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Abstract

Multicellularity has evolved several independent times over the past hundreds of millions of

years and given rise to a wide diversity of complex life. Recent studies have found that large

differences in the fundamental structure of early multicellular life cycles can affect fitness

and influence multicellular adaptation. Yet, there is an underlying assumption that at some

scale or categorization multicellular life cycles are similar in terms of their adaptive potential.

Here, we consider this possibility by exploring adaptation in a class of simple multicellular

life cycles of filamentous organisms that only differ in one respect, how many daughter fila-

ments are produced. We use mathematical models and evolutionary simulations to show

that despite the similarities, qualitatively different mutations fix. In particular, we find that

mutations with a tradeoff between cell growth and group survival, i.e. “selfish” or “altruistic”

traits, spread differently. Specifically, altruistic mutations more readily spread in life cycles

that produce few daughters while in life cycles producing many daughters either type of

mutation can spread depending on the environment. Our results show that subtle changes

in multicellular life cycles can fundamentally alter adaptation.

Author summary

Early stages in the evolution of multicellular organisms exhibit a wide range of life cycles.

Though studies have explored how the structure of a life cycle determines the fitness of

early multicellular organisms, far less is known about how it affects their adaptation. Stud-

ies that do investigate adaptation typically focus on large scale differences between life

cycles, implicitly assuming that at some scale life cycles are similar in terms of their adap-

tation. Here we consider this assumption by analyzing adaptation in a class of early multi-

cellular life cycles where the only difference between them is the number of offspring they

produce. We use mathematical models and evolutionary simulations to compute the fate

of mutations that are either altruistic or selfish, depending on their effects on single cells

and the groups to which they belong. We find that despite the similarity between life

cycles they can adapt very differently. In particular, life cycles that produce few offspring

consistently adapt via altruistic traits, while life cycles that produce many offspring adapt
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via either altruistic or selfish traits depending on the environment. In the end, we find

that small scale differences in multicellular life cycles can have large effects on adaptation.

Introduction

Multicellularity has evolved several independent times over the past hundreds of millions of

years and given rise to a wide diversity of complex life [1–11]. A central feature of all transi-

tions to multicellularity is a shift from single cells that reproduce autonomously to groups of

cells that can beget group offspring. Although extant forms of multicellularity originated in the

distant past, experimental and mathematical models have shed light on possible ways of transi-

tioning from single-celled reproduction to group reproduction [12–14]. Moreover, theoretical

models have highlighted that a key determinant of whether multicellularity can fix in unicellu-

lar populations is the structure of the multicellular life cycle, i.e. how and when groups repro-

duce [15–17]. Yet such models typically only address the initial appearance of multicellularity

[18, 19] and far less is understood about how the structure of early multicellular life cycles

affects adaptation. We address this subject by comparing the tempo and mode of adaptation in

a common class of early multicellular life cycles, in which groups of cells reproduce via frag-

mentation. Ultimately, we find that minor differences in life cycle implementation can have a

significant impact on adaptation and the early evolution of multicellularity.

If we consider the early evolution of multicellularity, there is a diverse array of possible mul-

ticellular life cycles [20]. Some switch between distinct unicellular and multicellular phases

[21] while others remain strictly multicellular [12]; some include different cell types or species

[22, 23] while others are genetically and phenotypically homogeneous [24]; and some are

ordered via genetic regulation [19] while others rely on stochasticity [25]. Part of this diversity

reflects differences across species, but some of it also emerges from the interplay of chance

mutations and selection. For example, the same unicellular lineage can evolve different types

of life cycles even when exposed to the exact same type of selection [26]. Though we expect

that large differences in life cycle structure, e.g. the number of phenotypes, will likely affect

adaptation, the impact of more minor differences is less clear. For instance, if two multicellular

life cycles are identical in all aspects except the number of offspring they produce, to what

extent does that affect the kinds of traits that are likely to evolve? If such minor differences

within life cycles are indeed important to adaptation, it may shift the relative weights assigned

to the influence of chance versus selection in shaping the evolution of multicellularity.

One distinction among early multicellular life cycles that has been shown to affect adapta-

tion is the mode by which the multicellular group forms or develops [20]. In clonal develop-

ment the group is formed by cells staying physically attached after reproduction, and in

aggregative development the group is formed when cells come together, usually in response to

an external stimulus such as a toxin or predator. When groups form through clonal develop-

ment, cells spend the majority of their time growing and reproducing within groups composed

of their kin. As a consequence, kin selection can facilitate the fixation of traits that improve

group fitness even if they impose a temporary cost to cells, say through a reduced rate of

growth [27–38]. Such altruistic traits are less likely to spread in life cycles with aggregative

development, because groups are more genetically diverse and ephemeral which weakens the

strength of kin selection. In addition, life cycles with aggregative development often include

prolonged periods where cells grow and reproduce independently of any groups, and so any

trait that imposes a cost to single cells is less likely to fix [20]. Since altruistic traits may under-

lie the evolution of cooperation within multicellularity, some have highlighted that their
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relative inability to fix in aggregative multicellularity may explain why most existing, complex

multicellular organisms form groups through clonal development rather than aggregative

development [9, 39].

Even when groups form in the same manner other features of the life cycle can affect adap-

tation. For example, in groups with clonal development the presence of a single cell bottleneck

has been shown to promote the evolution of altruistic traits [40–43]. Life cycles with single cell

group offspring can use the bottleneck to create genotypically-homogeneous groups. This

allows them to purge cells that exploit other members of the group, which increases the proba-

bility that altruistic traits will fix. In contrast, groups without a single cell bottleneck can have

difficultly fixing such traits because group offspring will likely be mixes of altruistic and

exploitative cells and the altruistic cells are the only ones paying a cost. Indeed the presence of

a single cell bottleneck has been identified as a key element in multicellular life cycles that have

evolved complex forms of cooperation [44–47].

