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Abstract
Short-rotation woody plantations (SRWPs) play a major role in climate change mitigation 
and adaptation plans, because of their high yields of woody biomass and fast carbon stor-
age. However, their benefits, trade-offs and growing-success are heavily location-depend-
ent. Therefore, spatial data on the distribution of SRWPs are indispensable for assess-
ing current distribution, trade-offs with other uses and potential contributions to climate 
mitigation. As current global datasets lack reliable information on SRWPs and full global 
mapping is difficult, we provide a consistent and systematic approach to estimate the spa-
tial distribution of SRWPs in (sub-)tropical biomes under current and future climate. We 
combined three advanced methods (maximum entropy, random forest and multinomial 
regression) to evaluate spatially explicit probabilities of SRWPs. As inputs served a large 
empirical dataset on SRWP observations and 17 predictor variables, covering biophysical 
and socio-economic conditions. SRWP probabilities varied strongly between regions, and 
might not be feasible in major parts of (sub-)tropical biomes, challenging the feasibility of 
global mitigation plans that over-rely on tree plantations. Due to future climatic changes, 
SRWP probabilities decreased in many areas, particularly pronounced in higher emission 
scenarios. This indicates a negative feedback with higher emissions resulting in less miti-
gation potential. Less suitable land for SRWPs in the future could also result in fewer wood 
resources from these plantations, enhancing pressure on natural forests and hampering sus-
tainability initiatives that use wood-based alternatives. Our results can help adding a more 
nuanced treatment of mitigation options and forest management in research on biodiversity 
and land use change.

Keywords  Tree plantations · Forest management · Land-based climate change mitigation · 
Spatial probability mapping · Land use modelling

1  Introduction

Planting forests is among the most widely proposed, but also heavily debated, nature-based 
solutions for climate change mitigation (Seddon et al. 2021), with 45% of all restoration and 
carbon removal commitments being represented by forest plantations (Lewis et al. 2019). 

Extended author information available on the last page of the article

http://crossmark.crossref.org/dialog/?doi=10.1007/s11027-023-10066-5&domain=pdf
http://orcid.org/0000-0002-2070-5046


	 Mitig Adapt Strateg Glob Change           (2023) 28:28 

1 3

   28   Page 2 of 22

As opposed to the steadily decreasing global forest cover, the area of planted forests has 
more than doubled in the last decade (FAO & UNEP 2020). About half of the global plan-
tations extent thereby consists of intensively managed plantations (FAO & UNEP 2020), 
which includes short-rotation woody plantations (SRWPs), also known as industrial planta-
tions, short rotation coppice or short rotation woody crops. SRWPs are characterised by 
dense rows of often one fast growing species, usually eucalyptus, acacia, poplar or willow, 
which are clear-cut after very short rotation times (1–15 years) (Dickmann 2006). They are 
often planted for the production of pulp and paper, wood pellets for bioenergy production 
and lumber aiming to reduce the harvest pressure on (semi-)natural forests (Pirard et  al. 
2016). Because of increasing demands for biofuel and other wood-based products, coupled 
with rising timber prices and tighter harvest restrictions for natural forests, planted forests 
are expected to increase in area, at least for the next four decades (Korhonen et al. 2020). 
It has been estimated that SRWPs will expand by 2% annually, to a total extent of 91 Mha 
in 2050 (Barua et al. 2014). International conflicts can cause demands for woody biofuel 
to increase even more than expected, as a result of rising gas and petrol prices, as well as 
diverting food crops planted for biofuel (Page 2022).

Besides being a quick and efficient way for wood production, SRWPs can provide numer-
ous co-benefits. Planting trees has particularly received a lot of attention as a rather straight-
forward and effective measure to mitigate climate change (Bastin et al. 2019). Due to their 
high yield, carbon sequestration in SRWPs can be high, making them a cost-efficient climate 
change mitigation measure. However, when SRWPs are used for biofuel purposes, these car-
bon benefits are very limited (Kalt et  al. 2019). Furthermore, establishing SRWPs can be 
attractive as they can increase land value of marginal agricultural areas due to their higher 
economic returns (Griffiths et al. 2018; Pirard et al. 2016). They can have benefits for ecosys-
tems and biodiversity, if they are structurally diverse and sustainably managed (FAO & UNEP 
2020; Zitzmann et al. 2021) and can support overall diversity by providing habitat for shrub-
favouring species in forest dominated landscapes (Riffell et al. 2011).

