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Vaccination is the most effective tool to control infectious diseases. However, the evolution of 

vaccine resistance, exemplified by vaccine-resistance in SARS-CoV-2, remains a concern. Here, 

we model complex vaccination strategies against a pathogen with multiple epitopes - molecules 

targeted by the vaccine. We found that a vaccine targeting one epitope was ineffective in 

preventing vaccine resistance. Vaccine resistance in highly infectious pathogens was prevented 

by the full-epitope vaccine, one targeting all available epitopes, but only when the rate of pathogen 

evolution was low. Strikingly, a bet-hedging strategy of random administration of vaccines 

targeting different epitopes was the most effective in preventing vaccine resistance in pathogens 

with low rate of infection and high rate of evolution. Thus, complex vaccination strategies, when 

biologically feasible, may be preferable to the currently used single-vaccine approaches for long-

term control of disease outbreaks, especially when applied to livestock with near 100% 

vaccination rates.  
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Introduction 

The COVID-19 pandemic raised public awareness to the dangers and epidemiological 

characteristics of infectious disease. The obvious danger is that of a new disease emerging in the 

human population, livestock or crops impacting public health and the global food chain supply. 

Our experience with COVID-19 also demonstrated the danger of the emergent disease to evolve, 

changing our ability to contain the spread of the disease through increase of infectivity (Y. Wang 

et al. 2022) and evolving vaccine resistance (Willett et al. 2022; Garcia-Beltran et al. 2021). An 

interesting aspect of SARS-CoV-2 is its propensity for rapid evolution driven by the host immune 

response in immunocompromised individuals in the course of very long infection periods (Choi et 

al. 2020; Kemp et al. 2021; Sonnleitner et al. 2022). In such cases, the SARS-CoV-2 virus has 

the time to adapt to the relatively weak pressure of the compromised immune system with the 

resulting adapted variants posing a greater threat to the general population. 

The ideal goal when dealing with an emergent disease is eradication, as has been 

achieved in some cases (“History of Measles | CDC” n.d.; Ochmann and Roser 2018; The Lancet 

2019; Breman and Arita 1980). The second best option is to control the pathogen’s spread and 

evolution that would allow it to avoid these control mechanisms. Widespread use of a vaccine 

allows the population to achieve herd immunity, reducing the rate of spread of the virus (R0 < 1). 

However, the COVID-19 pandemic demonstrated that even the goal of containment may not be 

easily achieved (X. Zhang et al. 2022). SARS-CoV-2 rapidly evolved variants with a much higher 

infectivity (Soh et al. 2021) and showed a tendency to avoid vaccines (Planas et al. 2022; 

McCallum et al. 2021), both of these factors may have been driven by evolution of SARS-CoV-2 

in immunocompromised patients (Sonnleitner et al. 2022).  

A potential solution for the containment of pathogen evolution is a multi-epitope or mosaic 

vaccine (Kennedy and Read 2017; Barouch et al. 2018; Corey and McElrath 2010; Hou et al. 
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2019; Suhrbier 1997). Such a vaccine causes the immune system to develop antibodies against 

different epitopes, which are molecular targets for the immune system, frequently a part of a 

protein displayed on the surface of the pathogen. Their application to SARS-CoV-2 by selection 

of several epitopes in the Spike protein has been considered (Kar et al. 2020; J. Zhang et al. 

2022) but not implemented. In theory, a vaccine that targets several epitopes at once reduces the 

probability of evolution of vaccine resistance (Kennedy and Read 2017) allowing to achieve the 

second best outcome - long-term control of the pathogen spread in the population. Furthermore, 

a more complex, mosaic strategy was proposed by McLeod et. al. (McLeod, Wahl, and Mideo 

2021), whereby a combination of different vaccines targeting a different set of epitopes can be 

used in the population reducing the rate of spread of vaccine resistance. 

Barring issues of the host immune response, the hypothesis that a vaccine that 

simultaneously targets several epitopes is better than a vaccine that targets just one seems 

logical. Specifically, when a multi-epitope vaccine is used, more mutations have to occur in the 

pathogen to evolve vaccine resistance, reducing the probability of such evolution (REX 

Consortium 2013; McLeod, Wahl, and Mideo 2021). On the other hand, simultaneous introduction 

of a vaccine against all epitopes may have a potential weakness. In the arms race between the 

pathogen and the immune system, massive vaccination of all individuals with a multi-epitope 

vaccine may be equivalent to showing all of the cards to the pathogen allowing it to simultaneously 

adapt to all of the epitopes presented in the vaccine and winning in the evolutionary arms race. 

This process may be faster if the evolution of the pathogen is accelerated by selection of the 

immune system in the same way as SARS-CoV-2 evolution in immunocompromised individuals 

(Sylvain Gandon and Day 2008; Sonnleitner et al. 2022). 

Here, we consider a hypothetical model of pathogen evolution in a vaccinated population. 

We study the conditions under which the pathogen does not evolve vaccine resistance, in other 

words when the pathogen remains controlled or, in rare cases, is eradicated from the population. 
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We specifically focus on the efficacy of complex vaccination strategies with a combination of 

different vaccines targeting different epitopes to control the spread of the pathogen and to reduce 

the probability of evolving vaccine resistance.  

 

Methods 

Model Introduction 

In our model we have an infinite population size with different states assigned to individuals. The 

state of an individual can be unvaccinated (𝑆), unvaccinated and infected by a pathogen 𝜑 (𝑆𝑃!) 

and vaccinated by a specific vaccine of type 𝜎 (𝑉"). For simplicity, we base our model on an 

epidemiological SIS-model with vaccination (Keeling and Rohani 2011) without a compartment of 

recovered individuals, therefore  only vaccines provide immune memory against a pathogen. 

Further, some fraction of the population, hereby referred to as immunocompromised, experiences 

prolonged disease (𝐼), they can be vaccinated (𝐼𝑉") or vaccinated and infected (𝐼𝑉"𝑃!).  In the 

immunocompromised vaccinated and infected individuals the immune system can select for 

mutations in epitopes that have been displayed by the vaccine to the immune system. These 

mutations render the vaccine ineffective against the respective epitopes. We consider the 

probability of fixation of such vaccine-resistant variants in an immunocompromised individual and 

the probability of fixation of these variants in the entire population. We generally use the term 

fixation to signify fixation in the population and we specify cases when we talk about fixation of a 

variant in the body of one individual. We also consider a model when immunocompromised 

individuals are excluded but regular vaccinated individuals experience breakthrough infections 

and in these individuals the pathogen can evolve. In that case, the individual states are, as before, 

(𝑆), (𝑆𝑃!), (𝑉") and with an additional state of vaccinated and infected (𝑉"𝑃!). 
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Epitopes 

We consider the epidemiological and evolutionary dynamics of a pathogen with n 

epitopes, each epitope we denote as ek, where k = {1,..,n}. We introduce vaccines that induce 

antibodies against these epitopes and we distinguish several different types of vaccines. A single-

epitope vaccine targets one epitope. Multi-epitope vaccines create antibodies against several 

epitopes. A multi-epitope vaccine does not necessarily induce antibodies against all possible 

epitopes: this is achieved by a full-epitope vaccine, which is a unique case of the multi-epitope 

vaccine. We denote the number of epitopes per multi-epitope vaccine as its valence, m, where m 

is a discrete number ranging between {1,...n}. The binomial coefficient C(n,m), gives the number 

of possible types of multi-epitope vaccines with valence m. The broadest immune response will 

be induced by the full-epitope vaccine with valence m = n.  