While the presence of a single cell bottleneck can facilitate the fixation of altruistic traits in

some life cycles, it can have the opposite effect in others. For example, if a single cell bottleneck

occurs at the beginning of a phase of unicellular growth, as occurs in alternating life cycles

[20], altruistic traits are unlikely to fix. In fact they fail for exactly the same reason as they do in

life cycles where groups form by aggregative development: the cost imposed on cells is actively

selected against during the single cell phase. Thus the presence of a single cell bottleneck can

either facilitate or inhibit the evolution of altruistic traits, depending on other aspects of the

life cycle’s structure.

The contrasting effects of single cell bottlenecks underscore the need for identifying the rel-

evant features of multicellular life cycles that shape adaptation. Rather than focusing on large

scale differences in life cycle structure, it may be easier to identify salient adaptive features by

adopting a bottom-up approach. To this end, we consider a simple multicellular life cycle in

which groups form filaments through clonal development and reproduce via fragmentation.

Variation within this life cycle is defined by the single “decision” of how to fragment. We draw

inspiration from theoretical models [18, 19] and experimental systems [26, 48, 49] and com-

pare two characteristic ways the fragmentation decision is made in terms of their consequences

on adaptation. We find that minor variations— such as the size or number of offspring— can

have striking consequences for the types of traits (altruistic or selfish) that fix and the rate at

which they fix.

Model

For a model of a simple multicellular life cycle we draw inspiration from filamentous cyano-

bacteria [10, 50–53]. We consider a life cycle in which cells grow and remain in filaments until

reaching a fixed size when they then fragment into smaller filaments. While in principle there

are many ways that a group of cells can fragment [18], we study a class of fragmentations in

which groups of size N split evenly, producing k daughter groups of the same size, N/k. For

example, a filament with N = 16 cells could fragment in four possible ways resulting in differ-

ent numbers of groups either k = 2, 4, 8 or 16 (see Fig 1A) of 8, 4, 2, or 1 cells, respectively. We

choose this class of life cycles because it includes well-studied multicellular life cycles [12, 50,

54, 55] such as binary fission and complete dissociation, and it also enables a controlled com-

parison of life cycles where only a single parameter changes (the number/size of daughter

groups). We note that this class of life cycles assumes some mechanism [18] or signal [19] that

ensures regularity and allows groups to sever the appropriate connections between cells. In

addition, we assume that cells do not die in order to sever links, unlike other models [49, 56,

57].
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There are two phases in this life cycle where selection can act: when cells reproduce within

the filament and when filaments fragment. We model growth within filaments by assuming

that cells reproduce via binary fission and modify their connections accordingly [58]. We also

assume that each cell in the filament divides independently of the others at a constant rate,

which in the absence of any other forces of selection causes populations to grow exponentially.

Once filaments reach the adult size, N = 16 in most of this paper, they fragment into k daughter

groups, each of which experiences survival selection (similar to [59]) such that larger filaments

have a higher probability of survival. The function that specifies this size-based selection is

Fig 1. Life cycle fitness across different environments. A) A schematic shows the possible life cycles in which a filament fragments into a set of identical daughter

filaments. The parameter k indicates the number of daughters and varies between 2 to 16. B) The survival function ps is shown for different values of parameters a and

b. More specifically, a specifies the steepness of the curve i.e. how fast the survival benefit increases for larger filaments, and b defines the level of survival for unicelled

daughters i.e. the value of ps(1). C) A fitness landscape shows the k that produces the fittest life cycle as a function of the two parameters a and b in the survival

function. The color scheme is the same as in panel A and the dots indicate the parameter values shown in S8 Fig. D) The long term growth rate for the various life

cycles are shown for each of the environments identified in panel C. Binary fission is the least fit life cycle in all environments except Ek2.

https://doi.org/10.1371/journal.pcbi.1010698.g001
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ps(x) which changes with daughter filament size x according to

psðxÞ ¼
c

1þ e� aðx� bÞ
� d: ð1Þ

The parameters {a, b, c, d} define a selective environment that favors certain life cycles over

others. We also consider the impact of other selection functions in S1–S3 Figs, included in

S1 Text.

Since our goal is to study adaptation within the context of multicellular life cycles, there are

two main constraints on the parameters of the function ps(x). First, the parameters need to

impose a high enough cost to unicellularity so that all multicellular life cycles are fitter than a

strictly unicellular life cycle. Second, the parameters need to allow room for adaptation such

that life cycles can improve their fitness by an amount observable within the context of our

analyses. Many combinations of parameters can satisfy these two criteria, so for simplicity we

set two parameters (c = 1.7 and d = 0.9) and vary the others (see Fig 1B). We note that the

choices for c and d are arbitrary but S2 Fig shows that we obtain qualitatively similar results

with alternative choices for c and d.

After identifying the drivers of selection in our model, we now consider the possible ways

each life cycle can adapt in response. We assume that mutations can affect either the growth

rate of cells or the survival of daughter filaments. Thus, we define a mutant phenotype by the

values of two parameters sc and sg, similar to [20, 60]. The parameter sc affects the reproductive

rate of cells such that when sc> 0 the mutant reproduces faster than its ancestors. Specifically,

we assume that the mutation modifies the growth of cell populations according to elc 1þscð Þt,

where λc is the intrinsic growth rate of cells prior to any modifications by mutations. In con-

trast to sc, which acts on cells regardless of their group context, sg acts on groups as a whole by

adjusting the survival of multicellular filaments when they fragment. Positive values of sg
increase the probability that daughter filaments survive according to psðxÞð1þ sg Þ, where sg is

the average sg value among cells in the filament. S4 Fig shows how the value of sg affects the sur-

vival function ps(x). Importantly, the interplay between the multicellular life cycle and the val-

ues of sc and sg determine the fate of a mutant lineage.

Results

Since the rate of adaptation likely depends on the selective environment, we sought to identify

a set of representative selective environments by mapping the fitness landscape for our selec-

tion function ps(x). We can determine the fitness of a life cycle by representing it as a multitype

branching process and calculating its long-term growth rate (see Methods: Branching process).

