each population location (the combined size of the
nine cells is approx. 0.25◦, as in the LUH2 data). We considered anthropogenic land as either i) cropland
plus pasture plus converted rangeland, or ii) cropland plus pasture plus all rangeland (incl. rangeland
with natural vegetaion). HYDE-based anthropogenic land cover (of either type) was then averaged over
the nine cells per location and timepoint. Although post-2000 HYDE data is annual, prior to the year
2000, HYDE data has a decadal temporal resolution. To obtain annual anthropogenic land cover values
for each site between 1901–2000 we used linear interpolation with the respective decadal data (Spooner et
al., 2018). As in our main analysis we used temperature and land cover data spanning 1901–2014. Rates
of environmental change were calculated as described in the main text, with this sensitivity analysis fo-
cussing on year-based lags, models with the +MU structure and the inclusion of all populations (except
thosw identified as being overly influential).

As shown in Fig S1.8a, the optimal lags associated with environmental change remain fairly consistent
for birds, irrespective of the environmental data sets used. Climate lags are approximately 10–20 years,
whilst lags due to land-use change are shorter, < 5 years. When considering mammals, much greater
variation in optimal lags is seen. Whilst climate lags based on IPSL data are approximately 45 years,
lags shorten to just three years when using the CRU dataset. Different optimal lags are also apparent for
mammalian responses to land conversion.

Investigating the coefficients of the optimal models across environmental data combinations identifies
different relationships between environmental change and population responses (Fig S1.8b). For example,
coefficients for climate change shift between positive and negative in both classes, as does the CC:LUC
interaction term for birds. These results further highlight the complexity associated with deriving the
effects of environmental change on biodiversity. However, we also find that the effects of body mass (BM),
protected areas (PA), management (Man) and exploitation (Use) remain consistent across the use of dif-
ferent environmental data. Whilst these covariates are not lag-dependent, the consistency of their effects
across models, lags and environmental data further indicates the robustness of their detected impacts.
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Figure S1.8: Optimal lags (a.) and coefficient estimates (b.) differ depending on the environ-
mental datasets used.
CC = climate change; LUC = land-use change.
In b., coloured lines correspond to IUCN red list threat categories based on population declines of 30% (yellow; Vulnerable),
50% (orange; Endangered), or 80% (red; Critically endangered) over 10 years (A2 criteria).
IPSL, LUH2 corresponds to our main analysis.
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S1.8 Comparing land-use datasets: rule-based hindcasting v. recent satellite data

Both the LUH2 and HYDE datasets are generated using rule-based land-use allocation algorithms that
hindcast from a reference map (recent satellite data is used to inform this reference map, as is FAO data)
(Klein Goldewijk et al., 2017). To further evaluate the potential sensitivity of our analysis to alternative
land-use data sources, we also compare land-use change in LUH2 to HYDE, and to land-cover changes
based on the satellite-derived ESA data (ESA, 2017).

For 1992–2014 (the time period covered by all datasets), we extracted land-use/land-cover data from
LUH2, HYDE and ESA for all population locations at a 0.25◦ resolution. The extraction approach for
LUH2 is described in the main text, and for HYDE in Supplementary Material: Sensitivity to environmen-
tal data sources (above). For the ESA data, we re-classified the 300m grid cells to cropland (land-cover
values 10–40) or not cropland (all other land-cover values), and resampled the dataset to a 0.25◦ resolu-
tion (to match the LUH2 and HYDE data) using bilinear interpolation (Hijmans, 2020). The processed
ESA data thus contained average cropland cover per 0.25◦ per year. We then extracted the grid cells
relevant to the modelled population locations. For each unique location (664), and each land-use data
source, we estimated annual average change in land-use/land-cover using the mean of annual differences
between 1992 and 2014. We assessed the correlation in anthropogenic land-use change estimated at each
site between the LUH2 and HYDE data using the slope of a linear model. We compared estimated an-
thropogenic land-use change in LUH2 to cropland change in ESA using the same approach.