Pathogen Variants 

In the model there are several pathogen variants, 𝜑, where each variant carries a unique 

set of epitope states. We denote the variant 𝜑	as the set of epitopes all in the wildtype state. The 

initial condition starts with 𝜑	, the wild type pathogen that carries all epitopes 𝜑 = {e1, … , en}, |𝜑| 

= n, where all ek can be targeted by existing vaccines. New variants can emerge that carry 

mutations in some epitopes, rendering them undetectable by the memory immune response 

induced by the corresponding vaccines. The number of epitopes that acquired resistant mutations 

is denoted as i. A super resistant pathogen acquires mutations in all n epitopes (Fig 1), such that 

𝜑=∅ and |𝜑| = 0. There exist 𝐶(𝑛, 𝑖)	different pathogens with i mutated epitopes.  
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Fig. 1. An example of evolution of vaccine resistance in a pathogen with two epitopes. Starting with 

a pathogen displaying two epitopes (n = 2, coloured spheres), two of which are recognized by antibodies 

induced by a vaccine with a valence of 2 (m = 2, corresponding coloured antibodies). Mutations may render 

the epitopes unrecognizable by the vaccine-induced antibodies. If both of the epitopes acquire such 

mutations (farthest right drawing) the pathogen is no longer impaired by the vaccine. 

 

Immunity 

Ideal vaccines prevent all vaccinated individuals from becoming infected (S Gandon et al. 

2001). However, a vaccine may be imperfect, and a small fraction of the vaccinated population 

(𝜌) can get infected and infect others. The vaccinated infected individuals experience the disease 

for a time period 𝜏. Under model conditions with immunocompromised individuals 𝜌 is small and 

𝜏 is large. When we model breakout infections with imperfect vaccines 𝜌 is larger and 𝜏 is small. 

In our model an individual that received a vaccine containing the antigen ek will be immune against 

every pathogen that carries the wild-type version of the epitope ek. The immune state induced by 

a vaccine can be represented as the set of epitopes, against which immunity is generated 𝜎 = 

{ …, ek ,… }. In the baseline model described here, the size of 𝜎  equals the vaccine valence m.  
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Immunodynamics 

To obtain estimates for the rate of pathogen evolution within a patient, we use a basic 

model of how the immune system reacts towards different pathogen variants. Drawing inspiration 

from basal formulations of immunodynamics (Nowak and May 2000) we denote the growth rates 

of the infected cell population 𝑥! with pathogen 𝜑	by the differential equation 

𝑑𝑥!/𝑑𝑡	 = 	𝑟	𝑥! − (𝑎 + 𝑧"(𝑥!))𝑥!		 (Eq. 1) 

where 𝑧"(𝑥) corresponds to the strength of the immune response towards pathogen x𝜑 if the 

immune type of the patient is 𝜎, 𝑎 is the baseline decay rate and 𝑟 the growth rate of infected 

cells. If 𝑟/(𝑎 + 𝑧"(𝑥!)) 	< 	0, the population of infected cells cannot grow, ultimately leading to the 

clearance of the pathogen. This is the case for a healthy individual and an infection blocking 

vaccine. Individuals with prolonged diseased state will have 𝑟/𝑎	 > 𝑟/(𝑎 + 𝑧"(𝑥!)) 	> 	1 and the 

pathogen can not be cleared from the patient's system. This provides the pathogen with an 

environment that can select for resistance mutations. Note, that the absence of an immune 

response  𝑧"(𝑥!) = 0  as well as a strong immune system with 𝑟	 < (𝑎 + 𝑧"(𝑥!)) will not provide 

such a selective environment (Kennedy and Read 2017; Bonhoeffer et al. 1997). 

 

Evolution 

We model evolution within a patient as a Bernoulli process, later referred to as the 

Bernoulli Model. Mutation, selection and fixation occur at once and immediately change the state 

of the whole pathogen population in a patient from one variant to another. At each day of the 

prolonged disease and with probability p a patient vaccinated against m epitopes and infected 

with a pathogen with i mutated epitopes can potentially change to a patient carrying a pathogen 

population with i+1 mutated epitopes. Starting with the wildtype, the probability to find a pathogen 
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with i mutated epitopes at time 𝑡, given a vaccine of valence m was administered,  can be 

approximated with a Poisson distribution. 

𝑝#(𝑖) 	= (𝑝𝑡)$𝑒%&'/𝑖!	 for i <  m (Eq. 2) 

If we ignore any adaptive immune response that goes beyond the epitopes that were targeted by 

the vaccine, we further set: 

𝑝#(𝑚) 	= ∑($)# (𝑝𝜏)$𝑒%&'/𝑖!	   

      𝑝#(𝑖) 	= 	0	 for i> m  

 

(Eq. 3) 

Note that this simple treatment of the evolutionary process ignores any differential fitness effects 

between variants. Employing more complicated evolutionary algorithms, such as the infinite 

population model of population genetics or the Wright-Fisher model with mutation and selection 

(Hartl and Clark 2006), generates similar qualitative results (See Supp. Res. Sec. 2 and Supp. 

Fig. 1). 

 

Vaccination Strategies 

When multiple epitopes can be targeted, vaccines with different valences (number of 

targeted epitopes) can be created (Fig. 2). If a combination of different vaccines can be used, 

four different vaccination strategies become possible: 1) a full-epitope vaccination strategy, in 

which a fraction 𝑉* of the population receives a vaccine of valence m = n, 2) a single-epitope 

vaccination strategy, in which a fraction 𝑉+ of the total population receives one of n different 

vaccines with valence m = 1 at random (thus, a fraction 𝑉+/𝑛 is vaccinated with one of the n 

vaccines), 3) an m-epitope vaccination scheme, in which each vaccinated individual in a fraction 
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𝑉# of the total population receives one of C(n,m) possible combinations of epitopes at random, 

and 4) a mixture of the strategies 1-3, confined by the normalization condition: 

𝑆	 +	 D
*

#	)	+

𝑉# 	= 	1 

Under all strategies, a fraction S of the population remains unvaccinated, which ultimately is an 

important parameter for the observed dynamics in our model. 

 

Fig. 2. Available multi-epitope vaccines for a vaccination procedure targeting n different epitopes. 

Different possible vaccines for the number of epitopes n = 4. Full-epitope strategy (left panel) with m =  4, 

where the population is inoculated with the n-epitope vaccine. A single-epitope strategy (right panel) with 

m = 1, where the population is inoculated with 4 different vaccines, each of them against a single epitope. 

The intermediate, m-epitope strategy (two middle panels) with inoculation by multiple vaccines, against  2 

or 3 different epitopes. A mixed strategy can have vaccines containing a combination of all 4 different 

vaccine types (n-epitope, m-epitope and single-epitope).  

 

Transmission 

We assume a finite number of infected individuals N, out of which a fraction 𝜌, are 

infectious and the pathogen is subjected to selection by the immune system. Given one of 𝑁𝜌 

individuals, in which the pathogen can evolve, the probability 𝑝'-.*/	(𝑖) that it will transmit a 

pathogen variant with i mutated epitopes is  
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𝑝'-.*/	(𝑖, 𝑡) 	= 	∑*#)+ 𝑉# 	∫
0
1 𝑝#(𝑖)	𝑑𝑡	/𝜏  (Eq. 5) 

where 𝑝# is a Poisson distribution as defined before and 𝑉# the fraction of the population 

vaccinated with any m-epitope vaccine. The equation contains the cumulative distribution of 𝑝#(𝑖) 

normalized by the disease duration, which corresponds to the probability of a variant i being 

transmitted at any time t from the beginning of the disease to its end at t = 𝜏.  

All 𝑁𝜌 individuals will have the same probability to transmit new variants. It is therefore a 

sufficient condition for pathogen fixation to occur as a result of at least one transmission attempt. 