Most of the benefits, however, come with trade-offs, which are often heavily location-
dependent. Carbon benefits not only depend on the use of harvested wood, but also where 
plantations are established, i.e. what prior land use they are replacing (Waring et al. 2020). 
Large-scale tree planting in the wrong place can destroy valuable grassland and savannah 
ecosystems (Veldman et al. 2015) and deplete water resources (Jackson et al. 2005). Fur-
thermore, if trees are planted in former grassland areas, they might be more fire suscepti-
ble, which can result in carbon emissions through vegetation loss (Waring et al. 2020). If 
SRWPs replace native forests, they can result in carbon losses of up to 50% (Manrique & 
Franco 2020). Therefore, the suitability of tree plantations as a climate change mitigation 
measure, especially of non-native, short rotation and/or mono-species is widely contested 
(Bond et al. 2019; Friedlingstein et al. 2019; Hua et al. 2022). Without careful planning of 
the location and proper management, they can have a detrimental impact on the local liveli-
hoods and environmental conditions (Malkamäki et al. 2018; Fleischman et al. 2020), lead-
ing to conflicts with the local population (Coleman et al. 2021) and can result in the loss 
of land rights of indigenous people (Swanson et al. 2021). Additionally, it has been chal-
lenged whether marginal land is actually suitable for SRWPs (Shortall 2013). SRWPs are, 
furthermore, often considered ‘green deserts’, due to their lacking understory and composi-
tion of one or two tree species, which hamper their ability to provide habitats in the same 
manner as natural forests, especially if they replace forests with high conservation value 
(Brockerhoff et al. 2017; Brockerhoff et al. 2008; Riffell et al. 2011). As they commonly 
rely on intensive techniques, including weed control, irrigation and/or fertilisation, they 
can cause negative impacts on the surrounding environment, for example, by deteriorating 
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water quality and availability (Bryan et  al. 2015; Dickmann 2006; Griffiths et  al. 2018). 
Impacts on the water cycle can go even far beyond the catchment area of where they have 
been established (Ellison et al. 2017).

Next to the location dependence of the benefit and trade-offs of SRWPs (Griffiths et al. 
2018), also growing success and yields are largely driven by location factors, including soil 
and climatic conditions (Stolarski et al. 2014). In addition, socio-economic conditions, such 
as market accessibility, likely restrict the occurrence of SRWPs. As future climate change 
will cause alterations in precipitation patterns and temperatures, habitat suitability is expected 
to shift for many tree species, including those that are commonly planted in SRWPs (Butt 
et al. 2013). Therefore, insight in the occurrence of SRWPs under current conditions and esti-
mating future probabilities of their locations can facilitate the understanding of benefits and 
trade-offs of SRWPs and in turn support sustainable natural resource management, land-use 
planning and global commitments (Bloomfield & Pearson 2000).

Previous research has identified SRWPs based on remote sensing, but has so far been 
usually restricted to single countries or regions (e.g. Brazil (le Maire et al. 2014), Spain 
(Oliveira et al. 2020), Guangxi province, China (Deng et al. 2020)). An exception is the 
Spatial Database of Planted Trees (Harris et al. 2021), a comprehensive collection of loca-
tions of woody and agricultural tree crop plantations, including many countries of the 
world. The dataset is derived from supervised classification and manual polygon deline-
ation of satellite imagery and is obtained from different sources, including national gov-
ernments, non-governmental organisations and researchers. While this dataset provides an 
impressive number of locations, due to the different data sources and collection bias, some 
inconsistencies in terms of definitions, temporal and spatial extent cannot be avoided (Har-
ris et al. 2021).

The aim of this study is to provide a systematic and consistent approach to estimate 
at which locations there is a high probability of SRWP occurrence under current condi-
tions and how these location probabilities will be affected by future climatic changes. We 
thereby do not aim to predict the occurrence of future SRWPs, but explore an experimental 
pathway in which socio-economic and political condition remain the same and only cli-
matic conditions change. Due to the use of absence data sampled within forest and crop-
land locations and by accounting for socioeconomic variables, we go beyond biophysical 
suitability and present the probabilities that arise from land users’ decision-making, as a 
result of competition and compromise with other land use (such as agriculture) and oppor-
tunity in terms of favourable growing conditions, infrastructure and work force.

1.1 � Study area

Our study is focused on the Pan-Tropics, i.e. tropical and sub-tropical biomes of both hemi-
spheres in the Americas, Africa and Asia, reaching roughly from 35° North to 35° South. 
SRWPs are rapidly expanding in the Tropics, substantially driven by land acquisitions and 
foreign investments due to low opportunity costs (Overbeek et al. 2012; Davis et al. 2020; 
Favero et al. 2020). SRWPs have been found to be among the most deforestation-inducing 
land investments next to oil palm and other tree plantations (Davis et al. 2020). Tropical 
forests have the highest biodiversity of all global ecosystems and are among the main ter-
restrial carbon sinks (Sullivan et  al 2017). Their increasing destruction and degradation 
are hence major contributors to the regional, as well as global biodiversity and climate 
crisis, and affect local communities that depend on the forest (Edwards et al. 2019). Due 
to climatic changes with increasing temperatures, tropical forests are already experiencing 
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structural changes of ecosystems and shifts of species ranges (Pörtner et al. 2020). Future 
climate change is expected to exacerbate alterations of rainfall patterns and cause surface 
temperature increase in the Tropics, exceeding a 2  °C increase between 2030 and 2050 
even under moderate emission scenarios (Pörtner et al. 2020, Corlett 2012). As for agricul-
tural crops, these climatic changes are expected to alter the suitability range of SRWPs and 
taking future climatic changes into account when planning the location of SRWPs can aid 
to minimise the environmental costs that would come with migration of plantations (Sloat 
et al. 2020).