We find that for a fixed adult size of N = 16 cells it is possible to identify environments where

each life cycle is fittest (see Fig 1C and S5–S7 Figs for analyses of other adult sizes). In environ-

ments that select for binary fission (k = 2) or complete dissociation (k = 16), life cycle fitness

varies monotonically with k, e.g. if k = 2 is fittest then k = 4 is next fittest followed by k = 8 (see

Fig 1D). This observation led us to focus our analyses on the two extreme values for k and

their representative selective environments: k = 2 for binary fission and its environment EB
(Ek2 in Fig 1C) and k = 16 for complete dissociation and its environment EC (Ek16 in Fig 1C).

S8–S10 Figs show that we get qualitatively similar results for other choices of the selective envi-

ronments EB and EC. We note that we also perform the analyses in this paper for the two inter-

mediate environments and intermediate fragmentation patterns (k = 4 and k = 8) and include

them in S11 Fig.

In each of the selective environments, we consider the fate of a lineage with a mutation that

alters either the reproductive rate of cells (sc) or the survival of daughter filaments (sg). We use
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an analytical approach to determine the fitness of a mutant lineage relative to its ancestor (see

Methods: Analytical derivation of mutant fitness). To calculate the relative fitness of the

mutant lineage we make three basic assumptions: 1. cell populations grow exponentially, 2. fil-

aments fragment at a fixed size, and 3. when filaments fragment the probability that each off-

spring survives depends on its size and the value of sg. Based on these assumptions we derive

the relative fitness of the mutant lineage (w) as:

w ¼ ð1þ scÞ 1þ
ln ð1þ sgÞ
ln ðf Þ

� �

� ð1þ scÞ 1þ
sg

ln ðf Þ

� �

; ð2Þ

where f is the expected number of surviving daughter groups in the ancestor (f = kps(x)). From

this expression we see that the relative contributions of sc and sg to fitness depends on the

expected number of daughter groups that survive; they are equivalent only if f = exp(1). Since

life cycles that use binary fission can at most result in 2 surviving daughters, the sg value will

always have more of an effect than sc. In contrast, complete dissociation life cycles can span a

much greater range in the values of f, possibly reaching up to N, or 16 in our model. Such high

numbers of surviving offspring would make sc mutations have more of an effect than sg
mutations.

We can use the equation for relative fitness to calculate the rate at which a mutant spreads

in populations of either binary fission or complete dissociation life cycles. We initiate a mutant

cell within a filament and compute the growth of populations until the mutant fraction exceeds

that of the ancestor, i.e. the mutant proportion is above 50% (see Methods: Adaptation rate).

Fig 2A and 2B show the time it takes the mutant population to reach the majority when muta-

tions affect either sc or sg in isolation. We see that in the binary fission life cycle sg mutations

spread more rapidly than sc mutations in both EB and EC environments. However, in the com-

plete dissociation life cycle we find that either sc or sg mutations can spread more rapidly,

depending on the environment. S12–S14 Figs show that we obtain similar results if we con-

sider the mutant proportion after a set amount of time.

Another factor affecting adaptation in life cycles is the frequency that mutant lineages go

extinct due to random events. Since binary fission life cycles produce fewer group offspring,

we may expect that extinctions are more prevalent. We simulate the population growth of a

mutant lineage by beginning with a single mutant cell in a filament (see Methods: Stochastic

simulations). Fig 2C and 2D show the frequency of extinctions in the EB and EC environments.

In all cases, we observe a higher frequency of extinction in the binary fission life cycle. Even

when the binary fission life cycle has mutations that increase daughter filament survival to the

maximum value considered (sg = 0.2), there are still more extinctions than in a complete disso-

ciation life cycle with mutations that lower filament survival, i.e. deleterious mutations where

sg< 0.

After analyzing the spread of sc and sg mutations in isolation, we now consider mutations

that affect both parameters simultaneously, e.g. epistatic interactions. Although there are many

possible interactions between the sc and sg parameters, we focus on cases in which there is a

tradeoff because they encompass mutations commonly studied in the evolution of multicellu-

larity [60–62]. When tradeoffs exist between cell growth rate and group survival, there are two

qualitative types of mutations: 1. altruistic mutations, where single cells experience decreased

growth rate (sc< 0) and multicellular groups have increased survival (sg> 0), and 2. selfish

mutations, where single cells experience an increased growth rate (sc> 0) and multicellular

groups have reduced survival at selection (sg< 0). For each set of sc and sg parameters we again

calculate adaptation in terms of the time it takes for the mutant proportion to exceed 50% of

the population. Figs 3 and 4 show the results of these calculations expressed as rate of
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adaptation (1/time) for altruistic and selfish mutations, respectively (also, see S15–S16 Figs for

this analysis with additional values of k and other environments.).

Fig 3A–3D show that altruistic mutations spread differently in the two life cycles. One nota-

ble difference is the effect of the selective environment on the range of altruistic mutations that

can take over the population. In this regard, the difference between environments is greater in

complete dissociation life cycles. We can quantify this observation by measuring the area of

Fig 2. Adaptation and extinction rates for sc and sg mutations in isolation. A) The time it takes for a mutant to spread from 0.1% to over 50% of the

population in EB is shown for mutations with different values of sc (solid) and sg (dashed) in binary fission (blue) and complete dissociation (red) life

cycles. The binary fission life cycle adapts faster for both types of mutations, as indicated by the shorter times for a mutant to become the majority. B)

The plot is a companion to A) for the environment EC. The key difference is that sc mutations spread faster than sg mutations in the complete

dissociation life cycle. They also spread faster than sc mutations in the binary fission life cycle but not sg mutations. C) The proportion of mutant

lineages that go extinct in EB is shown as a function of the value of sg in binary fission (blue) and complete dissociation (red) life cycles. Each point is the

mean of 10 samples of 10 simulations and the bars indicate standard deviation. For all values of sg, mutants go extinct more often in the binary fission

life cycle. D) The plot is a companion to C) in the EC environment. Again mutants go extinct more often in the binary fission life cycle—indeed binary

fission mutants with the highest value of sg go extinct more often than all complete dissociation mutants except when sg<< 0.