   

Fixation within the Population 

To understand whether a pathogen variant is fixed in the population, we first derive the 

basic reproductive number for a pathogen with i mutations, Ri (see Supp. Res. Sec. 1), 

𝑅$ 	= 	𝑅1(1 − (1 − 𝜌)(∑$#	)	+ 𝑉#	(1 − 𝐶(𝑖,𝑚)/𝐶(𝑛,𝑚)	) + ∑*#)$2+ 𝑉#))	. (Eq. 6) 

𝑅1 denotes the basic reproductive number, that is the expected number of secondary infections 

induced by the wildtype pathogen in an unvaccinated population, and 𝜌 is the fraction of the 

vaccinated population that becomes diseased, thereby contributing to population level 

transmissibility. Finally, fixation in a population with a large population size, at equilibrium and 

random interactions (Patwa and Wahl 2008; Lieberman, Hauert, and Nowak 2005) is	1	 − 	1/𝑅$. 

Overall Probability of Pathogen Evolution 

A new variant can potentially emerge in one of the 𝑁𝜌 individuals with prolonged diseased 

state, be transmitted and ultimately be fixed in the population. The probability for the combined 

outcome is given by  

𝑝3$4(𝑖) 	= 	𝑝'-.*/(𝑖)	(1 − 	1/𝑅$),   (Eq. 7) 
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the probability pfix that any variant will fix in the population in 𝜌𝑁 transmission events 

𝑝3$4 = 1 - ∏*
$	)	+ (1	 −	𝑝3$4(𝑖))56 = 1	 − 		𝑒𝑥𝑝(𝜌𝑁∑*$)+ 𝑙𝑜𝑔(1	 − 𝑝3$4(𝑖)) , (Eq. 8) 

which, among various properties of the pathogen, will also depend on the employed vaccination 

strategy. 

 

Results 

General description of the model 

We considered a hypothetical pathogen with multiple (n) epitopes, which are targets of 

vaccines. Thus, a vaccine may target any number of m ={1… n} epitopes, with the full-epitope 

vaccine causing an effective immune response against all n epitopes. The effect of the vaccine 

epitopes is not cumulative, in other words a single-epitope vaccine is just as effective as the full-

epitope vaccine against a pathogen with all n epitopes. The pathogen evolves by accumulating 

mutations that change the epitope in a way that renders the antibody against this epitope 

produced by any vaccine ineffective. For example, an individual vaccinated by a single-epitope 

vaccine with epitope e3 can still be infected by a pathogen in which the epitope e3 has been 

mutated. In the extreme case, a pathogen variant in which all epitopes were mutated can infect 

an individual vaccinated by any vaccine, including the full-epitope vaccine. 

 

The population has a fraction of individuals (V) that are vaccinated by a random vaccine 

from the pool of vaccines that is being used. Initially we consider vaccines to be perfect so that 

all vaccinated non-immunocompromised individuals cannot be infected and transmit the 

pathogen. However, a small fraction of immunocompromised individuals (𝜌) can get infected even 
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though they are vaccinated. When that happens, the pathogen in the body of the vaccinated and 

infected individual is subjected to mutation and selection (Eq. 2-3) driven by the vaccine-induced 

immune response. The new pathogen variant created by these intra-body processes has some 

probability to be transmitted to other susceptible individuals. The transmitted pathogen variant 

may become extinct or may spread in the population and eventually become fixed. 

 

Model with 2 epitopes  

We first consider the case of a pathogen carrying only two epitopes (n = 2). The population 

may be vaccinated by the full-epitope vaccine (m=2) or each individual may receive one of the 

two single-epitope vaccines (m =1). The complete set of strategies is determined by the parameter 

𝛼, such that some proportion, α, of the vaccinated individuals receive one of the single-epitope 

vaccines, while the rest of the vaccinated individuals, 1- α, receive the full-epitope vaccine. When 

𝛼 is 0 or 1 the strategy is reduced to the simple cases, when 𝛼 = 0 all administered vaccinations 

are full-epitope, while when 𝛼	= 1 all administered vaccinations are single-epitope. 

It is straightforward to evaluate the optimal strategy, 𝛼, that minimizes the fixation of 

vaccine resistance for a given set of parameters using Eq. 8 (see the Model section). Fig. 3a 

shows the results of the optimal strategy as a function of the fraction of the vaccinated population, 

V. When more individuals are vaccinated, the probability of fixation is high regardless of the 

vaccine strategy, since vaccine administration coupled with high transmission selects for 

resistance (Rella et al. 2021; Chabas et al. 2018). In a pure m = 1 strategy (𝛼 = 1) the probability 

of fixation is largest at intermediate levels of vaccination (green line in Fig. 3b). However, under 

this strategy the probability of fixation of a resistant variant is much lower for higher values of V 

when most individuals are vaccinated with one of the two single-epitope vaccines because the 

rate of transmission is lower. 
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The full-epitope vaccine strategy (𝛼 = 0) corresponds to the optimal strategy when 

vaccination rates are below the herd immunity threshold (𝑉7 = 	1 − 	1/𝑅1). For vaccination rates 

higher than the herd immunity threshold the full-epitope vaccine strategy loses its efficacy and 

becomes less effective than a mixed strategy due to the small probability of fixation of super-

resistant variants. Thus, for V>VH, the optimal mixing strategy 𝛼* outperforms the strategy relying 

on a single full-epitope vaccine (Fig. 3b).  

 

 

Fig. 3. Optimal vaccination strategy to prevent evolution of vaccine resistance in the 2 epitope 

scenario. a) The black line shows the optimal 𝛼*, share of individuals vaccinated with a single-epitope 

vaccine, as a function of the fraction of the vaccinated population V. b) The probability of fixation of a 

vaccine resistant variant (pfix) as a function of V for three different vaccination strategies, full-epitope 

vaccination (blue line), single-epitope vaccination (green line) and for an optimal mixed vaccination strategy 

(red line). The full-epitope vaccination strategy matches the mixed optimal strategy below herd immunity 

(V= 1- 1/R0 = 0.5), after which the mixed strategy is best (blue line). Other parameters for this figure were 

𝜌𝑁	 = 10,	R0 = 2, 𝜏 = 200, p = 10!". 

 

The optimal strategy does not only depend on the vaccination rates, V, but is also strongly 

affected by the infectivity of the pathogen (R0) and its persistence and evolution in the 

immunocompromised individual (𝜏, p, 𝜌). In Fig. 4 we show the probability of establishment of a 
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vaccine resistant variant as a function of R0 and the length of the disease duration 𝜏 of the 

immunocompromised individuals (we obtained similar results for p as we do for 𝜏).  For an optimal 

vaccine strategy (𝛼*), when R0 and 𝜏 are small, vaccine resistance does not evolve. When both 

R0 and 𝜏 are large, a pathogen is highly infectious and spends a long time in an 

immunocompromised individual making the fixation of the vaccine-resistant variant inevitable. For 

the intermediate ranges of R0 and 𝜏, an optimal vaccination strategy mostly does not depend on 

𝜏	(Fig. 4a). The pure full-epitope strategy is only optimal for high levels of R0. However, eve n the 

straightforward single-epitope strategy outperforms the full-epitope strategy when 𝜏 is large and 

R0 is small. Across a large range of parameters a mixed optimal strategy outperforms both the 

straightforward single-epitope and the full-epitope strategies (Fig. 4b).  