We found significant positive relationships between LUH2- and HYDE-based measures of anthropogenic
land-use change (Fig S1.9). In contrast, we found no significant relationship between the LUH2-based
measures of land-use change and the ESA-based cropland cover change (Fig S1.10). These results high-
light the possibility that, due to discrepancies in land-use/-cover data obtained from alternative sources,
ecological models built upon different data sources could differ in their outputs, and subsequent biological
inference.

In this work we used land-use (LUH2) and climate (IPSL) data of moderate spatial resolution and exten-
sive temporal extent to evaluate the influence of ecological lags on population abundance trends. Although
the use of data with finer spatial resolution (e.g., ESA) would be preferable, such data would not facilitate
a thorough analysis of delayed environmental impacts due to restrictive temporal coverage (the ESA start
year of 1992 is after the start of many LPD time-series). We therefore prioritised the use of extensive
temporal coverage over finer spatial resolution to explore a wider range of possible lags.
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Figure S1.9: Comparison of anthropogenic land-use change estimates using the LUH2 or
HYDE datasets.
Strong, positive relationships between land-use change estimates derived from either LUH2 or HYDE are
apparent.
***: p < 0.001, significance of slope in linear model.
Column headings indicate form of LUH2-based anthropogenic land-use, row headings indicate form of HYDE-based anthro-
pogenic land-use.
Each point represents a single location associated with a population in our main analysis.
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Figure S1.10: Comparison of anthropogenic land-use/cover change estimates using the LUH2
or ESA datasets.
We do not find evidence for a positive relationship between land-use change estimates derived from LUH2
and ESA, even if considering only cropland in LUH2 (right panel).
Column headings indicate form of LUH2-based anthropogenic land-use.
Each point represents a single location associated with a population in our main analysis.
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S1.9 Model checks

We performed standard model checks on our best models from our main results (∆AICc = 0, including
all populations), evaluating the normality of residuals and testing for spatial, phylogenetic and temporal
auto-correlation.

Normality of residuals
Using the performance package (Lüdecke, Ben-Shachar, Patil, Waggoner, & Makowski, 2021), we found
that model residuals display slightly heavy tails (Figs S1.11c and S1.12c). We tested the use of an in-
verse hyperbolic sine (IHS) transformation of our response variable (Burbidge, Magee, & Robb, 1988)
but found it did not improve the model diagnostic plots (Figs S1.11a,c,e v S1.11b,d,f, and Figs S1.12a,c,e
v S1.12b,d,f) Although not perfect, such heavy tails typically lead to wider parameter confidence inter-
vals/standard errors, thus we expect our model output to be conservative.
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Figure S1.11: Bird model checks
Although our model residuals demonstrate slight departure from normality (a, c, e), using an IHS trans-
formation provides no clear benefit (b, d, f).
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Figure S1.12: Mammal model checks
Although our model residuals demonstrate slight departure from normality (a, c, e), using an IHS trans-
formation provides no clear benefit (b, d, f).

Spatial auto-correlation
We checked for spatial auto-correlation in model residuals using a two-tailed Moran’s I test (Paradis &
Schliep, 2019). Our distance matrix contained the inverse of geographic distance (in metres) (Hijmans,
2021) between population locations, with weights on the diagonal set to 0. We found Moran’s I to be sig-
nificantly more negative than expected for both birds (I = -0.048, p < 0.05) and mammals (I = -0.081, p <
0.001). The negative Moran’s I suggest the residual error in our models is more dispersed (checker-board
like) than the null expectation, possibly due to over-compensation within the location random effect. We
experimented with including an additional ‘Country’ random effect (with location nested within this),
but found that this had little impact on Moran’s I (Birds: I = -0.045, p < 0.05; Mammals: I = -0.076, p
< 0.001). We therefore retained our original random effects structure.