2 � Methodology

To map spatially explicit probabilities for finding SRWPs in (sub-)tropical biomes, we 
used an evidence approach with crowdsourced and expert sampled data and determined the 
impact and importance of 17 different biophysical and socioeconomic variables in explain-
ing the occurrence of SRWPs. To generate a robust empirical analysis of the relations 
between location factors and SRWP occurrence, three advanced methods were used and 
compared: (1) maximum entropy (MaxEnt), (2) random forest classification and (3) mul-
tinomial logistic regression. All three methods have been extensively used in land cover 
and use studies (see, e.g. Dou et al. 2021 and Skowronek et al. 2017 for MaxEnt; Bastin 
et  al. 2019 and Nguyen & Henebry 2019 for random forest and Dendoncker et  al. 2006 
and Schulze et al. 2019 for multinomial regression). Each of the three methods has ben-
efits and limitations and by comparing and combining them, our results can be considered 
more robust. MaxEnt has its origin in the ecological modelling community for predicting 
species distributions based on occurrence data only (Elith et al. 2011). Given the nature 
of our observations, this method fits our study. However, it can be prone to overfitting and 
can be susceptible to biases in the presence data (Devisscher et al. 2016). Random forest is 
an ensemble learning approach based on machine learning techniques, in which predictor 
variables without linear relationships can be included (Fox et al. 2020), thereby allowing 
to account for thresholds, but hindering extrapolation outside of the data range of the input 
data. Random forest models are rather insensitive to overfitting (Belgiu & Drăguţ, 2016) 
and have become widely used in the classification of remote sensing images into land cover 
classes. Multinomial logistic regression is a rather straightforward and comprehensible sta-
tistical approach. However, it can only account for linear relationships between the depend-
ent and independent variables. Compared to the former two methods, multinomial regres-
sion requires rather low computational power.

2.1 � Observation data

Observation data on the occurrence of SRWPs was obtained from the training dataset 
‘Human impact on forests’ (Lesiv et al. 2022). The dataset was compiled through several 
crowd-sourcing campaigns using the Geo-Wiki platform (Fritz et al. 2009, 2012). Partici-
pants visually assessed satellite images of forest locations and classified these into different 
types of human impact, including natural forests without management impacts, different 
wood harvest, regeneration and plantation types, as well as trees outside of forest, such as 
trees in urban areas. For our study, we included observations classified as ‘woody planta-
tions’, which were in the campaign defined as single-tree plantations with rotation times 
of maximum 15 years in the (Sub)Tropics. In the campaign, embedded tools, in particular 
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graphs of Normalized Difference Vegetation Index trends and Google Earth time series, 
supported the assessment of rotation time. As the correct identification of the tree spe-
cies in a plantation is hardly possible from satellite imagery, the class woody plantations 
included all species that are commonly planted in short-rotation, i.e. eucalyptus, acacia, 
poplar and willow. The crowd-sourced dataset comprised in total more than 30,000 points 
of all forest classes, including 2205 locations of SRWP observations, with the majority 
(2070) located in the tropics. Lesiv et al. (2022), furthermore, identified additional 18,008 
SRWP observations in a targeted approach, using experts’ assessment of a preliminary for-
est management map based on the crowd-sourced classifications and remotely sensed data 
of different vegetation indices. While the forest classes were classified within 100 × 100 m2, 
most predictor variables used in our study (see section further below) were available at a 
1 × 1 km2 resolution. Therefore, we converted the SRWP training dataset points to a pres-
ence raster at this resolution, ensuring that as soon as within the larger pixel an SRWP was 
observed this was reflected in the aggregated dataset. All locations that did not fall within 
the subtropical and tropical ecoregions (Olson et al. 2001) were excluded. In total, 8556 
locations of observed SRWP presence in the (Sub)Tropics were available for this study 
(Supplementary Material 1.1).