 

 

Fig. 4. Optimal vaccination strategy as a function of pathogen infectivity and disease duration in an 

immunocompromised individual. Share of vaccinated individuals in population, V = 0.8, initial number of 

immunocompromised individuals, 𝜌N = 1,  𝜏 - disease duration of immunocompromised individuals, R0 - 

transmissibility of the pathogen.a) The probability of preventing the fixation of a resistant variant (green) for 

optimal vaccination strategy (𝛼*) is shown. Dotted contour lines show the fraction of single-epitope vaccines 

(0.8, 0.6, 0.4 and 0.2) in the optimal solution 𝛼* for different levels of R0 and 𝜏. b) Difference in the probability 

of fixation of a vaccine resistant strain for the optimal strategy 𝛼* and the single-epitope vaccination strategy 
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(blue) and the full-epitope strategy (red).  Parameter space above the contour line  corresponds to the 

probability of fixation of a vaccine resistant variant above 10% for the optimal strategy 𝛼* (see a). 

 

Model with n-epitopes  

The case with a large number of epitopes is more complex due to the combinatorially large 

number of mixed vaccination strategies. An optimal vaccination strategy may be similar to the one 

we observed in the 2-epitope case: a combination of multi-epitope vaccines with different 

valences m. Such a mixed use of multi-epitope vaccines may simultaneously reduce transmission 

at the population level and reduce the probability of fixation of vaccine-resistant variants in 

immunocompromised individuals. However, for a case with several epitopes such a strategy may 

be unrealistic to implement in practice and we show later that considering a mix of vaccines of 

different valences in the same vaccination campaign does not provide substantial advantages 

(SFig. 2). We therefore primarily consider a simpler set m-epitope mixed vaccination strategy, 

whereby all individuals are vaccinated by different vaccines with the same valence, m. Thus, 

individuals receive a vaccine against a different set of epitopes but always the same number of 

epitopes. Under such strategy the herd immunity threshold in the population is achieved through 

the vaccination of individuals by vaccines protecting against different pathogen variants (related 

to the concept of the diversity threshold introduced by (King and Lively 2012)). The n epitopes 

can be distributed to a total of C(n,m) groups of m epitopes per vaccine, thereby generating a 

high diversity of individuals inoculated by different vaccines, with different individuals protected 

against and susceptible to infection by different variants. We can define the m-epitope herd 

immunity threshold towards a variant with i mutant epitopes, by calculating the threshold for which 

Ri ≥ 1 (Eq. 6): 

 

𝑉7(𝑚, 𝑖) = (1	 − 	1/𝑅1)/(1 − 	𝐶(𝑖,𝑚)/𝐶(𝑛,𝑚))		  (Eq.9) . 
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In an infinite population and at the limit of strong selection in the body of an individual 

vaccinated with an m-epitope, the fixation of a variant that carries all m resistance mutations, m 

= i is guaranteed. Therefore, we first looked at the efficacy of different vaccination strategies 

against vaccine-resistant variants when mutant epitopes were already present in the population. 

The variants spread faster in populations vaccinated with low-epitope vaccines, however, all 

vaccines were equally good at preventing the spread of the wildtype pathogen and all were equally 

ineffective against the super-resistant variant (Fig. 5a). Similarly, high-epitope vaccines lead to a 

lower herd immunity threshold when the population is infected with variants with an intermediate 

number of mutated epitopes (Fig. 5b). 

 

If evolution within the immunocompromised individual is rapid, and consequently the 

probability of fixation of the super-resistant variant is high, the best vaccination strategy is the one 

that diversifies the immune response types in the population and uses the m-epitope vaccine 

strategy with optimal valence 𝑚 =	 [(𝑛 + 1)/2], where [(n + 1)/2] denotes the floor function (Fig. 

5c, probability of fixation derived from Eq. 7 in the limit of m = i and conditioned on transmission 

𝑝'-.*/(𝑚) = 1). At the extreme cases of m = 0 no vaccines are administered, and when the 

vaccine is completely ineffective (m = n), the probability of fixation of the strain will be driven 

purely by genetic drift, as follows from Eq. 6, independent of V. For intermediate values of m, 

higher vaccination rates can greatly reduce, and even eliminate (when V = 1) the probability of 

fixation of the resistant variant (Fig. 5c). This is due to the different ways intermediate valence 

vaccines with 1 < m <  n can be combined (Fig. 2), whereby the evolution of resistance towards 

one such combination of epitopes, does not imply resistance to all combinations. In the same 

limit, increasing the total number of epitopes n, the probability of fixation decreases until it 

saturates at the level of 1 - 1/(R0(1-V)), which is the probability of fixation of a wildtype in a 

vaccinated population. . This threshold is approached fastest when m = [(𝑛 + 1)/2] (Fig. 5d).  
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Fig. 5. Effect of different vaccine strategies in preventing the fixation of vaccination-resistant 

variants. a) The rate of spread of a pathogen with i mutations, indicated by the reproductive number Ri(m), 

of variants carrying i mutant epitopes (X-axis) (Eq. 6) for different valencies m of the vaccination strategy 

(in color). R0 = 2 for wild-type. b) The herd immunity threshold (VH(m,i)), Eq. 8, for the number of mutant 

epitopes in the variant present in the population (X-axis). R0 = 2 for wild type. c) The probability of fixation 

at the population level (pfix(m)) of a pathogen resistant to one of the vaccines of valence m (X-axis), for 

different levels of vaccination in population (in color). d) Probability of fixation at the population level (Pfix(m)) 

of a pathogen that developed full resistance to one of the vaccines of valence m as a function of number of 

epitopes n: single-epitope vaccine, m=1 (blue) and optimal vaccine valence, mn/2 = floor[(𝑛 + 1)/2] (red). 

For panels (a) and (d) V=0.75. 
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We then considered the model with only the wildtype pathogen was present initially in the 

population. As in the case of 2-epitopes, the optimal vaccination strategy in the case of n-epitopes 

depends on the properties of the pathogen and its evolution in the immunocompromised host. 

Having more than 2 epitopes has two effects on pathogen fixation as a function of population level 

transmissibility and within body evolution: 1) it is harder to evolve resistance to an n-epitope 

vaccine as it will take longer for variants with a mutation in all epitopes to fix and 2) m-epitope 

vaccines can be combined to create versatile combinations that reduce the probability of fixation 

in the population by diversifying the immune response of the individuals in the population. Thus, 

pathogens with faster rates of evolution in the immunocompromised individuals and higher rates 

of transmission may be contained by vaccines targeting m out of n epitopes. The best protection 

against pathogens with fast rate of evolution in the immunocompromised individuals is achieved 

when mn/2 = [(𝑛 + 1)/2], while highly transmissible diseases with low rates of evolution are best 

counteracted with a full-epitope vaccine (Fig. 6).  
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Fig. 6. The optimal choice of epitopes per vaccine (m, vaccine valence) as a function of disease 

duration 𝜏 and transmissibility R0. Optimal choice of m* minimizes pfix(m*), the probability of a pathogen 

fixation at the population level. For R0 below ~2.5, single epitopes are sufficient, for low 𝜏 and high R0 full-

epitope vaccines provide the lowest probability of mutant fixation within the population. Intermediate, m-

valence vaccine strategies are best for other values of 𝜏 and R0. Importantly, there are areas in which all 

vaccine strategies have approximately equal efficacy, either equally high for low 𝜏 and R0 or equally low for 

high 𝜏 and R0 (see Fig. 7).  