Phylogenetic auto-correlation
To assess for potential phylogenetic auto-correlation in model residuals we used Pagel’s lambda (Revell,
2012) and phylogenetic trees from Open Tree of Life (Michonneau, Brown, & Winter, 2016; OpenTree-
OfLife et al., 2019). We found no evidence for phylogenetic auto-correlation (Fig S1.13; Birds: λ = 0.03,
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p = 0.17; Mammals: λ = 0.00007, p = 1).

a. Birds
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0.0

0.2

Error

b. Mammals

Figure S1.13: Residual model error in relation to phylogenetic relationships.
Using Pagel’s λ we found no evidence for phylogenetic autocorrelation in our model residuals.
Mammals: λ = 0.00007, p = 1; Birds: λ = 0.03, p = 0.17)
Error is the average error per species. Species trees were sourced from the Open Tree of Life.

Temporal auto-correlation
We plotted residual error in response to time-series start date, finding no temporal patterns (Fig S1.14a).
Additionally, we fitted a linear model linking average error associated with start year t (explanatory) to
average error in start year t+ 1 (response). Again, we found no evidence for temporal auto-correlation in
our model residuals (Fig S1.14b; Birds: slope = 0.064, p = 0.663; Mammals: slope = 0.005, p = 0.738).
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Figure S1.14: Residual model error in relation to the start year of each population time-series.
a. A plot of error against time-series start year indicates no clear temporal pattern.
b. A linear model of average residual error in start year t+1 in response to average residual error in start
year t reveals no significant relationship.
Birds: slope = 0.064, p = 0.663; Mammals: slope = 0.005, p = 0.738
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S2 Supplementary figures
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Figure S2.15: Graphical depiction of our approach to estimating population trends (λ̄).
When population time-series have fewer than six data points (DP < 6) we used log10-linear interpolation
to get abundance values for the missing years. For time-series with at least six data points (DP >= 6)
we used a generalised additive model to predict abundance values per year across the monitoring period.

A population’s average logged rate of annual change (λ̄) was calculated as: λ̄ =

∑T
t=2 log10(

Nt
Nt−1

)

T−1 , where
T is the total number of years in the interpolated time-series and Nt is the abundance value in year t
(Spooner et al., 2018).
Black points show recorded population abundance values.
Red points and lines show model inferred abundance values.
Data on the left are from a Hippo (Hippopotamus amphibius) population, data on the right are from a Lemur (Lemur catta)
population.
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Figure S2.16: Graphical depiction of our approach to assigning lagged environmental change
to population time-series.
Here, the lag associated with climate warming is 45 years, and 9 years for land conversion, matching the
results from our main Mammal model.
Graphics are illustrative and based on data from a managed beaver (Castor fiber) population in Russia.
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Figure S2.17: Environmental lags and the inclusion of management and use substantially
improve model performance.
Models incorporating lags (violins and boxplots) can have much better explanatory power (lower AICc)
than those without (grey diamonds). Furthermore, models including the management and use status of
populations (+MU and +MUR) are better than those that do not.
Boxplots depict the 25%, 50% and 75% quantiles. Whiskers extend 1.5x the interquartile range from the upper/lower
quartiles. Points indicate outliers.
Base models incorporate climate change, land-use change (and their interaction), body mass and protected area status as
fixed effects. +MU models additionally incorporate management and use status. +R models are as the Base models, but
also including realm. +MUR represents models incorporating all of the above variables as fixed effects.
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Figure S2.18: Projections of future abundance indices on independently scaled y-axes.
This figure reproduces the projections presented in our main results, but highlights the variability between
scenarios for each vertebrate class and body-size group, whilst also better showing the magnitude of change
in each individual panel. Projected abundance indices beyond 2100 (vertical dashed line) are also shown
where possible, facilitated by ecological lags.
The horizontal line is set at 1, the baseline for our projections. Shaded areas show future projections that are fully (dark) or
partially (light) dependant on environmental change prior to 2010 (in all but medium mammals, climate change is associated
with longer lags and thus the lighter shading).
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S3 Supplementary tables

Table S3.2: Summary of the data used in the main analysis.