https://doi.org/10.1371/journal.pcbi.1010698.g002
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Fig 3. Adaptation via altruistic mutations. A-D) Contour plots show the rate of adaptation as a function of the value of sc< 0 and sg> 0 for binary fission

(blue) and complete dissociation (red) life cycles in EB and EC environments. The rate of adaptation corresponds to 1/t, where t is the time for the mutant

population to exceed 50%. The black lines indicate the border where a mutation can spread. Altruistic mutations spread for a greater combination of sc and sg
values in binary fission life cycles. Adaptation in complete dissociation life cycles varies more between environments with altruistic mutations spreading faster

in the EB environment. E-F) Contour plots show the log ratio of adaptation rates for binary fission and complete dissociation life cycles in EB (panel E) and EC
(panel F) environments. The blue region indicates mutations that spread faster in binary fission life cycles while the red region is the same but for complete

dissociation life cycles. In both environments, all altruistic mutations spread faster in binary fission life cycles.

https://doi.org/10.1371/journal.pcbi.1010698.g003
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parameter space for which altruistic mutations take over the population. We find that for the

binary fission life cycle this represents 77.1% of the parameter space in EB and 71.7% in EC as

compared with 61.4% in EB and 17.8% in EC for the complete dissociation life cycle. Based on

these measurements, we also see that within each selective environment more mutations

spread in the binary fission life cycle. Indeed, we did not find an altruistic mutation that could

spread in the complete dissociation life cycle but not in the binary fission life cycle. Not only

do more mutations spread in the binary fission life cycle but they spread faster (see Fig 3E and

3F), especially when the cost to cell growth is highest, i.e. where sc is most negative.

If we consider selfish mutations we also see different patterns of adaptation between the

two life cycles (see Fig 4A–4D). Again the spread of mutations in the complete dissociation life

cycle is more affected by changes in the environment. For complete dissociation the area of

parameter space in which mutations spread changes from 27.0% in EB to 77.4% in EC, while in

the binary fission life cycle it is 16.6% in EB and 20.3% in EC. We can also see that more of the

selfish mutations spread in the complete dissociation life cycle. If we compute the rate at which

mutations take over the population we also find differences in the selective environments (see

Fig 4E and 4F). In EC selfish mutations always spread faster in the complete dissociation life

cycle; however in EB it depends on the tradeoff between cell growth rate and group survival.

When the tradeoff is low, i.e. sg is close to 0, selfish mutations fix faster in binary fission life

cycles, but as the tradeoff increases, i.e. sg gets more negative, selfish mutations spread faster in

the complete dissociation life cycle.

In the previous analyses we considered the fate of a single mutation, but it is possible that

multiple competing mutations could interact with one another to alter the adaptive process.

Thus, we now consider the adaptive consequences of competing mutations by using evolution-

ary simulations of populations. With multiple mutations competing it takes longer time scales

to observe adaptation, and so we simulate populations over repeated rounds of growth and

selection similar to serial passaging experiments. In our simulations, populations enact the

same multicellular life cycle and grow until they reach a carrying capacity (105 cells), then

experience a bottleneck such that 1% of groups survive (see Methods: Stochastic Simulations).

When cells within filaments reproduce there is a constant probability (0.01) they will mutate,

at which point both sc and sg acquire new values from exponential distributions. The resulting

evolutionary paths for mutant trait values are shown in Fig 5 for each life cycle in both selective

environments.

We find that in both selective environments populations evolve to steady state values of sc
and sg—determined by the parameters of our evolutionary simulation —and fluctuate around

the steady state thereafter (see Fig 5). In agreement with our earlier analyses, the majority of

populations with binary fission life cycles evolved altruistic traits (see Fig 6A and 6B). In con-

trast, populations with complete dissociation life cycles evolved different types of traits

depending on the environment (see Fig 6C and 6D). Specifically, those in EC evolved selfish

traits and those in EB evolved altruistic traits. If we investigate the relationship between sc and

sg evolved across populations, we find that life cycles can exhibit polymorphic populations (see

Fig 6E) in which both altruistic and selfish mutants coexist. Such polymorphic populations are

found more often in life cycles with k values between binary fission and complete dissociation,

where the expected number of surviving daughter filaments f is close to exp(1).

From Eq 2 when f = exp (1) the relative contributions of sc and sg to the fitness of the multi-

cellular life cycle are equal and so populations can get the same benefit from selfish and altruis-

tic mutations. Fig 6F shows an example simulation in which selfish and altruistic mutants are

stably maintained and regularly swap which makes up the majority of the population. We also

performed evolutionary simulations for the k = 4 and k = 8 life cycles and for the environments

Ek4 and Ek8, see S11 Fig.
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Fig 4. Adaptation via selfish mutations. A-D) Contour plots show the rate of adaptation as a function of the value of sc> 0 and sg< 0 for binary fission

(blue) and complete dissociation (red) life cycles in EB and EC environments. The rate of adaptation corresponds to 1/t, where t is the time for the mutant

population to exceed 50%. The black lines indicate the border where a mutation can spread. Selfish mutations spread for a greater combination of sc and sg
values in complete dissociation life cycles. Adaptation in complete dissociation life cycles varies more between environments with a greater spread in the EC
environment. E-F) Contour plots show the log ratio of adaptation rates for binary fission and complete dissociation life cycles in EB (panel E) and EC (panel F)
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Discussion

There is a wide range of ways unicellular organisms can evolve multicellularity. A unifying

approach to identify salient differences between types of multicellularity has been to focus on

the structure of the multicellular life cycle [13, 16, 17, 20]. Large differences between life cycles

have been shown to affect the potential for a nascent multicellular organism to evolve further

complexity [15, 20, 24, 39, 60]. Yet, there is an underlying assumption that at some scale there

should be minor differences in a life cycle that do not significantly affect multicellular adapta-

tion. We consider one of the most basic multicellular life cycles, clonal filaments that repro-

duce via fragmentation, and we use mathematical models to explore the adaptive

consequences of subtle variations in fragmentation. We find that qualitatively different types

of traits fix across life cycles and at different rates. Our results have implications for the general

applicability of multicellular adaptation studies across life cycles as well as the role of historical

contingency on the evolution of early forms of multicellularity.