2.2 � Absence data

Absence data is required for the multinomial regression, the random forest algorithm, as 
well as for calculation of performance estimates of the models and results. Sampling ran-
dom locations within an entire study area to derive pseudo-absence data can introduce 
biases to the model. In ecological modelling, this is often the case, when presence data is 
skewed towards more accessible locations and pseudo-absence is not (Phillips et al. 2009). 
Since presence data were here systematically collected using satellite imagery, it can be 
assumed that this bias is not present in our study. Furthermore, models’ performances can 
decrease if pseudo-absence accidentally includes locations of occurrence. We avoided 
this by using a (simple) random sample of cropland and forest locations, as we consid-
ered SRWPs as a likely alternative for both land uses. Forest locations included naturally 
regrown forests with or without human impact and planted forests with longer rotation 
periods and were sampled from the same dataset from which SRWP locations were derived 
(Lesiv et  al. 2022). The forest  locations were masked to a raster layer with a 1 × 1  km2 
resolution, counting occurrences of any of the three classes only once. Cropland locations 
were derived from the IIASA-IFPRI cropland map (Fritz et al. 2015), selecting areas where 
cropland was the dominant land use (i.e. > 50% cropland). Pseudo-absence locations that 
are too far from the environmental space of presence locations can result in over-prediction 
(Lobo et al. 2010). To avoid this, we ensured that absence data is generated at locations that 
are comparable to the observed SRWP locations with regard to the environmental loca-
tion factors and somehow suitable to host SRWP. Therefore, the samples were restricted 
to areas where all climate, soil and terrain variables (see Table 1) are within the range of 
values at the SRWP locations, i.e. smaller than the maximum and larger than the minimum 
values of included variables. We randomly sampled 8556 crop and forest locations each 
(see Supplementary Material 1.2), i.e. the size of the SRWP presence dataset, following the 
findings by Barbet-Massin et al. (2012).
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2.3 � Predictor variables

To estimate location probability of SRWPs, we included in total 17 spatially explicit 
predictor variables from four groups: (1) climatic conditions, (2) terrain, (3) soil proper-
ties and (4) socio-economic variables (Table 1). For the selection of predictor variables, 
we followed the findings of previous research on considerable impacts on the suitability 
of SRWPs and availability of suitable data. This rationale for the selection is synthe-
sised in Table  1. To avoid inflation of variance, variables had to be non-correlating. 
Additional to the variables summarised in Table  1, we tested different indicators for 
water availability, as this has been reported to be the most limiting factor for SRWPs 
(Aust et  al. 2014; Saïdi et  al. 2011). These included average annual precipitation, cli-
matic water balance (i.e. the difference between precipitation and evapotranspiration 
(Aust et  al. 2014)) and the aridity index (a function of potential evapotranspiration 
(Zomer et al. 2008)). As these variables and total annual precipitation were correlating, 
and either decreased (average precipitation) or only marginally increased model fit and 
required additional assumptions on future behaviour (climatic water balance and aridity 
index), we excluded them.

2.4 � Future projections

To estimate how expected changes in future climate will affect the probability of SRWP 
occurrence, we varied all climate variables (i.e. average temperature, diurnal tempera-
ture, maximum temperature in the warmest month, precipitation in the driest quarter and 
annual precipitation) with projections from different climate models. We used the results 
from the Coupled Model Intercomparison Project Phase 6 (CMIP6) ensemble (Eyring 
et  al. 2016) for 2041–2070 with midpoint in 2055. Downscaled data was derived from 
the CHELSA repository, which had results for five climate models available: GFDL-
ESM4, IPSL-CM6A-LR, MPI-ESM1-2-HR, MRI-ESM2-0 and UKESM1-0-LL (Brun 
et al. 2022a, b; Karger et al. 2017, 2021). The Chelsea repository hosted at the time of the 
analysis the most recent spatially-explicit and globally-available climate data at a 1 km2 
scale. For each model, three Representative Concentration Pathway and Shared Socio-
economic Pathway (RCP-SSP) scenarios were included: RCP2.6–SSP1, RCP7.0–SSP3 
and RCP8.5–SSP5. These scenarios provide a range of different energy and resource 
consumption patterns, coupled with carbon dioxide emission responses and their impact 
on future climate. RCP2.6–SSP1 had the lowest consumption and emission patterns and 
RCP8.5–SSP5 the highest (Riahi et  al. 2017, van Vuuren et  al. 2011). We averaged the 
probabilities as result of the different climate models to construct for each RCP-SSP sce-
nario one spatially explicit map of future probability.

2.5 � Statistical analysis

Estimating the geographical patterns of probability of SRWPs was based on three differ-
ent methods: (1) MaxEnt, (2) random forests and (3) multinomial regression. As absence 
data was solely sampled in areas within the range of climate, soil and terrain conditions 
under which SRWPs were found, analyses were restricted to this extent, assuming that 
the probability of occurrence outside this range was minimal. All analyses were con-
ducted in R (version 4.1.0.) (R Core Team 2019) and at a 1 × 1 km2 resolution. We used 
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for MaxEnt the dismo package (Hijmans et al. 2020), which applies the MaxEnt distri-
bution model software (Phillips et al. 2021), and set the number of background points 
to 20,000 and the default prevalence to 0.9 (i.e. the estimated proportion of background 
points to be true absence), thereby accounting for potential classification mistakes in 
the presence data. For the random forest approach, we used the randomForest pack-
age (Liaw & Wiener 2002) in combination with the caret package (Kuhn 2021). The 
maximum number of trees was set to 125 and a tenfold cross-validation with five repeti-
tions was applied for resampling. For multinomial regression, we used the nnet pack-
age (Venables & Ripley 2002), which relies on neural networks to fit multinomial log-
linear models. Model selection was conducted by bidirectional elimination based on the 
Akaike information criterion, selecting the model with the lowest value.