 

When R0 and 𝜏 are high, no vaccination strategy prevents the fixation of a resistant variant 

(Fig. 7a). The benefits of optimal vaccination strategies are apparent only within certain ranges 

of R0 and 𝜏 parameters. Specifically, the optimal strategy is substantially better than the single-

epitope vaccine when R0 is high and 𝜏 is low and better than the full-epitope vaccine when R0 is 

low and 𝜏 is high (Fig. 7b). Any vaccination strategy contains pathogen spread when both R0 and 

𝜏 are low (Fig. 7b).  
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For many parameter combinations the optimal vaccine strategy may not be very different 

from other strategies. Therefore, we determined the near-optimal scenarios with the fewest 

epitopes per vaccine (the minimal valence strategy) and the near-optimal scenario with the most 

epitopes per vaccine (the maximum valence strategy), that result in the probability of fixation of a 

mutated pathogen within 10% of the optimal vaccination strategy m*, pfix(m) < pfix(m*) + 0.1. For 

the minimal strategy a single-epitope vaccine was efficient for low values of R0 (Fig. 7d) and a 

higher valence vaccine was always as good as a single-epitope vaccine (Fig. 7c). For the maximal 

valence strategy, the full-epitope approach was efficient when R0 was high (Fig. 7d,7c). For a 

very specific range of R0 values, around 2.5, a 2-valent vaccine strategy was always the optimal 

one (Fig. 7d,7c). The efficacy of the optimal vaccination strategy was higher when the number of 

epitopes in the pathogen was high (Fig. 7e) and when the population had more vaccinated 

individuals (Fig. 7f). 
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Fig. 7. Optimal vaccination strategies countering a 4-epitope pathogen. a) The probability of 

preventing the fixation of a resistant variant (green) when the optimal vaccination strategy was applied, for 

different disease duration, 𝜏, and rate of spread, R0. b) The difference between the optimal vaccination 

strategy and the single-valence vaccine strategy (red) and the full-epitope vaccine strategy (blue). In the 

overlap region the optimal strategy outperforms both the single-valence and the full-valence vaccine 

strategies. The near-optimal minimal (c) and near-optimal maximal (d) vaccination strategy. Coloured 

regions define areas where the different strategies were minimally (c) or maximally (d) near-optimal. The 

area in white shows the region where the optimal vaccine strategy has a lower than 90% chance to prevent 

the fixation of a resistant strain (pfix(m*) > 0.1). The same threshold, pfix(m*) = 0.1, is shown as a function 

of n, the number of epitopes (e) , for V = 0.8, and (f) as a function of V, with n = 4 . For all figures, p = 0.02. 

 

Imperfect vaccine model 

Not all pathogens lead to the same type of evolution in immunocompromised individuals 

as we see in SARS-CoV-2. Similarly, as observed in SARS-CoV-2, vaccines may not be 100% 

effective in preventing transmission, so they can be imperfect (Sylvain Gandon et al. 2003; S 

Gandon et al. 2001; Kissler et al. 2021). Thus, we used our model to study the optimal vaccination 

strategy without immunocompromised individuals, but with imperfect vaccines. Under this 

scenario vaccinated individuals have a chance (𝜌) to get infected and have a short period of 

infection during which they can transmit the virus to others. The same principle of evolution in the 

vaccinated but infected individuals as in the immunocompromised individuals was applied. 

Broadly speaking, only a few immunocompromised individuals (𝜌𝑁 ~ 1) were in the population 

and the pathogen had a substantial time (𝜏) in these immunocompromised hosts. With imperfect 

vaccines the time the pathogen spends evolving in a vaccinated individual is short, however, 

depending on the degree of imperfection of the vaccine, the number of infected vaccinated 

individuals in which the pathogen evolves can be large.  
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Considering the 2-epitope scenario, when the vaccine is completely ineffective, 𝜌 > 0.5, it 

does not matter which vaccine strategy is employed because the probability of fixation of a 

resistant variant will be high. By contrast, when the imperfection of the vaccines is small the 

optimal strategy greatly reduces the probability of fixation of resistant variants (Fig. 8). The 

admixture of fill-epitope (2-epitope in this case) vaccines has a strong effect even for very small 

values of 𝜌 (Fig. 8b) even though for these small values of	𝜌 the share of 2-epitope vaccine 

admixture into the optimal vaccine mix is low (Fig. 8a). Thus, when breakout infections are rare 

(low values of 𝜌) the best strategy is close to a single-epitope strategy and requires administering 

only a small number of full-epitope vaccines in the population but following a pure single-epitope 

strategy even when breakout infections are rare almost certainly will lead to the fixation of a 

resistant strain (Fig 8b). The reason for this is because mixing a small fraction of a full-epitope 

into a population otherwise vaccinated with single-epitopes diversifies the population and pushes 

the herd immunity threshold below 1. This radically decreases the probability of fixation if the 

number of transmission attempts is high, as in this case (N = 105). When 𝜌 is higher, the best 

strategy requires a higher dose of administered full-epitope vaccines. 
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Fig. 8. Optimal vaccination strategy to reduce evolution of vaccine resistance in the 2-epitope 

scenario and imperfect vaccination. (a) The optimal vaccination strategy, characterized by 𝛼*, share of 

single-epitope vaccines, as a function of vaccine imperfection 𝜌 (fraction of breakthrough infections). (b) 

The probability of fixation of a vaccine resistant variant as a function of 𝜌 for 2-epitope vaccination (blue 

line), single-epitope vaccination (green line) and optimal mixed vaccination(red line) strategies. Initially 

infected population N = 105, full vaccine rollout (V=1), R0 = 2, p= 10!". 

 

In the n-epitope scenario we derive the optimal vaccination strategy (m*) where all 

individuals in the population receive different vaccines with the same valence. We study the 

probability of fixation of a vaccine-resistant variant for the optimal vaccination strategy as a 

function of the degree of imperfection of the vaccine (𝜌) and the number of infected individuals in 

the population (N). When the number of infected individuals and vaccine imperfection are high 

the optimal vaccination strategy does not prevent the fixation of a vaccine-resistant strain (Fig. 

9a). Similarly, when N and 𝜌 are low, any vaccine strategy is effective (Fig. 9b). The optimal 

strategy outperforms the single-epitope vaccine strategy when N is high (red in Fig. 9b) and 

outperforms the full-epitope vaccine strategy when 𝜌 is low (blue in Fig. 9b). 
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Similarly to the previous section, we determine near-optimal minimal (the fewest number 

of epitopes) and maximal (the maximum number of epitopes) vaccination strategies. The solution 

space for these near-optimal strategies shows a straightforward pattern, with the single-epitope 

vaccine being the minimum near-optimal strategy for low values of 𝜌 (Fig. 9c) while the full-

epitope vaccine strategy being maximum near-optimal strategy for low values of N (Fig. 9d). The 

optimal vaccine model better reduces resistant variant fixation when there are multiple epitopes 

in the pathogen (Fig. 10a), when the disease duration in individuals is short (Fig. 10b), when the 

pathogen is not highly infectious (Fig. 10c) and when a large proportion of the population is 

vaccinated (Fig. 10d). We did not investigate the interaction of these parameters. 
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Fig. 9. Optimal vaccination strategy for imperfect vaccines. a) The probability of preventing the fixation 

of a resistant variant when the optimal vaccination strategy is applied. b) The difference between the single-

epitope and the optimal (red) and the full-epitope and the optimal (blue) vaccination strategies. The dark 

region in the overlapping region is an area of parameter space where the optimal strategy is better than 

both the single-epitope and the full-epitope vaccination strategies. The parameter values showing the (c) 

minimal and (d) maximal valence of near-optimal vaccination strategies. Coloured regions define areas 

where the different m-epitope strategies were (c) minimally or (d) maximally near-optimal. Within the white 

area the optimal vaccine strategy has a lower than 90% chance to prevent the fixation of a resistant strain 

(pfix(m*) > 0.1). For this Figure 𝜏 = 10, p = 0.05 and R0 = 2, 𝜌 - degree of imperfection of the vaccine, N - 

number of infected individuals. When 𝜌	 ≥ 	1 −	(1 − 1/𝑅#)/𝑉, no variant, not even the wildtype, can be 

contained so we show 𝜌 ranging from 0 to 1/R0 (V=1). 
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Fig. 10. Efficacy of optimal vaccination strategy in preventing the fixation of resistant strains. Above 

the dashed contour lines the optimal vaccine strategy has a lower than 90% chance to prevent the fixation 

of a resistant strain. The figure shows the probability of fixation of a resistant strain as a function of N and 