Class Populations Species Locations

Aves 830 425 238
Mammalia 921 287 440

Table S3.3: Definitions of management and use status, as recorded in the Living Planet
Database (reproduced and adapted from McRae et al., 2022).

Data field Definition Examples

Used A population that is intentionally
regularly or systematically used,
either individuals or eggs. This
may be sustainable or unsustain-
able, and the population does not
necessarily have to be threatened
by use or over-exploited. This
refers to consumptive use whereby
individuals or parts of individuals
are removed from the wild.

What is included: hunting (in-
cluding subsistence, sport and tro-
phy hunting); collecting.

What is not included: wildlife
tourism; education and research in
situ; viewing or experiencing for
cultural or spiritual reasons.

Managed A population that receives tar-
geted management (some of which
involves sustainable use). This is
usually to promote recovery in a
population or can incentivise its
use for conservation. It can in-
clude measures to stem ‘unsus-
tainable’ population growth.

What is included: supplementary
feeding; reintroduction; captive
breeding; legal protection; quo-
tas for hunting; provision of nest
materials; culling of predators of
species being monitored; culling of
species being monitored (e.g. if
overpopulated).
What is not included: protected
area (unless it is specifically for
that species – e.g. a tiger reserve)

Both fields are coded as ‘Yes’, ‘No’ or ‘Unknown’ and the information is taken from the source of the
population data.
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Table S3.4: Summary of the best +MU models (∆AICc < 6).

Class CC lag LUC lag Rangeland AICc ∆AICc R2 (m | c)

Aves

14 3 Incl. -2553.32 0.00 0.18 | 0.32
14 2 Incl. -2549.86 3.46 0.17 | 0.32
19 3 Incl. -2549.01 4.31 0.17 | 0.33
14 1 Incl. -2548.95 4.37 0.17 | 0.32
41 2 Incl. -2548.87 4.45 0.18 | 0.39
41 3 Incl. -2548.50 4.82 0.18 | 0.39

0 0 Incl. -2506.57 46.74 0.07 | 0.40
0 0 Excl. -2505.81 47.51 0.08 | 0.41

Mammalia

45 9 Excl. -3199.89 0.00 0.14 | 0.42
45 7 Incl. -3194.34 5.55 0.14 | 0.44

0 0 Excl. -3130.17 69.72 0.07 | 0.39
0 0 Incl. -3127.81 72.09 0.06 | 0.40

The best lag-based models display substantially improved explanatory performance (lower AICc and
higher marginal R2) compared to no-lag models.
Models that use no lags are provided for comparison.
Incl. and Excl. indicate whether or not rangeland is considered in the calculation of anthropogenic land cover.
AICc and ∆AICc values are rounded to two decimal places.
In R2 (m | c), m and c refer to marginal and conditional R2, respectively.

Table S3.5: Summary of the best +MUR models (∆AICc < 6).

Class CC lag LUC lag Rangeland AICc ∆AICc R2 (m | c)

Aves

14 3 Incl. -2552.94 0.00 0.20 | 0.32
14 2 Incl. -2549.57 3.37 0.19 | 0.32
14 1 Incl. -2548.43 4.52 0.19 | 0.32
19 3 Incl. -2547.84 5.11 0.18 | 0.34

0 0 Incl. -2505.54 47.40 0.10 | 0.39
0 0 Excl. -2503.91 49.03 0.10 | 0.39

Mammalia

45 7 Incl. -3202.09 0.00 0.15 | 0.43
45 9 Excl. -3202.02 0.06 0.15 | 0.42
45 8 Incl. -3201.92 0.17 0.15 | 0.43

0 0 Excl. -3127.65 74.43 0.07 | 0.39
0 0 Incl. -3126.42 75.67 0.07 | 0.40

The best lag-based models display substantially improved explanatory performance (∆AICc and marginal
R2) compared to no-lag models.
Models that use no lags are provided for comparison.
Incl. and Excl. indicate whether or not rangeland is considered in the calculation of anthropogenic land cover.
AICc and ∆AICc values are rounded to two decimal places.
In R2 (m | c), m and c refer to marginal and conditional R2, respectively.
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Table S3.6: Summary of the best models (+MU, ∆AICc < 6) for small species.