One major finding from our study concerns the role of altruistic versus selfish traits in the

evolution of multicellularity. There has been considerable attention devoted to distinguishing

forms of multicellularity from social unicellular populations [63–65]. A common view is that

at first there may be little difference between them but the evolutionary trajectory of a group of

cells may lead it to become a more complex form of multicellularity. Features commonly asso-

ciated with complex multicellularity include those that would not normally evolve in a unicel-

lular context, e.g. altruistic traits that are costly to individual cells but are beneficial to groups

environments. The blue region indicates mutations that spread faster in binary fission life cycles while the red region is the same but for complete dissociation

life cycles. All selfish mutations in the EC environment spread faster in the complete dissociation life cycle, but in the EB environment mutations can spread

faster in either life cycle depending on the tradeoff between sc and sg.

https://doi.org/10.1371/journal.pcbi.1010698.g004

Fig 5. Evolutionary simulations for populations in a serial passage experiment. A-D) Each plot displays the average trait value of either sc or sg in 100 independent

populations evolving in environment EB. All mutations have a tradeoff such that they are either selfish or altruistic. The thicker lines indicate the average trait value

across populations. Both binary fission (blue) and complete dissociation (red) life cycles evolve a higher sg average at the expense of sc. E-H) These plots share a similar

format with panels A)-D) and display trait evolution in the EC environment. Populations using complete dissociation evolve a selfish trait profile (bottom), while binary

fission populations evolve an altruistic trait profile similar to their evolution in EB.

https://doi.org/10.1371/journal.pcbi.1010698.g005
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Fig 6. Average population trait values at the end of simulations. A)-D) The average trait values for sc and sg are plotted for each

independent population in Fig 5 for binary fission (blue) and complete dissociation (red) life cycles. Populations repeatedly evolved similar

altruistic or selfish trait profiles. Although all mutations had a tradeoff with opposite signs for sc and sg, some populations were polymorphic

which allowed both their average sc and sg values to be positive. Polymorphic populations are more common for life cycles in selective

environments where the expected number of surviving daughter filaments is close to exp (1). E) A similar plot shows the results of evolving a

k = 4 fragmentation life cycle in EC. Since k = 4 is intermediate, lying between binary fission and complete dissociation, its populations are

more polymorphic. F) The proportion of selfish/altruistic mutants are shown over 50 transfers for the population indicated by an arrow in E.

Altruistic and selfish mutants coexist and regularly swap places as constituting the majority of the population.

https://doi.org/10.1371/journal.pcbi.1010698.g006
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[66–69]. In contrast, selfish traits have been associated with a breakdown in multicellularity,

e.g. cancers that undermine cell cooperation by reverting to unicellular forms [70–73].

Whether altruistic or selfish traits fix—whether an early multicellular group is evolving away

from its unicellular past or reverting—is often connected with large-scale differences in multi-

cellularity such as the structure of groups or how they form, e.g. clonally or aggregatively [20,

74]. Instead, we consider the same type of multicellular group with life cycles that differ in

only how fragmentation is implemented and find that this small change significantly alters

whether altruistic or selfish traits fix.

From our models we identify two general factors driving the different evolutionary trajecto-

ries of selfish vs altruistic adaptation. The first factor is the expected number of surviving

group offspring, which is determined by the survival selection imposed by the environment.

When the expected number of surviving group offspring is low<� 2.7 improving group sur-

vival is more beneficial to fitness than improving cell reproductive rate. Since binary fission

life cycles can not yield more than two surviving group offspring, traits improving group sur-

vival will always have a relative advantage over traits improving cell reproductive rate. In con-

trast, complete dissociation life cycles can produce many more group offspring which shifts

the balance towards traits that improve cell reproductive rate, even at a cost to group survival.

The second factor driving the difference between altruistic and selfish adaptation is popula-

tion turnover. When a mutant first arises, its fate depends not only on how it affects life cycle

fitness but whether it can survive long enough for those effects to manifest. In binary fission

life cycles there is only one population doubling before group reproduction which means that

in the vast majority of scenarios there will be only one group offspring with mutant cells.

Strong survival selection acting on offspring groups will cause many groups with mutants to

go extinct regardless of how the mutations affect cell reproduction. If the mutations improve

group survival then this benefit immediately increases the probability the mutant lineage will

survive. In contrast, complete dissociation life cycles have log2 N cell doublings before group

reproduction, which provides more opportunity for mutations that affect cell reproductive

rate to act. Moreover, the number of mutant cells in a filament prior to reproduction deter-

mines the number of mutant offspring groups. Thus, mutations that increase the reproductive

rate of cells also increase the probability that the mutant lineage survives, unlike in binary fis-

sion life cycles.

We expect that these two factors also play a role in the adaptive differences between broader

classes of multicellularity. As an example, we consider the difference between aggregative and

clonal multicellularity, in which groups are formed by either coming together or staying

together, respectively [74]. An experimental study exploring the differences in multicellular

adaptation between yeast that form groups via aggregation or through clonal growth [75]

found that mutant lineages were much more likely to go extinct in the clonal life cycle because

of its smaller effective population size. Although the experimental system is quite different

from our theoretical models, the aggregative life cycle acts similarly to our clonal life cycle that

reproduces via complete dissociation. This similarity likely stems from the fact that aggregative

multicellularity typically features a population that assembles randomly to form groups, which

allows a nascent mutant population to associate with multiple groups and thereby reduce the

risk of extinction. Thus, a salient factor driving the difference in multicellular adaptation

between various life cycles may not be how groups are formed per se but the extinction risk

faced by any mutant lineage.