For all methods, 80% of the data was used for training the model and 20% for valida-
tion. Model fit was determined with help of the receiver operating curve (ROC) calculated 
with the pROC package (Robin et al. 2011). ROC evaluates sensitivity (i.e. true positive 
rate) against specificity (i.e. true negative rate) for different thresholds. The area under this 
curve (ROC AUC) is a common index for model fit, with values ranging from 0.5 (model 
fail) to 1.0 (perfect model fit). To ensure that the ROC AUC values represent an unbiased 
evaluation of the model fit independent from location clusters, we separately calculated the 
values for five data partitions, using each partition once for testing and the remaining four 
for training the models. For each method, the ROC AUC values from the five data parti-
tions were then averaged.

To understand the impact of different variables on the model prediction and the accu-
racy of prediction, the permutation variable importance was calculated. For each variable 
separately, values were permuted (shuffled) to break the link with the model. Based on 
this new dataset, probability values were calculated, which were compared with the origi-
nal probabilities. A Spearman rank correlation coefficient indicated how much permuted 
predictions differed from the original. The higher the coefficient, the more alike the pre-
dictions were and the less impact the variable had on the probabilities. Additionally, we 
evaluated the impact of a variable on the prediction ability, i.e. the ROC AUC value, by 
determining the decrease of the ROC AUC for the permuted data. Variable values were 
permuted with help of the biomod2 package (Thuiller et al. 2021). Using permutation to 
determine variable importance has the benefit that biases that can result from using differ-
ent models are eliminated, hence allowing the comparison of variable relevance between 
different prediction methods (Altmann et  al. 2010). Determining also the effect direc-
tion and extent of the included variables could deepen our understanding on their impact. 
However, while in regressions the relationships between the dependent and independent 
variables are linear and therefore each predictor has one effect direction, MaxEnt and ran-
dom forest allow for non-linear relationship, meaning that after certain threshold values, 
the effect direction might change. An approach to determine the effect direction in a com-
parable way between the different methods is currently not available. Next to presenting 
and comparing the probability maps obtained with the different methods, we also created 
a final probability map in which the probability maps from the three methods were com-
bined by weighting them based on their ROC AUC values, following Ramirez-Reyes et al. 
(2021). This so-called ensemble approach is commonly used to increase robustness of pre-
diction results over individual methods (Diengdoh et al. 2020). The weight of each map 
was calculated by dividing the ROC AUC of a method by the sum of ROC AUC values of 
all methods. For future conditions, we determined the change in probability values in rela-
tion to the current conditions, multiplied the weights of the respective method and created 
future probability maps by adding the combined change to the map for present conditions.
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3 � Results

3.1 � Location probability for current conditions

Our final result shows that high values of SRWP probabilities are often located at and 
in close vicinity of SRWP observation points, for example, in parts of the Cerrado and 
the Atlantic Forest in Brazil, the Eastern Cape of South Africa and South-East China 
(Fig.  1C–E). This indicates a high prediction ability of our models, as they present 
the distribution of the observations. Nevertheless, high probabilities also appear in 
areas where none or only few SRWP locations were observed, but with similar loca-
tion characteristics. These locations include, for example, Eastern Madagascar, North 
of the Ganges Delta and the Philippines (Fig.  1A, B, F, G). This demonstrates that 
our models are able to extrapolate into areas outside of the input data, where location 
factors are similar to the ones from the observation locations. The resulting probabil-
ity layers are available at https://​doi.​org/​10.​34894/​T3A3RM. The data package also 
includes biophysical suitability layers, which exclude the socio-economic variables 
and were created through MaxEnt modelling using only presence data.

Fig. 1   Probability map for the occurrence of SRWPs in (sub)tropical biomes. The seven spotlight boxes 
present examples of areas with high probabilities and many observations (magenta) or few observations 
(purple). The same scale is used for all spotlight boxes. Note: For a better visibility, locations of SRWP 
observations are solely indicated in the boxes and not in the full overview (middle). An overview of SRWP 
observations in (sub)tropical biomes is provided in Supplementary Material 1.1

https://doi.org/10.34894/T3A3RM
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3.2 � Future patterns