Class CC lag LUC lag Rangeland AICc ∆AICc R2 (m | c)

Aves

13 3 Incl. -983.44 0.00 0.18 | 0.64
13 7 Excl. -983.13 0.31 0.18 | 0.64
13 4 Incl. -982.87 0.58 0.18 | 0.64
13 1 Incl. -982.85 0.59 0.18 | 0.63
13 5 Incl. -982.39 1.06 0.18 | 0.64
13 6 Excl. -982.34 1.11 0.18 | 0.64
13 2 Incl. -982.07 1.38 0.18 | 0.64
13 6 Incl. -980.96 2.48 0.17 | 0.64
13 8 Excl. -980.30 3.15 0.17 | 0.64
13 7 Incl. -978.78 4.66 0.17 | 0.63

Mammalia

18 4 Excl. -1117.23 0.00 0.25 | 0.58
18 5 Excl. -1116.30 0.94 0.25 | 0.58
18 3 Excl. -1114.71 2.52 0.24 | 0.58
18 2 Excl. -1112.22 5.01 0.24 | 0.57

Incl. and Excl. indicate whether or not rangeland is considered in the calculation of anthropogenic land cover.
AICc and ∆AICc values are rounded to two decimal places.
In R2 (m | c), m and c refer to marginal and conditional R2, respectively.
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Table S3.7: Summary of the best models (+MU, ∆AICc < 6) for medium species.

Class CC lag LUC lag Rangeland AICc ∆AICc R2 (m | c)

Aves

48 25 Excl. -794.93 0.00 0.25 | 0.39
48 26 Excl. -793.88 1.05 0.25 | 0.38
48 24 Excl. -791.94 2.99 0.23 | 0.40
48 27 Excl. -789.87 5.06 0.24 | 0.38

Mammalia

17 25 Excl. -1049.52 0.00 0.16 | 0.46
17 25 Incl. -1049.10 0.43 0.17 | 0.45
17 26 Excl. -1048.82 0.70 0.16 | 0.46
17 24 Excl. -1048.14 1.38 0.16 | 0.46
17 26 Incl. -1047.70 1.82 0.17 | 0.44
17 24 Incl. -1047.06 2.46 0.16 | 0.44
17 27 Excl. -1046.98 2.55 0.15 | 0.46
17 27 Incl. -1046.62 2.91 0.17 | 0.44
45 38 Incl. -1046.16 3.36 0.15 | 0.45
17 23 Excl. -1045.69 3.83 0.15 | 0.46
16 35 Incl. -1045.51 4.02 0.15 | 0.49
17 28 Incl. -1044.86 4.67 0.16 | 0.44
45 37 Incl. -1044.81 4.71 0.15 | 0.45
17 28 Excl. -1044.47 5.06 0.15 | 0.45
10 30 Excl. -1044.17 5.35 0.14 | 0.49
10 31 Excl. -1044.15 5.38 0.14 | 0.49
17 34 Excl. -1044.12 5.40 0.15 | 0.46
10 29 Excl. -1044.02 5.50 0.14 | 0.49
17 35 Excl. -1043.95 5.57 0.15 | 0.46
17 33 Excl. -1043.95 5.58 0.15 | 0.46
10 28 Excl. -1043.64 5.89 0.14 | 0.49
17 32 Excl. -1043.59 5.94 0.15 | 0.46
5 31 Excl. -1043.54 5.98 0.14 | 0.44

Incl. and Excl. indicate whether or not rangeland is considered in the calculation of anthropogenic land cover.
AICc and ∆AICc values are rounded to two decimal places.
In R2 (m | c), m and c refer to marginal and conditional R2, respectively.
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Table S3.8: Summary of the best models (+MU, ∆AICc < 6) for large species.