A central aim of our work has been to identify a scale at which adaptation in multicellular

life cycles is similar. Our aim led us to adopt a different approach from previous theoretical

studies of multicellular adaptation. One common line of inquiry in studies of multicellular

adaptation has been to assume a particular form of a multicellular life cycle and explore under
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what conditions certain traits can evolve. For instance, V. Rossetti et al. assume a fragmenting

filamentous life cycle similar to ours and explore when division of labor may evolve [52, 56,

76]. Other studies have considered the evolution of reproductive division of labor [62, 77, 78],

terminal cell differentiation [79], and programmed cell death [57]; but importantly these

works do not adopt a comparative approach to investigate what other multicellular life cycles

may evolve these traits. Studies of multicellular adaptation that do compare different multicel-

lular life cycles often impose some selective environment and determine which life cycle is fit-

test under these conditions. For example, a series of papers by Y. Pichugin and A. Traulsen

[18, 59, 80, 81] compute the fittest way for clonal multicellular groups to fragment given vari-

ous selective conditions, e.g. the rate between specific cell divisions in a group or the payoff

matrix in an evolutionary game. Other studies have compared fitness across more varied life

cycles [19, 20] or even when life cycles involve multiple species [82]. Our approach differs in

that we consider adaptation in a life cycle regardless of whether it is the fittest version of multi-

cellularity—it simply needs to be fitter than its unicellular ancestors. With this approach we

can then assess how differences along one dimension in a multicellular life cycle, i.e. the num-

ber of daughters, affects its adaptation along other dimensions, i.e. selfish versus altruistic

traits.

Finally, the results of our study indicate that chance and historical contingency may play an

important role in the evolution of multicellular complexity [83–85]. Many empirical studies

have shown that it is relatively easy for unicellular organisms to evolve multicellularity [12, 14,

26, 46], though the resulting forms are often primitive and can be quickly lost if selective con-

ditions change [38]. However, if exposed to continued selection for the multicellular pheno-

type then altruistic mutations may accumulate that increase its stability and complexity [86,

87]. Yet our modeling shows that whether altruistic mutations fix or not can depend on the

interplay between subtle features of both the multicellular life cycle and the selective environ-

ment. Moreover, in each of our selective environments all multicellular life cycles are fitter

than a unicellular life cycle and they can improve fitness further by fixing altruistic or selfish

mutations. So chance events or intrinsic constraints affecting which multicellular life cycle

appears first or which mutations are more likely could then play a significant role in determin-

ing whether the population was likely to evolve altruistic traits. Slight variations in the life

cycle and/or the selective environment could further alter the evolutionary path. Ultimately

our results show that variations in early multicellular life cycles with seemingly minor effects

can have major effects on later adaptation.

Methods

Long-term growth rate

We can represent each life cycle in this paper as a multitype continuous-time branching pro-

cess. It follows that the change in expected number of filaments of a certain size over time is

described by

z0 ¼ zM; ð3Þ

where z is a row vector of size N − 1 describing the expected number of filaments, with element

zi being the expected number of filaments of size i, z0 is the derivative of z with respect to time,

and M is the associated transition rate matrix of size (N − 1) × (N − 1). Note that we do not

need to track filaments of size N, as these fragment instantaneously. In our setting, the
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transition rate matrix M is given by
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with x = N/k representing the daughter size after fragmentation. Each off-diagonal element mi,j

of the matrix is the rate at which a single filament of size i produced new filaments of size j via

cell division or fragmentation. The diagonal elements mi,i are similarly the rate at which single

filaments of size i disappear following growth through cell division, and the magnitude of mi,i

is proportional to the current filament size i. The processes of growth and fragmentation leave

distinct signatures in the transition matrix. Growth through cell division is reflected in the

diagonal band of the transition matrix, with elements mi,i+1 = −mi,i = i, 1� i< N − 1 being the

rate at which cells of size i grow to size i + 1 through division of one constituent cell. By con-

trast, fragmentation of filaments upon reaching size N is reflected by the first non-zero ele-

ments of the last row, mN−1,x = (N − 1)kps(x). Here, N − 1 is the rate at which a single filament

of size N − 1 grows to the size N. It then fragments into k equally sized daughter fragments

which survive with independent probability ps(x). A single filament of size N − 1 thus produces

new filaments of size x at a rate (N − 1)kps(x). It follows from the theory of linear differential

equations that the solution to Eq 3 grows or declines exponentially at a rate given by the domi-

nant eigenvalue of M, which we take as our measure for fitness. By varying the parameters a
and b in the selection function ps (see Eq 1) we can calculate fitness in different selective envi-

ronments. For our analysis we pick a = 0.4 and b = 0 for the EB environment where binary fis-

sion has highest fitness, and a = 0.89 and b = −4 for the EC where complete dissociation has

highest fitness.
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Analytical derivation of mutant fitness

We use an analytical approach to describe the growth of a population of mutant filaments ng(t)
as:

ngðtÞ ¼ f t=t; ð5Þ

where ng(t) is the number of filaments produced per time, f is the average number of filament

offspring that are produced and survive each iteration of the multicellular life cycle, and τ is

the time it takes to complete the life cycle. Alternatively, we can express ng(t) in a more con-

ventional form:

ngðtÞ ¼ elg t; ð6Þ

where λg is the characteristic growth rate of filament populations and is a function of f and τ,

such that λg = ln (f)/τ. Since both f and τ are functions that could depend on many factors, we

need to make a few assumptions in order to produce analytical expressions for them. First, we

assume that cell populations grow exponentially according to elc 1þscð Þt where λc is the reproduc-

tive rate of cells within a filament prior to fragmentation. Given this assumption the time to

complete one multicellular life cycle is τ = ln(k)/(λc(1 + sc)). Second, we assume that when fila-

ments fragment the probability that an offspring group survives is determined by its size and

the value of sg according to (1 + sg)ps(x), where x is the number of cells in offspring groups. We

can relate the size of daughter groups x to the number of daughters k if we assume that all fila-