𝜌 for n (a),	𝜏 (b), R0 (c) and V (d). All red lines correspond to a base parameter choice in the model of n = 

4, V = 1, 𝜏 = 10, R0 = 2. Across panels, each parameter (a) n, (b) 𝜏, (c) R0 and (d) V are varied keeping all 

the other three parameters constant at the base value.  
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Discussion 

It has been previously suggested that the application of multiple epitopes, both distributed 

across the population (McLeod, Wahl, and Mideo 2021) and within the same individual (Suhrbier 

1997), can be a way of preventing evolution of a vaccine-resistant pathogen. The rationale for 

their use is that a pathogen will have a harder time adapting to such vaccines. We struggled to 

come up with a simple term describing the complex vaccination strategies we propose here. In 

the literature of pesticide and antibiotic resistance the equivalent of a vaccination strategy of 

inoculating individuals with different single-epitope vaccines is called a mosaic vaccination 

approach, with this term used by McLeod et al. (McLeod, Wahl, and Mideo 2021) for the same 

approach in a 2-epitope model. The full-epitope strategy, also in the antibiotic resistance literature, 

is referred to as pyramid or combination approach (REX Consortium 2016; 2013). Meanwhile, 

mosaic vaccines or multi-epitope vaccines are those that target more than one epitope, different 

strains or even different pathogens (Suhrbier 1997). The strategies we consider in our model do 

not fit into any of these definitions and for lack of a better word we just refer to them as complex 

strategies. 

Among the goals of a vaccination campaign against a pathogen is to prevent its evolution 

towards vaccine resistance. Our results suggest that the optimal vaccination strategy utilizing a 

combination of different epitope vaccines, is better at reducing the emergence of vaccine 

resistance than the traditional approach of using one single-epitope vaccine and the full-epitope 

vaccine strategy when there is considerable selection against vaccine-induced antibodies. This 

may have broad practical implications for immunologists and policymakers tackling emergent and 

established pathogens but our results come with a set of caveats. The assumptions and 

simplifications in our model were motivated either by a reasonable approximation of biological 

reality or by mathematical simplicity. We prioritized the exploration of the model with a perfect 
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vaccine and very few immunocompromised individuals over the model where all individuals in the 

population were the same but the vaccine was imperfect. This was done because we were initially 

motivated by the phenomenon of rapid pathogen evolution in immunocompromised individuals 

seen in SARS-CoV-2 patients but also because in our analytical model we have an infinite 

population size, making it mathematically more convenient to deal with a set small number of 

immunocompromised individuals. However, since all vaccines have less than 100% efficacy 

(Lipsitch et al. 2022; S Gandon et al. 2001), the model analyzing imperfect vaccines is arguably 

applicable to a wider range of pathogens. 

Perhaps the greatest simplification in our model, driven by lack of collective knowledge of 

the relevant biological processes, is the process of selection of pathogens in an infected individual 

driven by the immune system. By parsimony we assume that selection against all presented 

epitopes is equal and that all mutations have an equal probability of emergence. We also assume 

that selection by the immune system can be mathematically described by a simple Bernoulli 

process. We explored three different ways of modeling the selection in the individual driven by 

the immune system: the Bernoulli model, the Infinite model and the Wright-Fisher model (Hartl 

and Clark 2006). We obtained broadly similar results on a set of test parameters for these three 

models (SFig. 1) and we selected the Bernoulli model for its mathematical simplicity.  

We also assumed that vaccine resistance is caused by a single mutation rather than by a 

series of mutations on a complex protein fitness landscape of the epitope, as observed in the 

Spike protein of SARS-CoV-2 (Starr et al. 2020). However, there is no general biological 

understanding of a generic fitness landscape of an epitope that could be used as a model 

template. Roughly the accumulation of several mutations to achieve resistance should be 

mathematically equivalent to reducing the mutation rate of a single mutant. Therefore, exploring 

complex intra-protein fitness landscapes of epitopes should lead to qualitatively different results. 

However, the fitness landscape of the interacting epitopes may have an influence on our results. 
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In our model, we assume a specific relationship between pathogen fitness and the number of 

non-mutated epitopes. For example, consider a 2-epitope pathogen case, with an infected 

individual vaccinated with a 2-epitope vaccine. We assume that in this individual a variant with a 

mutation in one epitope has a fitness advantage over the wildtype because the mutant pathogen 

will be recognized by fewer antibodies. More generally, we assume that the relationship between 

the fitness of the pathogen and the number of mutated epitopes is linear (SEq. 3 and SEq. 4). 

However, if this relationship is different, our results may be affected. Specifically, if the immune 

system is just as effective against a pathogen with a single functional epitope as against the 

wildtype with multiple functional epitopes, it is likely that the full-epitope vaccination strategy may 

be optimal in a much larger range of parameter values. 

Due to differences in immune detection and presentation (Bashirova et al. 2021; Russell 

et al. 2022), imprinting (Safonova et al. 2022; Yewdell and Santos 2021) and immunodominance 

(Havenar-Daughton, Lee, and Crotty 2017; Altman, Angeletti, and Yewdell 2018; Adorini 1998; 

He et al. 2022) the actual memory immunity induced by a multi-epitope vaccine may be smaller 

than m. Immunodominance, the tendency of the immune system to prioritize producing antibodies 

to one epitope over others (Adorini 1998; Akram and Inman 2012), may have a particularly strong 

effect on the dynamics of the model. First, the relationship between fitness and the number of 

mutated epitopes will not be linear. Second, this relationship may be different in different infected 

individuals. In either case, immunodominance is expected to further reduce the relative efficacy 

of the full-epitope vaccination strategy: in the extreme case of strong immunodominance and 

when all individuals are vaccinated with a full-epitope vaccine, such a strategy can cause 

individual immune systems to choose the same single immune response to a dominant epitope 

(Altman, Angeletti, and Yewdell 2018). However, an intermediate m-epitope vaccination strategy 

under immunodominance will force some immune systems to produce an immune response to a 
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non-dominant epitope, diversifying the immune system responses in the population and ultimately 

leading to a reduction of the probability of spread of a vaccine-resistant variant.  

Finally, we assumed no recombination in the pathogen, which is not applicable in many 

pathogens (Pérez-Losada et al. 2015), and relaxing this assumption will influence the results of 

the model. On an intuitive level, recombination will lead to a faster rate of emergence of strains 

resistant to multiple epitopes within the body, potentially canceling any fitness reducing effects of 

resistance mutations (Cong, Heneine, and García-Lerma 2007). In our model, this is equivalent 

to a larger 𝜏 (see Fig. 7), thus, we anticipate that an intermediate m-epitope vaccination strategy 

would be optimal for a greater set of parameters for a pathogen with recombination. It would be 

interesting to consider a formal model that incorporates recombination, however, it is beyond the 

scope of our current work. 

In sum, different levels of preexisting immunity due to infection, immunodominance, 

adaptivity, crossimmunity, mutation rates, recombination and pathogen clearance, will influence 

the results of the basic model, potentially violating assumptions and change the symmetrical 

outcomes driven by equal use of different vaccines in the population. Consequently, under more 

complex real scenarios the best vaccination strategy may not treat all epitopes equally. 