Class CC lag LUC lag Rangeland AICc ∆AICc R2 (m | c)

Aves

40 37 Excl. -823.18 0.00 0.27 | 0.63
40 40 Incl. -822.97 0.20 0.27 | 0.60
40 39 Incl. -822.61 0.56 0.27 | 0.59
40 38 Excl. -822.58 0.60 0.27 | 0.62
40 38 Incl. -822.53 0.65 0.27 | 0.59
40 41 Incl. -822.38 0.80 0.27 | 0.60
40 43 Incl. -822.35 0.83 0.27 | 0.60
40 37 Incl. -822.29 0.89 0.27 | 0.59
40 42 Incl. -822.20 0.98 0.26 | 0.60
40 36 Excl. -822.18 1.00 0.27 | 0.63
40 39 Excl. -821.75 1.43 0.26 | 0.62
40 40 Excl. -821.61 1.57 0.26 | 0.62
40 35 Excl. -820.99 2.19 0.26 | 0.63
40 44 Incl. -820.44 2.74 0.26 | 0.61
40 41 Excl. -820.39 2.78 0.26 | 0.62
40 36 Incl. -820.14 3.03 0.26 | 0.59
40 42 Excl. -819.69 3.49 0.26 | 0.62
40 3 Excl. -819.55 3.62 0.26 | 0.50
40 34 Excl. -819.33 3.85 0.26 | 0.62
40 43 Excl. -819.15 4.03 0.25 | 0.62
40 33 Excl. -818.33 4.85 0.26 | 0.61
40 45 Incl. -818.15 5.02 0.25 | 0.61
40 32 Excl. -818.15 5.03 0.26 | 0.61
40 35 Incl. -817.91 5.27 0.26 | 0.59
40 31 Excl. -817.56 5.61 0.25 | 0.61
40 44 Excl. -817.39 5.79 0.25 | 0.61

Mammalia

44 23 Excl. -1064.91 0.00 0.22 | 0.49
44 24 Excl. -1064.85 0.06 0.22 | 0.49
44 25 Excl. -1064.10 0.81 0.22 | 0.50
19 26 Incl. -1063.80 1.10 0.22 | 0.48
44 26 Excl. -1063.66 1.24 0.21 | 0.50
19 25 Incl. -1063.12 1.79 0.21 | 0.48
44 22 Excl. -1063.04 1.86 0.22 | 0.49
44 27 Excl. -1062.99 1.92 0.21 | 0.49
44 5 Incl. -1062.90 2.01 0.24 | 0.52
19 27 Incl. -1062.49 2.42 0.21 | 0.48
22 5 Incl. -1061.97 2.94 0.22 | 0.49
44 28 Excl. -1061.83 3.08 0.21 | 0.49
44 6 Incl. -1061.12 3.79 0.24 | 0.52
44 21 Excl. -1060.97 3.94 0.22 | 0.49
16 19 Excl. -1060.86 4.04 0.24 | 0.53
19 24 Incl. -1060.60 4.31 0.21 | 0.48
19 28 Incl. -1060.26 4.65 0.21 | 0.48
16 20 Excl. -1059.65 5.26 0.24 | 0.52
44 29 Excl. -1059.49 5.42 0.20 | 0.49
13 23 Excl. -1058.97 5.94 0.23 | 0.43

Incl. and Excl. indicate whether or not rangeland is considered in the calculation of anthropogenic land cover.
AICc and ∆AICc values are rounded to two decimal places.
In R2 (m | c), m and c refer to marginal and conditional R2, respectively.
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