ments reproduce at some fixed adult size, N cells. Based on these assumptions the number of

surviving group offspring produced through a single iteration of the life cycle is f = (1 + sg)
ps(x)k, and as a result

lg ¼ lcð1þ scÞ ln
�

ð1þ sgÞpsðxÞk
�

= ln ðkÞ: ð7Þ

The value of λg determines fitness such that a mutant lineage is fitter than its ancestor if it

has a higher value of λg. We can then express the fitness of a mutant lineage relative to its

ancestor (w) by using a ratio of their λg values. Thus, we obtain

w ¼ ð1þ scÞ 1þ
ln ð1þ sgÞ
ln ðf Þ

� �

� ð1þ scÞ 1þ
sg

ln ðf Þ

� �

; ð8Þ

where f is the expected number of surviving daughter groups in the ancestor (f = kps(x)), sc is

the mutation’s effect on cell reproductive rate, and sg is the mutation’s effect on offspring

group survival.

Adaptation rate

Based on the population growth rate λg we can assess adaptation by calculating the mutant

proportion for a set of sc and sg values. The population starts with an initial mutant proportion

p and we assume that populations grow with the growth rate as in Eq 7. We can then derive an

expression for the mutant proportion at a given time t as

P ¼
p

1� p e
lg ðw� 1Þt

p
1� p e

lg ðw� 1Þt þ 1
; ð9Þ

where w is the fitness of a mutant relative to the ancestor. We can use Eq 9 to assess adaptation

by calculating the time t it takes for a mutant to exceed 50% of the population size. By solving
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for t in Eq 9, we get the expression

t >
ln 1� p

p

� �

lgðw � 1Þ
: ð10Þ

Here the term λg(w − 1) sets the time scale for adaptation such that larger values of λg(w − 1)

lead to faster spread of the mutant population.

We now consider how each mutant trait affects the time scale for adaptation. If we consider

only beneficial mutations in sc such that sc> 0 and sg = 0, we get that

lgðw � 1Þ ¼
lc

ln ðkÞ
ln ðf Þsc: ð11Þ

If instead we consider only beneficial mutations in sg such that sg> 0 and sc = 0, we get that

lgðw � 1Þ ¼
lc

ln ðkÞ
ln ð1þ sgÞ: ð12Þ

The relative difference in time scales is determined by the value of f, the expected number of

surviving daughter filaments. We use the above expressions for the time scales of adaptation in

Figs 2, 4 and 3, where we set λc = 1 and the initial mutant proportion to p = 1/1000.

Stochastic simulations

As a complement to our analytical studies we also performed stochastic simulations tracking

the growth of populations of cells. In these simulations cells grow in filaments and fragment

according to the fragmentation patterns k = 2, 4, 8, 16 when reaching adult size N, thus creat-

ing daughters of size x = N/k. Selection is applied upon fragmentation and a filament survives

if q< ps(x)(1 + sg), where q is a uniform random number. Times for cell division events are

sampled from a normal distribution with mean 1 and standard deviation 0.1 to prevent cell

reproduction from being completely synchronous. For mutants the reproduction time is

scaled by sc such that the mean is 1/(1 + sc).
To estimate the extinction rates we initiate a mutant in a filament of size N/2. We then sim-

ulate the growth of the population and stop once the population reaches 1000 cells. Based on

other simulations we found that if the mutant is still alive when there are 1000 cells, it rarely

goes extinct afterwards. Indeed the vast majority of extinction events occur within the first iter-

ation through the life cycle.

We structured evolutionary simulations as serial passage experiments. Populations have a

set life cycle and grow until reaching a carrying capacity of 105 cells. Upon reaching carrying

capacity 1% of the filaments are selected to reseed the population. All simulations begin with a

clonal population but at each cell division there is a probability pm = 0.01 that a mutation

occurs in either the mother or daughter cell [62]. If a mutation occurs we draw the value for sc
and sg from exponential distributions such that Exp(λ = 20) with equal probability of being

positive or negative. We limit the values of sc and sg to be within [−0.2, 0.2] so that the proba-

bility of survival will not reach ps(x) = 1.

Supporting information

S1 Text. Minor_variations_Plos_comp_bio_supplement.pdf The text provides additional anal-

yses that demonstrate the robustness of the findings presented in the main text.

(PDF)
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S1 Fig. Fitness is calculated for different shapes of the selection function. Plotted is the long

term growth rate for different shapes of the selection function. For each type of selection func-

tion we find environments that favor either complete dissociation or binary fission. In the case

of linear selection function, we are not able to find environments were k = 4 and k = 8 are the

most fit life cycles. Panels A-C show data for the original selection function, while D-F and G-I

show data for the modified sigmoidal selection function and the linear selection function

respectively.

(EPS)

S2 Fig. Evolutionary simulations for a modified sigmoid selection function. The figure

shows the result from 50 evolutionary simulations in the environments that favor either binary

fission or complete dissociation. In line with our results for the original sigmoid function altru-

istic traits evolve in EB (panels A-D). We also observe that selfish traits again evolve in EC in

life cycles with more daughters i.e. k = 8 and k = 16 (panels E-H).

(EPS)

S3 Fig. Evolutionary simulations for a linear selection function. The figure shows the result

from 50 evolutionary simulations in the environments that favor either binary fission or com-

plete dissociation. In line with our results for the original sigmoid function altruistic traits

evolve in EB (panels A-D). Similarly to the modified sigmod function, we again observe that

selfish traits evolve in EC in life cycles with more daughters i.e. k = 8 and k = 16 (panels E-H).

(EPS)

S4 Fig. The effects of the sg value on survival of daughter filaments. We plot the probability

of survival for daughter filaments ps(x)(1 + sg) as a function of daughter size x for three differ-

ent values of sg. Regardless of the size x of the filament, the sg value has the same effect in terms

of the factor by which it modifies the original survival probability.