The strategy of vaccination of a population with different vaccines to control for risks of 

evolution of resistant strains has not been studied in detail, however, the concept of controlling 

risk by diversifying the solution strategy has been used in a wide variety of fields. Perhaps the 

most impactful example is that of the Modern Portfolio Theory (Markowitz 1952) that defined the 

practical diversification of stocks and securities in investment portfolios in a broadly similar 

manner. The benefits of genetically diverse crops over the genetically uniform monoculture has 

been appreciated for well over a century (“Unable to Find Information for 14632411,” n.d.). The 

use of genetically diverse crops leads to higher yields, less damage from parasites (Y.-P. Wang 
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et al. 2021) and ensures overall food supply stability (Renard and Tilman 2019). At the extreme, 

monocultures are susceptible to drastic out of control epidemics, with the Irish potato famine 

(Gibson 2022) and the Panama disease, that struck banana production in the 1950’s and with an 

evolved strain threatening banana production today (Ploetz 2015) being notable examples. In 

fact, similar results to ours were obtained in modeling studies tailored to agricultural systems 

(Djidjou-Demasse, Moury, and Fabre 2017; Rimbaud et al. 2018; Mikaberidze, McDonald, and 

Bonhoeffer 2015). Diversification on a genetic level is also common in nature, with many species 

practicing a bet-hedging strategy (Grimbergen et al. 2015), (Simons 2011; Childs, Metcalf, and 

Rees 2010) to minimize the risk associated with uncertainties in the future. These bet-hedging 

strategies allow the species to deal with uncertainties of progeny dispersal or environmental 

variability, but perhaps the most pertinent examples are of disease-host interactions. The benefits 

of genetic diversity of immune response of the population have been the subject of study for many 

species, which show that increased diversity of immune response increases the chances to 

control the spread of the disease in the population (Sommer 2005), (Chabas et al. 2018),(Ashby 

and King 2015; van Houte et al. 2016),(Ashby and King 2015; King and Lively 2012), (Ugelvig et 

al. 2010) and within whole ecosystems (Haas et al. 2011), (Schmidt and Ostfeld 2001), ultimately 

shaping the co-evolution of pathogens and hosts (Schmidt and Ostfeld 2001; Lively and Dybdahl 

2000; S Gandon and Michalakis 2002), (Ashby and King 2015; van Houte et al. 2016)). 

We are not aware of any ongoing efforts using a mixed vaccine approach, whereby 

different individuals in the population would receive a vaccine tailored to different epitopes. For 

some pathogens there may be biological limitations in creating such mixed vaccine batches, 

therefore, here we will discuss the potential benefits of a mixed vaccination approach only in 

hypothetical terms. The specific application of such an approach to thwart a particular pathogen 

would require detailed expertise in that particular pathogen, which is outside our area of expertise. 
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However, if a mixed vaccine strategy is technically feasible to apply against a specific pathogen, 

the experts working on this pathogen may consider the following conceptual advantages. 

Many of the potential benefits of mixed vaccine strategy could be obtained by a single-

epitope mixed vaccine approach, whereby the population is inoculated by different vaccines with 

each inducing an immune response to a single epitope. The R&D and manufacturing of several 

single-epitope vaccines may be simpler than researching a complex full-epitope vaccine. A mixed 

single-epitope strategy while having the benefit of reducing the fixation probability of vaccine-

resistant strains can also be quickly adapted to evolving threats. Consider a 5-epitope pathogen 

and a population that is vaccinated by a mix of 5 single-epitope vaccines. If vaccine-resistance to 

one of the epitopes evolves, the failed vaccine can be discontinued until it can be updated to be 

effective against the evolved epitope. Meanwhile, an all out outbreak in the population is 

prevented by the four other still functional single-epitope vaccines and eventually the updated 

single-epitope vaccine is reintroduced. In case of vaccination of the population with a single 5-

epitope vaccine, when it fails it can lead to a serious global infection event that cannot be 

controlled until a new 5-epitope vaccine is updated. Updating a 5-epitope vaccine may also take 

a long time, exacerbating the effects of the ongoing outbreak. 

Our results show that the advantage of using complex strategies of vaccination is 

substantially stronger when a high fraction of the population is vaccinated, we believe that the 

most likely application of such strategies will be outside the human population due to vaccination 

hesitancy. Furthermore, many people may hesitate receiving a random vaccine, especially if there 

are any differences, however minor, in their efficacy. Perhaps people will have different reasons 

to choose different vaccines and the necessary vaccine diversity can be maintained. However, 

none of these issues apply to animals and it seems likely that initially the application of such 

complex mosaic vaccinations may be in livestock.   
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Supplementary Materials 

Alternative Models of Within Body Evolution 

In addition to the Bernoulli model, we also utilize the infinite model of population genetics 

and the Wright-Fisher model in order to situate our results within a traditional framework of 

population genetics. We conclude that the results of all three models are fairly similar. While the 

infinite model and especially the Wright-Fisher model both add considerable complexity to the 

dynamics, including both the probability of extinction and mutant interactions (eg. clonal 

interference), these effects do not change the qualitative behavior of the model and can be readily 

approximated with an appropriately tuned Bernoulli model.  

 

In the infinite model and the Wright-Fisher model, we are required to define a phenotypic 

fitness landscape. Assuming additivity of fitness effects in different resistance mutants leads to 

very similar results to the Bernoulli process. Epistatic effects can however delay or accelerate 

evolution within a patient.  The infinite model with mutations and selection is evaluated according 

to the differential equation (Hartl and Clark 2006) :  

 

𝑑𝑥!/𝑑𝑡	 = (∑!8 𝑄(𝜑, 𝜑′)	𝑓(𝜎, 𝜑′)	𝑥! ) / (∑!8 	𝑓(𝜎, 𝜑′)	𝑥!8)   (SEq 1) 

 

Here 𝑥! denotes the fraction of cells infected with pathogen 𝜑. Both sums iterate through all 

pathogen variants 𝜑′ in the powerset 𝓟({𝑒+, . . , 𝑒*})	, which contains all pathogens that can be 

constructed with at most n epitopes. Further the sum over all pathogens in the powerset must 

obey the normalization condition: 

D
!

𝑥! = 1 
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𝑄(𝜑, 𝜑′) is the mutation matrix, containing the mutation rates between pathogen 𝜑 and 𝜑′, which 

is defined as follows: 

 

𝑄(𝜑, 𝜑′) 		= 	1 − 𝑞 	 if  𝜑’ = 𝜑   (SEq 2) 

𝑄(𝜑, 𝜑′) 		= 	 𝑞 /𝑛	  if  𝜑’ differs from 𝜑 by exactly 1 epitope 

𝑄(𝜑, 𝜑′) 		= 	0	 if  𝜑′ differs from 𝜑 by more than 1 epitope 

 

q is the mutation rate in the infinite population limit, which is typically very small. 𝑓(𝜎, 𝜑) is the 

within body fitness of pathogen 𝜑 in an individual with immune state 𝜎, which is defined as the 

set of epitopes, against which an individual shows a memory immune response.  

Here, we model fitness as the expected number of secondary infections per infected cell obtained 

in the infinite population limit of Eq. 1 in the main text. 

 

 𝑓(𝜎, 𝜑) 	= 	𝑟/(𝑎 + 𝑧"(𝑥!)).   (SEq 3) 

 

We assume 𝑧"(𝑥!)/𝑎 to be small in an individual with a weak immune system. This allows 

us to operate on the linearized approximation for fitness  𝑓(𝜎, 𝜑) 	≈ 	𝑟/𝑎 ⋅ (1 − 𝑧"(𝑥!)). Further 

assuming an equal memory immune response towards all presented epitopes, the response is 

chosen to be linearly dependent on the number of evaded epitopes 𝑧"(𝑥!) = 𝑧′ ⋅ (|𝜎| 	−	 |𝜑|) 	=

𝑧′ ⋅ 	 (𝑚 − 𝑖).  Thus fitness, in this simplified limit, is a linear function of i,  

 

𝑓(𝑖,𝑚) 	= 	𝑓1 + 𝑧 ⋅ 𝑖     ,  𝑖 ≤ 𝑚	,	 (SEq 4) 
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where 𝑧 = 	𝑧′/𝑎 and 𝑓1 	= 𝑟/𝑎 ⋅ (1 − 𝑧′	𝑚) is the wildtype fitness in a vaccinated individual. This 

derivation is meant to guide intuition, but ultimately we also choose a linear function for reasons 

of simplicity and lack of better knowledge.  