To understand potential impacts of climate change on the probability of finding SRWPs, 
probability maps were modified with future projections of temperature and precipitation. 
For all climate scenarios, SRWP probabilities are projected to decrease in the majority of 
locations and to increase in only very few areas. Areas with very low probabilities (< 0.25) 
show generally the least impact by changing climate and probabilities generally decrease 
in these locations only slightly. In areas with probabilities above 0.25, the median decrease 
lies around 0.1 to 0.2 depending on the climate scenario (Fig.  2). We found the differ-
ences between the magnitudes of decrease between those probability classes to be less pro-
nounced as the difference to locations with very low probability values. When comparing 
the change in future probability between the scenarios, the SSP5-8.5 scenario shows over-
all the steepest decline in probabilities, followed by SSP3-7.0 and SSP1-2.6 scenario. This 
indicates that climate consequences from high emission scenarios could result in a stronger 
decreasing potential of plantations. The resulting layers of future probability are available 
at https://​doi.​org/​10.​34894/​T3A3RM.

We identified areas with high probability (> 0.5), at high risk to become substantially 
less suitable for SRWPs due to future climate change (> 0.2 probability decrease in 2055). 
Most of these high probability-high-risk areas are located in Latin America, specifically 
along the coast of Central America, in Southern Colombia (Fig. 3A) and the Atlantic For-
est in Brazil (Fig. 3B). Hotspots on the other continents include the Eastern Cape of South 
Africa (Fig. 3C), Sumatra Island and Southern China, Northern Vietnam and parts of Thai-
land (Fig. 3D). Several of these high probability-high-risk hotspots are located in highly 
productive paper/pulp and bioenergy production areas (le Maire et al. 2014; Overbeek et al. 
2012). In other areas, SRWPs have (already) been abandoned, for example, as it is the case 
for some eucalyptus plantations in Brazil (Gainsbury & Colli 2014).

Fig. 2   Grouped boxplots representing changes in probability separately for probability classes and follow-
ing three future scenarios for climate variables (SSP126: RCP2.6–SSP1, SSP370: RCP7.0–SSP3, SSP585: 
RCP8.5–SSP5)

https://doi.org/10.34894/T3A3RM
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3.3 � Comparison between methods

The models’ prediction ability, measured by the ROC AUC, is high for all three methods, with 
random forest having the highest value (0.95), followed by MaxEnt (0.90) and multinomial 
regression (0.83). When combining the probability maps, the ROC AUC increases to a value 
of 0.97. To compare the spatial patterns of the three methods, we calculated the mean abso-
lute difference of the resulting probability maps. For current conditions, the mean difference is 
rather small in most areas (Fig. 4), with some outliers especially for locations adjacent to very 
high probability values (see Supplementary Material 2.4.1). Locations of very high (> 0.75) 
and very low probabilities (< 0.25) show the smallest difference between the methods, meaning 
these probability classes are the least sensitive to the choice of method (Supplementary Mate-
rial 2.4.5). The patterns resulting from future scenarios are more similar between the methods, 
demonstrated by smaller mean absolute differences between the methods compared to current 

Fig. 3   Areas of high probability areas (> 0.5), which are at high risk of becoming substantially less suitable 
(> 0.2 decrease) for SRWPs due to future climate change in 2055, following the SSP3-RCP7.0 scenario. 
The same scale is used in all spotlight boxes. Maps of high probability areas at high risk following SSP1-
RCP2.6 and SSP5-RCP8.5 scenarios are provided in the Supplementary Material

Fig. 4   Boxplots showing the distribution of absolute mean difference between the three methods for current (~ 2015) 
conditions and future scenarios (SSP126: RCP2.6–SSP1, SSP370: RCP7.0–SSP3, SSP585: RCP8.5–SSP5)
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conditions (Fig. 4). Again, locations with very low and very high probabilities are generally the 
least sensitive to the choice of method, indicated by the low standard deviation values for these 
probability classes (Supplementary Material 2.4.5).

Determining the permutation variable importance shows that especially climate and 
socio-economic variables are important predictors for the occurrences of SRWPs (see 
Fig. 5). Maximum temperature in the warmest month, followed by elevation have on aver-
age (i.e. across the three methods), the highest contributions, with comparatively lower 
impacts in the random forest model. Annual precipitation and precipitation in the driest 
quarter are furthermore variables with a high impact among the different models. There 
are noticeable differences between the contributions of climate variables to the different 
models. Precipitation in the driest quarter and diurnal temperature rank high in their con-
tribution to the Random Forest model, but have less impact on the results of the other 
two methods. These differences can be explained by similar direct and indirect impacts on 
SRWP probabilities, which are also reflected in the correlation coefficients of their pair-
wise comparison (see Supplementary Material 2.5). Accessibility, measured in travel time 
to major cities, and market access are further variables that have an important contribu-
tion to the predicted probability of SRWP occurrence. Overall, soil variables and terrain 
conditions, except for elevation, show only a small contribution to model predictions. The 
impact of the variables on prediction ability (i.e. ROC AUC, see Supplementary Material 
2.6) shows similar patterns, with some minor differences in the ranking order of variables.