(EPS)

S5 Fig. Fitness landscapes for varying adult sizes. We calculate the fitness landscape for

N = 8, 16, 32 using a multitype branching process. Panels A-C) show the fitness landscapes,

selection curves, and growth rates for the case with adults size of N = 8. Panels D-F) and G-I)

shows the same set of data but for adult sizes N = 16, as in the main text, and N = 32.

(EPS)

S6 Fig. Evolutionary simulations for N = 8 in environments that either favors k = 2 or

k = 8. Each panel shows the evolutionary outcome from 50 simulations in either an environ-

ment that favors binary fission or complete dissociation. Panels A-C) show the results from an

environment that favors binary fission, where all life cycles evolve altruistic traits. Panels D-F)

show similar data but in an environment that favors complete dissociation. Here, binary fis-

sion still evolves altruistic traits while the other life cycles evolve more selfish traits.

(EPS)

S7 Fig. Evolutionary simulations for N = 32 in environments that either favors k = 2 or

k = 32. Each panel shows the evolutionary outcome from 50 simulations in either an environ-

ment that favors binary fission or complete dissociation. Panels A-C) show the results from an

environment that favors binary fission. The binary fission life cycle evolves altruistic traits,

while the other life cycles evolve altruistic traits or polymorphism. Panels D-F) show similar

data but in an environment that favors complete dissociation. Here, binary fission still evolves

altruistic traits while the other life cycles evolve more selfish traits.

(EPS)
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S8 Fig. Shapes of selection curves in different environments. The curves represent an envi-

ronment where each of the life cycles has the highest fitness e.g. Ek2 is the environment where

binary fission (k = 2) is the most fit. Life cycles producing smaller daughters benefit from envi-

ronments where the survival of short filaments is high. The selection curves are characterized

by the minimum survival for single cells (ps(1)) and how fast the survival increases with

increasing filament size.

(EPS)

S9 Fig. Alternative choices for EB and EC. Other sets of the parameter values in the selective

function are picked as representative environments EB and EC. In particular we selected Ek2a
and Ek2b in the blue region to represent variations of EB and Ek16a and Ek16b in the red region

to represent variations of EC. In the blue region we select points close to the green region to

ensure complete dissociation has positive growth rate.

(EPS)

S10 Fig. Evolutionary simulations for additional environments favoring either binary fis-

sion or complete dissociation. Plotted are 50 evolutionary simulations for four additional

environments complementing EB and EC used in the main paper. The results from the simula-

tions are consistent with those for EB and EC shown in the main text: all life cycles evolve altru-

istic traits in EB, while only binary fission evolves altruistic traits in EC.

(EPS)

S11 Fig. All four life cycles in four different selective environments. Shown are 50 evolu-

tionary simulations for all k = 2, 4, 8, 16 in a selection of environments were each of the life

cycles is the most fit. The notations EB and EC are the same as Ek2 and Ek16. Binary fission

evolves altruistic traits in all environments, while complete dissociation evolves selfish in all

environments except from EB were it too is altruistic. The life cycle k = 4 may evolve polymor-

phic populations where selfish and altruistic mutations coexist for a longer period of time. The

life cycle k = 8 acts similarly to complete dissociation across selective environments.

(EPS)

S12 Fig. Adaptation of isolated sc and sg mutations at a fixed time. A) The expected mutant

proportion at t = 20 in EB is shown for mutations with different values of sc (solid) and sg
(dashed) in binary fission (blue) and complete dissociation (red) life cycles. The binary fission

life cycle adapts faster for both types of mutations, as indicated by the higher mutant propor-

tion when sc> 0 or sg> 0. B) The plot is a companion to A) for the environment EC. The key

difference is that sc mutations spread faster than sg mutations in the complete dissociation life

cycle. They also spread faster than sc mutations in the binary fission life cycle but not sg muta-

tions.

(EPS)

S13 Fig. Adaptation via altruistic mutations at a fixed time. A-D) Contour plots show the

mutant proportion at t = 20 as a function of the value of sc< 0 and sg> 0 for binary fission

(blue) and complete dissociation (red) life cycles in EB and EC environments. Altruistic muta-

tions spread faster and for a greater combination of sc and sg values in binary fission life cycles.

The range of mutations that spread in complete dissociation life cycles varies more between

environments.

(EPS)

S14 Fig. Adaptation via selfish mutations at a fixed time. A-D) Contour plots show the

mutant proportion at t = 20 as a function of the value of sc and sg for binary fission (blue) and

complete dissociation (red) life cycles in EB and EC environments. A greater range of selfish

PLOS COMPUTATIONAL BIOLOGY Minor variations in multicellular life cycles have major effects on adaptation

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1010698 April 21, 2023 19 / 24

http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1010698.s009
http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1010698.s010
http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1010698.s011
http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1010698.s012
http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1010698.s013
http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1010698.s014
http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1010698.s015
https://doi.org/10.1371/journal.pcbi.1010698


mutations in terms of combinations of sc and sg values spread in complete dissociation life

cycles. The selective environment has a larger effect on the range of mutations that spread in

the complete dissociation life cycle. Selfish mutations spread faster in the complete dissociation

life cycle in the EC environment; however in the EB environment selfish mutations with a small

cost to sg spread faster in binary fission life cycles.

(EPS)

S15 Fig. Adaptation via altruistic mutations for all k. The panels show the adaptation rate

based on the time it takes for mutations to reach 50% of the population. Below the black lines

mutations are not able to fix. For life cycles with a low value of k, e.g. binary fission, altruistic

mutations spread in a large area that does not substantially vary with the environment. In life

cycles with higher k, mutations spread for a smaller range of parameters, and the range

decreases as the environment changes from EB to EC.

(EPS)

S16 Fig. Adaptation via selfish mutations for all k. The panels show the adaptation rate

based on the time it takes for mutations to reach 50% of the population. Below the black lines

mutations are not able to fix. For life cycles with a low value of k, e.g. binary fission, selfish

mutations spread in a small area that does not substantially vary with the environment. In life

cycles with higher k, mutations spread for a larger range of parameters that increases as the

environment changes from EB to EC.

(EPS)
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