 

For very large population sizes, the resulting dynamics of the infinite model are equivalent 

to the Wright-Fisher model, which we evaluate with a stochastic simulation. In the Wright-Fisher 

model, a finite population of size NWF consists of infected cells. We denote the number of cells 

infected with variant 𝜑 as 𝑛! and require the normalization condition 

∑! 𝑛! =	𝑁9: . 

The population evolves by generation-wise random replacements. Define the probability of 𝑝!(𝑡 +

1) that an infected cell with variant 𝜑 will induce a secondary infection,  

𝑝!(𝑡) 	= (∑!8 𝑄(𝜑, 𝜑′)	𝑓(𝜎, 𝜑′)	𝑛!(𝑡)) / (∑!8 	𝑓(𝜎, 𝜑′)	𝑛!8(𝑡)),   (SEq 5) 

in analogy to SEq. 1, where 𝑄(𝜑, 𝜑′) and 𝑓(𝜎, 𝜑′) are defined as above. At each timestep the 

distribution of cells present in the system is evaluated by a multinomial distribution, where a cell 

of type 𝜑 is “drawn” with probability 𝑝!(𝑡) out of NWF possible cells. 

Note that for 𝑁9: = 1, 𝑞 = 𝑝 and 𝑧 large, the Wright-Fisher model behaves closely to the 

Bernoulli model with mutation rate p. For NWF large, the Wright-Fisher model behaves closely to 

the Infinite model. Different choices of NWF and q in the Wright-Fisher model therefore allow a 

form of interpolation between the infinite model and the Bernoulli model. 

 

As outlined in the main text, transmission occurs at random times during the evaluation of 

the simulation. The probability that a certain mutation is transmitted by a patient, measured 

throughout the whole disease duration, has to be evaluated as the full disease population 

average, for the Wright-Fisher model  

𝑝'-.*/ 	= 	∑0')1 𝑛!(𝑡)/(𝑁9:𝜏)  (SEq 6) 
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 and for the infinite model 

𝑝'-.*/ 	= 	∫
0
1 𝑥!(𝑡)	𝑑𝑡	/𝜏 . (SEq 7) 

The results for the probabilities of pathogen occurrence with |𝜑|= i for different mutants 

and different times can be seen in SFig. 1. Given the right rescaling p = p(q), the Bernoulli model 

shows similar evolutionary infection profiles as the infinite model and the average Wright-Fisher 

Model.  

 

 

SFig 1. Population genetics of within body mutation and selection. The figure shows the probability 

that an individual vaccinated with a 2-epitope vaccine, transmits the wildtype i = 0 (blue), a variant with one 

mutated epitope (i = 1) (orange), or a fully resistant variant with i = 2 mutated epitopes (green). These 

results are presented for (a) the Bernoulli model (SEq. 3), (b) the Infinite Model (SEq. 6) and (c) the Wright-

Fisher model (SEq. 7). The infinite model was run with parameters qIF = 10-8 and z = 1. The Bernoulli model 

used the value p = - log(1 +z)/(2 log(qIF)) ≈ 0.018. The Wright-Fisher model is run with parameters qWF = 

qIF/p ≈ 5 10-7 and N = [p/qIF] ≈ 106. The right tuning of model parameters leads to a qualitative match 

between all three models.  
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Derivation of Eq. 6 (Reproductive Number) 

A wildtype pathogen can spread in a naive host population with initial reproductive number 𝑅1. In 

a partially vaccinated population and in the absence of natural immunity, the transmission will be 

reduced. Let us begin with the case of a strategy employing equal proportions of m-epitope 

vaccines (the total number of epitopes is n). A fraction 𝑉# of the population is vaccinated with one 

of 𝐶(𝑛,𝑚) m-epitope vaccines, while the remaining fraction is unvaccinated, 𝑆. 

 

𝑆	 +	𝑉#	 	= 	1 , 𝑉; 	= 	0		𝑓𝑜𝑟		𝑘	 ≠ 𝑚 

We may also denote the vector 𝑉	 = 	 (𝑆, 0, . . , 𝑉#, . . . , 0)< 	as the strategy. Then, the basic 

reproductive rate of the wildtype is given by: 

 

𝑅='[𝑉] 	= 	𝑅1(1 − 𝑉#) 	= 	𝑅1𝑆	 

A mutant that is immune to the vaccine, will again have the reproductive success of a wildtype in 

an unvaccinated population, 𝑅1. A mutant with i mutations will be able to infect 𝐶(𝑖,𝑚) types of 

vaccines, that is a fraction 𝐶(𝑖,𝑚)/𝐶(𝑖,𝑚) of all 𝐶(𝑖,𝑚) vaccines. Therefore  

 

𝑅$[𝑉] 	= 	𝑅1(𝑆	+	𝑉#	𝐶(𝑖,𝑚)/𝐶(𝑛,𝑚))  (SEq. 8) 

In case of a general strategy we can write:   

𝑅$[𝑉] 	= 𝑅1	(𝑆 + ∑$#)+ 𝑉#	𝐶(𝑖,𝑚)/𝐶(𝑛,𝑚)) = 	𝑅1(1 − ∑$#)+ 𝑉#	(1 − 𝐶(𝑖,𝑚)/𝐶(𝑛,𝑚)) -

∑*#)$2+ 𝑉#)  (SEq. 9)  

If vaccines are not perfect, a fraction 𝜌 experiences wildtype transmission R0, while the remainder 

(1-𝜌) has transmission (SEq. 9), therefore 

𝑅$[𝑉] 	= 𝑅1(𝜌 + (1 − 𝜌)(𝑆 +	D
$

#)+

𝑉#	𝐶(𝑖,𝑚)/𝐶(𝑛,𝑚)))  

After simple reformulations: 
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𝑅$[𝑉] 	= 𝑅1(1 − (1 − 𝜌)(	D
$

#)+

𝑉#	(1 − 𝐶(𝑖,𝑚)/𝐶(𝑛,𝑚)) 	+ D
*

#)$2+

𝑉#	)  
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Vaccination with different vaccine valences and the global optimum solution 

 

 

SFig. 2. Probability of fixation of a vaccine resistant variant for a model with a mixture of vaccines 
with different valences. The difference in the probability of fixation of a vaccine resistant variant between 

a strategy close to the global optimum 𝛼* = (𝛼1, … ,𝛼m, …, 𝛼n) and a discrete strategy, for which 𝛼m = 1 and 

𝛼k = 0 for all k ≠ m, for which a fraction 𝛼mV receives one of C(n,m) m-epitope vaccines. The global optimal 

strategy outperforms the discrete strategy by up to 25% for high values of R0, 𝜏, N and ⍴. For most other 

parameter values we explored, the probability of fixation in a discrete vaccination strategy was close to the 

globally optimal strategy. To find the global optimal strategy, we used a Monte Carlo approach, in which a 

strategy vector 𝛼 is drawn from a Dirichlet distribution (with uniform concentration parameters all being 

equal to 1) several times (1000 runs per parameter choice) and the best strategy corresponds to the 
instance of V, which minimizes pfix (Eq. 8). For comparison see Fig. 7 and Fig. 9, which have the same 

parameters.  
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