Fig. 5   Contribution of predictor variables for the three methods used to predict SRWP probabilities. Varia-
ble contribution was estimated by calculating Spearman correlation coefficients for original predicted prob-
abilities and probabilities based on a permutated dataset (i.e. shuffling variable values). The less the prob-
abilities correlate, the higher the contribution of the variable (therefore 1 – correlation coefficient on the 
x-axis). Variables are ranked by their average values for all three methods. Categorisation follows Table 1
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4 � Discussion

We present the first empirical estimation of the spatial probability of SRWP distribution in 
tropical and subtropical biomes, based on a comprehensive dataset of observed locations. 
By combining three advanced spatial models, we increased prediction capability of our 
method and minimised drawbacks inherent to each individual model, shown by a higher 
ROC AUC value for the combined map as compared to the performance of the individual 
methods. In the absence of complete databases of SRWPs, our map, indicating the prob-
ability of SRWP occurrence, adds additional insights to the existing body of evidence. The 
probabilities for occurrence of SRWPs can be interpreted as an indication of the suitability 
of these areas, based on the physical and socio-economic location characteristics consid-
ered in this study. The probabilities, however, do not necessarily present optimal suitability, 
but rather the likelihood for a land user to establish an SRWP in a location. The occurrence 
of SRWPs is, thereby, also a result of competition and compromise with other land uses 
and depends on a locations opportunity, for example, regarding infrastructure or favourable 
growing conditions.

SRWPs are one of the most important measures in global climate change mitigation 
plans, for example, as part of the Paris Agreement (Hasegawa et  al. 2018). Our results 
show that there is a rather large variation in SRWP probability in the tropical and subtropi-
cal biomes. These variations indicate that SRWPs are not everywhere a likely or feasible 
solution and it is important to account for these differences in occurrence probability, when 
targeting investments. Our results clearly indicate that the probability SRWP occurrence 
is constrained by elevation and climate factors, but also by accessibility constraints. These 
differential likelihoods need to be accounted for. Previous studies on the suitability of plan-
tations commonly did not include socio-economic variables (see, e.g. Aust et  al. 2014, 
Zomer et al. 2008). However, our result shows that accessibility and market access had a 
rather large impact on the predictions. Both variables are indicators for the ease of access 
to processing facilities, interactions with markets and the availability of workforce, which 
in turn all affect the economic profitability (Vanbeveren et al. 2017). Enhancing accessi-
bility in locations that are otherwise suitable is not always feasible and often expensive, 
requires resources and might be detrimental to the environment. On the other hand, areas 
that are highly accessible and hence profitable might be used for more lucrative land sys-
tems, such as crop production.

As a first to estimate the impact of future climate change on the location probability for 
SRWPs, our study suggests that changing seasonality and overall climatic conditions might 
cause SRWP suitability to decline in several locations in the (Sub)Tropics. This could 
result in less yield, less profit and potentially abandonment, as well as less area available 
for expansion of new SRWPs. This could lead to diminishing amounts of wood from (sub)
tropical SRWPs, resulting in increased harvest pressure on natural forests and consequently 
more degradation (Silva et  al. 2018). From a demand side perspective, less wood avail-
able from SRWPs could interfere with initiatives to reduce plastic production and waste by 
switching to wood-based alternatives, or to decrease emissions from construction by using 
wood instead of steel and concrete. Additionally, as countries try to make the shift to more 
renewable energy sources, the use of biofuel has been encouraged as an alternative to fossil 
fuels, due to its higher flexibility compared to, for example, solar and wind power (Hunkin 
& Krell 2020). To achieve a future with a temperature increase below a 1.5 °C or 2 °C, bio-
energy with carbon capture and storage (i.e. BECCS) has been considered the main strat-
egy (besides reduction in energy demands) (Fuss & Johnsson 2021; Masson-Delmotte et al. 
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2021). However, scarcity of land for the supply of bioenergy has been found to be the main 
constraining factor (Creutzig et al. 2021; Strefler et al. 2021). Our results show that future 
climate change might exacerbate this scarcity and reduce the potential of land-based miti-
gation through SRWPs and BECCS, which emphasises the necessity to include demand 
side mitigation measures. Larger climate impacts reduce the potential of mitigating further 
climate change by land-based mitigation. It needs to be noted that due to our focus on 
(sub)tropical biomes, we do not account for potential probability increases in temperate 
and boreal regions, which could be the result of higher temperatures and changing pre-
cipitation patterns, and might be able to counterbalance some of the lost land availability. 
The same is true for changes in the socio-economic and political situation, which can make 
areas accessible and suitable, which are currently not. The observed patterns of decreased 
probabilities driven by climatic changes are also relevant for SRWPs that are used as meas-
ure against land degradation and to increase the land value of marginal agricultural areas. 
In the Atlantic Forest in Brazil, for example, SRWPs have been planted on degraded grass-
land, following sustainability principles and enhancing productivity, biodiversity and eco-
nomic value of the land (FAO & UNEP 2020). Our results suggest that the opportunity to 
restore land through such measures might decrease in the future and especially in scenarios 
with more pronounced changes in temperature and precipitation patterns, for which land 
degradation is expected to worsen (Borrelli et al. 2020).

Next to the high predictive ability of our models indicated by the ROC AUC values, our 
map also shows agreement with existing datasets. When overlaying the locations of wood 
fibre and eucalyptus plantations derived from the Spatial Database of Planted Trees (Harris 
et al. 2021) with our probability map, we found that these plantations were more often in 
locations with high and very high SRWP probabilities, as compared to a random sampled 
(see Supplementary Material 3.1).

Although our study differs in its approach to previous studies on the location factors of 
SRWPs, our ranking of variable importance shows similarity. Previous studies have also 
identified temperature and water availability as most important location factors and soil 
conditions to have a smaller impact (Aust et al. 2014; Saïdi et al. 2011). For two of our 
three methods, temperature had a larger impact than precipitation, which can be explained 
by reduced photosynthesis due to more cloud cover when precipitation increases (McMa-
hon & Jackson 2019). Similarly, cloud cover and lower temperatures are likely the main 
reasons why elevation had a rather high importance for the predictions of all models. 
While irrigation has been suggested as a measure to overcome water limitations in coppice 
plantations in dry Mediterranean areas (Oliveira et al. 2020), the small contribution of the 
distance to fresh water resources found in this study indicates that irrigation currently only 
plays an overall minor role in (sub)tropical SRWPs. It is likely that this will change in the 
future with more frequent droughts and land scarcity due to competing demands (Stenzel 
et al. 2019).

There are several limitations attached to our method. Misclassification of SRWP 
locations is possible, due to the way the data was collected. Generally, this was avoided, 
by including only locations, where at least three citizen scientists agreed. The target 
approach enabled a relatively fast collection of a large number of points, but gener-
ally classifications of one expert might be less reliable due to lacking quality control 
(Schepaschenko et al. 2017). While it is possible to address potential errors in classifica-
tions with MaxEnt, it is not possible to address these with the other methods applied. 
However, the large similarity between the results of MaxEnt and the other two methods 
indicates a low sensitivity to potential classification mistakes. Empirical approaches, 
especially on a large scale, are always a generalisation of the actual dynamics that 
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occur on the ground. By using statistical models over several continents, we ignored 
relationships potentially resulting from national politics that dictate the allocation of 
SRWPs. Our study did not include future scenarios of socio-economic development as 
this would require additional assumptions and their effect would be difficult to disen-
tangle from the impacts of climate change. Future studies could build upon our analysis 
and also include socio-economic scenarios, to identify how those will impact the prob-
ability of SRWP occurrence. We furthermore generalised over different tree species that 
are used in SRWPs. Acacia and eucalyptus, for example, have different requirements 
for soil conditions (Saïdi et al. 2011). Additionally, pine plantations were not included 
in the observation data, even though some studies determine rotation periods of these 
plantations to be below 15 years (Fagan et al. 2018). While we did update climate vari-
ables, we only considered proxies for climate extremes, such as droughts, which might 
not fully present potential increases of tree mortality or pests, or aggravated competition 
with agricultural land.

Despite the limitations, the results of this study can have several applications, most 
notably leading to more realistic plans and assessments of land-based climate change 
mitigation. First, they can be used to account for potential future changes in suitability 
when planning the location of new plantations. Second, the probability maps can be 
used to downscale national statistics on SRWPs and spatially-explicitly allocate their 
occurrence. While a global dataset on the exact amounts of SRWPs is currently lack-
ing, better estimates might become available in the future for many countries with the 
increasing importance of SRWPs. Using national or regional data on the actual extent 
of SRWPs could help overcome the lack of political drivers in our study. Third, the 
results could be used in models of future land use changes, thereby providing more 
nuance on forest cover and planted forests (Bahar et al. 2020). Explicitly accounting for 
SRWPs goes beyond earlier studies accounting for forest management (Doelman et al. 
2018; Schipper et al. 2020; Schulze et al. 2020). This can have implications for global 
assessment results in providing refined assessments of biodiversity, land degradation or 
changes in the water cycle resulting from SRWPs. Finally, our results can support and 
refine estimates of the potential future availability of wood fibre for biomass, paper and 
pulp (Roe et al. 2021). Our method goes beyond previous estimates on the suitability of 
locations, by including socio-economic variables (for current conditions) and relying on 
an empirical approach. These improved estimates can support policy recommendations, 
for example, on the potential of SRWPs as a climate mitigation option and refined iden-
tification of trade-offs and synergies of SRWPs, which would lead to more sustainable 
SRWPs.
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